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Abstract
In this paper, three modified Polak-Ribière-Polyak (PRP) conjugate gradient methods
for unconstrained optimization are proposed. They are based on the two-term PRP
method proposed by Cheng (Numer. Funct. Anal. Optim. 28:1217-1230, 2007), the
three-term PRP method proposed by Zhang et al. (IMA J. Numer. Anal. 26:629-640,
2006), and the descent PRP method proposed by Yu et al. (Optim. Methods Softw.
23:275-293, 2008). These modified methods possess the sufficient descent property
without any line searches. Moreover, if the exact line search is used, they reduce to
the classical PRP method. Under standard assumptions, we show that these three
methods converge globally with a Wolfe line search. We also report some numerical
results to show the efficiency of the proposed methods.

Keywords: conjugate gradient method; sufficient descent property; global
convergence

1 Introduction
Consider the unconstrained optimization problem:

min f (x), x ∈Rn, ()

where f : Rn → R is continuously differentiable, and its gradient g(x) is available. Con-
jugate gradient methods are efficient for solving (), especially for large-scale problems.
A conjugate gradient method generates an iterate sequence {xk} by

xk+ = xk + αkdk , k = , , . . . , ()

where xk is the current iterate, αk >  is the step size and computed by certain line search,
and dk is the search direction defined by

dk =

{
–gk , if k = ,
–gk + βkdk–, if k ≥ ,

()

in which βk is an important parameter. Generally, different conjugate gradient methods
correspond to different choices of the parameter βk . Some well-known formulas for βk
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include the Fletcher-Reeves (FR) [], the Polak-Ribière-Polyak (PRP) [, ], the Liu-Storey
(LS) [], the Dai-Yuan (DY) [], the Hestenes-Stiefel (HS) [] and the conjugate descent
(CD) [] formulas. In this paper, we focus our attention on the PRP method, in which the
parameter βk is given by

βPRP
k =

g�
k (gk – gk–)
‖gk–‖ , ()

where ‖ · ‖ is the -norm. In the convergence analysis and implementations of conjugate
gradient methods, one often requires the line search to be an inexact line search such as
a Wolfe line search, a strong Wolfe line search or an Armijo line search. The Wolfe line
search is finding a step size αk satisfying

{
f (xk + αkdk) ≤ f (xk) + ραkg�

k dk ,
g(xk + αkdk)�dk ≥ σ g�

k dk ,
()

where  < ρ < σ < . The strong Wolfe line search is computing αk such that

{
f (xk + αkdk) ≤ f (xk) + ραkg�

k dk ,
|g(xk + αkdk)�dk| ≤ σ |g�

k dk|, ()

where  < ρ < / and σ ∈ (ρ, ). The Armijo line search is finding a step size αk =
max{ρ j|j = , , . . .} satisfying

f (xk + αkdk) ≤ f (xk) + δαkg�
k dk , ()

where δ ∈ (, ) and ρ ∈ (, ) are two constants.
The PRP method is generally regarded to be one of the most efficient conjugate gradient

methods and has been studied by many researchers [, , ]. Polak and Ribière [] proved
that the PRP method with the exact line search is globally convergent under a strong con-
vexity assumption for the objective function f . Gilbert and Nocedal [] conducted an ele-
gant analysis and showed that the PRP method is globally convergent if βPRP

k is restricted
to be non-negative (denoted βPRP+

k ) and αk is determined by a line search step satisfying
the sufficient descent condition

g�
k dk ≤ –c‖gk‖, c > , ()

in addition to the Wolfe line search condition (). Grippo and Lucidi [] proposed new
line search conditions, which can ensure that the PRP method is globally convergent for
nonconvex problems. However, the method given by Grippo and Lucidi [] does not per-
form better than the PRP method, which employs βPRP+

k and the Wolfe line search in the
numerical computations. Therefore, great attention is given to the problem of finding the
methods which not only have global convergence but also have nice numerical perfor-
mance [–].

Recently, two new conjugate gradient methods, obtained by modifying the PRP method,
called two-term PRP method (denoted CTPRP) and three-term PRP method (denoted
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ZTPRP), have been proposed by Cheng [] and Zhang et al. [], respectively, in which
the direction dk is given by

dCTPRP
k = –

(
 + βPRP

k
g�

k dk–

‖gk‖

)
gk + βPRP

k dk–, ∀k ≥ 

or

dZTPRP
k = –gk + βPRP

k dk– – θkyk–, ∀k ≥ ,

where

yk– = gk – gk–, θk =
g�

k dk–

‖gk–‖ .

An attractive feature of the CTPRP method and the ZTPRP method is that they satisfy
g�

k dk = –‖gk‖, which is independent of line search used. Moreover, these two methods
are globally convergent if some kind of modified Armijo type line search or strong Wolfe
line search is used, and the presented numerical results in [, ] show some potential
advantages of the proposed methods. Moreover, Yu et al. [] proposed another type vari-
ation of PRP method, denoted YTPRP, whose direction is defined by

dYTPRP
k = –gk + βYPRP

k dk–, ∀k ≥ ,

where

βYPRP
k = βPRP

k – C
‖yk–‖g�

k dk–

‖gk–‖ and C >



.

An attractive feature of the dYTPRP
k is that it satisfies g�

k dk ≤ –( – /C)‖gk‖, which is also
independent of line search used.

Note that the global convergence of the above three methods is established under some
Armijo type line search or strong Wolfe line search. It is well known that the step size
generated by the Armijo line search maybe approaches zero, and thus the reduction of
the objective function is very little. This slows down the optimization process. Obviously,
the strong Wolfe line search can avoid this phenomenon when the parameter σ → +,
and in this case, the strong Wolfe line search is close to the exact line search. Thus, the
computational load of the strong Wolfe line search increases heavily. In fact, the Wolfe line
search can also avoid the above phenomenon. However, compared with the strong Wolfe
line search, the Wolfe line search needs less computation to get a suitable step size at each
iteration. Therefore, the Wolfe line search can enhance the efficiency of the conjugate
gradient method.

In this paper, we shall investigate some variations of PRP method under a Wolfe line
search. In fact, we take a little modification to the βPRP

k and propose three modified PRP
methods based on the iterate directions dCTPRP

k , dZTPRP
k , and dYTPRP

k , which possess not
only the sufficient descent property for any line search but also global convergence with
a Wolfe line search. In order to do so, the remainder of the paper is organized as follows:
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In Section , we propose the modified PRP methods and prove their convergence. In Sec-
tion , we present some numerical results by using the test problems in []. Section 
concludes the paper with final remarks.

2 Three modified PRP methods
First, we give the following basic assumption as regards the objection function f (x).

Assumptions
(H) The level set R = {x|f (x) ≤ f (x)} is bounded.
(H) In some neighborhood N of R, the gradient g(x) is Lipschitz continuous on an

open convex set B that contains R, i.e., there exists a constant L >  such that

∥∥g(x) – g(y)
∥∥ ≤ L‖x – y‖, for any x, y ∈ B.

Assumptions (H) and (H) imply that there exist positive constants γ and B such that

∥∥g(x)
∥∥ ≤ γ , ∀x ∈ R ()

and

‖x – y‖ ≤ B, ∀x, y ∈ R. ()

Recently, Wei et al. [] proposed a variation of the FR method which we call the VFR
method, in which the parameter βk is defined by

βVFR
k =

μ‖gk‖

μ|g�
k dk–| + μ‖gk–‖ ,

where μ ∈ (, +∞), μ ∈ (μ +ε, +∞), μ ∈ (, +∞), and ε is any given positive constant.
An attractive feature of the VFR method is that the sufficient descent condition g�

k dk ≤
–( – μ

μ
)‖gk‖ always holds which is independent of the line search used. The idea of Wei

et al. [] was further extended to the Wei-Yao-Liu method by Dai and Wen []. Here,
motivated by the ideas of Wei et al. [] and Dai and Wen [], we construct two modified
PRP methods, in which the parameter βk is specified as follows:

βMPRP
k =

g�
k (gk – gk–)

μ|g�
k dk–| + ‖gk–‖ ()

or

βMPRP+
k = max

{
g�

k (gk – gk–)
μ|g�

k dk–| + ‖gk–‖ , 
}

, ()

where μ ≥  is a constant. Obviously, if μ =  or the line search is exact, the new parameter
βMPRP

k or βMPRP+
k reduces to the classical parameter βPRP

k in [] or βPRP+
k in [].

First, using the parameter βMPRP
k and the direction dCTPRP

k , we present the following
conjugate gradient method (denoted the TMPRP method).
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TMPRP method (Two-term modified PRP method)

Step . Give an initial point x ∈Rn, μ ≥ ,  < ρ < σ < , and set d = –g, k := .
Step . If ‖gk‖ =  then stop; otherwise go to Step .
Step . Compute dk by

dk =

{
–gk , if k = ,

–( + βMPRP
k

g�
k dk–
‖gk‖ )gk + βMPRP

k dk–, if k ≥ .
()

Determine the step size αk by Wolfe line search ().
Step . Set xk+ = xk + αkdk , and k := k + ; go to Step .

Similarly, using the parameter βMPRP
k and the direction dZTPRP

k , we present the following
conjugate gradient method (denoted the TMPRP method).

TMPRP method (Three-term modified PRP method)

Step . Give an initial point x ∈Rn, μ ≥ ,  < ρ < σ < , and set d = –g, k := .
Step . If ‖gk‖ =  then stop; otherwise go to Step .
Step . Compute dk by

dk =

{
–gk , if k = ,
–gk + βMPRP

k dk– – ϑkyk–, if k ≥ ,
()

where ϑk = g�
k dk–/(‖gk–‖ + μ|g�

k dk–|). Determine the step size αk by Wolfe line
search ().

Step . Set xk+ = xk + αkdk , and k := k + ; go to Step .

Using a parameter similar to βYPRP
k , we present the following conjugate gradient method

(denoted the TMPRP method).

TMPRP method (Three-term descent PRP method)

Step . Give an initial point x ∈Rn, μ ≥ , t > ,  < ρ < σ < , and set d = –g, k := .
Step . If ‖gk‖ =  then stop; otherwise go to Step .
Step . Compute dk by

dk =

{
–gk , if k = ,
–gk + βVPRP

k dk– + νk(yk– – sk–), if k ≥ ,
()

where

βVPRP
k =

g�
k (gk – gk–)

μ|g�
k dk–| + ‖gk–‖ – t

‖yk–‖g�
k dk–

(μ|g�
k dk–| + ‖gk–‖) ,

νk =
g�

k dk–

μ|g�
k dk–| + ‖gk–‖ .

()

Determine the step size αk by Wolfe line search ().
Step . Set xk+ = xk + αkdk , and k := k + ; go to Step .
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Remark . If the constant μ = , then the TMPRP method and TMPRP method re-
duce to the methods proposed by Cheng [] and Zhang et al. [], respectively, and the
TMPRP method reduces to a method similar to that proposed by Yu et al. [].

Remark . Obviously, if the line search is exact, then the direction generated by ()
or () or () reduces to () with βk = βPRP

k . Therefore, in the following, we assume that
μ > .

Remark . From () and (), we can easily obtain

g�
k dk = –‖gk‖ and ‖gk‖ ≤ ‖dk‖. ()

This indicates that the TMPRP method and the TMPRP method satisfy the sufficient
descent property. In addition, from the following lemma, we can see that the TMPRP
method also satisfies this property.

Lemma . Let {xk} and {dk} be generated by the TMPRP method, then we have

g�
k dk ≤ –

(
 –


t

)
‖gk‖. ()

Proof We have from () and ()

g�
k dk = –‖gk‖ +

(
g�

k (gk – gk–)
μ|g�

k dk–| + ‖gk–‖ – t
‖yk–‖g�

k dk–

(μ|g�
k dk–| + ‖gk–‖)

)
g�

k dk–

+
g�

k dk–

μ|g�
k dk–| + ‖gk–‖

(
g�

k yk– – g�
k sk–

)

≤ –‖gk‖ + 
g�

k yk–g�
k dk–

μ|g�
k dk–| + ‖gk–‖ – t

‖yk–‖(g�
k dk–)

(μ|g�
k dk–| + ‖gk–‖)

–
αk–(g�

k dk–)

μ|g�
k dk–| + ‖gk–‖

≤ –‖gk‖ + 
(

√
t

gk

)�( √
tg�

k dk–

μ|g�
k dk–| + ‖gk–‖ yk–

)
– t

‖yk–‖(g�
k dk–)

(μ|g�
k dk–| + ‖gk–‖)

≤ –‖gk‖ +

t
‖gk‖ + t

‖yk–‖(g�
k dk–)

(μ|g�
k dk–| + ‖gk–‖) – t

‖yk–‖(g�
k dk–)

(μ|g�
k dk–| + ‖gk–‖)

= –
(

 –

t

)
‖gk‖,

which indicates that () holds by induction since d = –g and t > . This completes the
proof. �

Remark . From the proof of Lemma ., we can see that if the term sk– in dk is deleted,
then the above sufficient descent property still holds.

The global convergence proof of the above three methods is similar, here, we only prove
the global convergence of the TMPRP method. In the case of the other two methods, the
argument is similar.
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The following lemma, called the Zoutendijk condition, is often used to prove global
convergence of conjugate gradient method. It was originally given by Zoutendijk in [].

Lemma . Suppose that x is a starting point for which assumptions (H) and (H) hold.
Consider any method in the form of (), where dk is a descent direction and αk satisfies the
Wolfe condition () or the strong Wolfe condition (). Then we have

∞∑
k=

(g�
k dk)

‖dk‖ < +∞.

This together with () shows that

∞∑
k=

‖gk‖

‖dk‖ < +∞. ()

Definition . The function f (x) is said to be uniformly convex onRn, if there is a positive
constant m such that

d�∇f (x)d ≥ m‖d‖, ∀x, d ∈Rn,

where ∇f (x) is the Hessian matrix of the function f (x).

Now we prove the strongly global convergence of TMPRP method for uniformly convex
functions.

Lemma . Let the sequences {xk} and {dk} be generated by TMPRP method, and the
function f (x) be uniformly convex, then we have

cαk‖dk‖ ≤ –g�
k dk , ()

where c = ( – ρ)–m/.

Proof See Lemma . in []. �

The proof of the following theorem is similar to that of Theorem . in []. For com-
pleteness, we give the proof.

Theorem . Suppose that the assumptions (H) and (H) hold, and f (x) is uniformly
convex, then we have

lim
k→∞

‖gk‖ = .

Proof From (), (), and (H), we have

∣∣βMPRP
k

∣∣ ≤
∣∣∣∣g�

k (gk – gk–)
‖gk–‖

∣∣∣∣ ≤ Lαk–‖gk‖‖dk–‖
–g�

k–dk–
≤ L

c

‖gk‖
‖dk–‖ .
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This together with () shows that

‖dk‖ ≤ ‖gk‖ +
∣∣βMPRP

k
∣∣‖gk‖‖dk–‖

‖gk‖ ‖gk‖ +
∣∣βMPRP

k
∣∣‖dk–‖

≤ ‖gk‖ +
L
c

‖gk‖

=
(

 +
L
c

)
‖gk‖.

Then, letting
√

A =  + L
c

, we get ‖dk‖ ≤ A‖gk‖. So, by (), we get

lim
k→∞

‖gk‖ = lim
k→∞

‖gk‖

‖gk‖ ≤ A lim
k→∞

‖gk‖

‖dk‖ = .

This completes the proof. �

We are going to investigate the global convergence of the TMPRP method with Wolfe
line search () for nonconvex function. In the last part of this subsection, we use βMPRP+

k
to replace βMPRP

k in ().
The next lemma corresponds to Lemma . in [] and Theorem . in [].

Lemma . Suppose that assumptions (H) and (H) hold. Let {xk} be the sequence gen-
erated by TMPRP method. If there exists a constant ε >  such that ‖gk‖ ≥ ε for all k ≥ ,
then we have

∞∑
k=

‖uk+ – uk‖ < +∞, ()

where uk = dk/‖dk‖.

Proof From () and ‖gk‖ ≥ ε for all k, we have ‖dk‖ >  for all k. Therefore, uk is well
defined. Define

rk = –
( + βMPRP+

k
g�

k dk–
‖gk‖ )

‖dk‖ gk and δk = βMPRP+
k

‖dk–‖
‖dk‖ .

Then we have

uk = rk + δuk–.

Since uk– and uk are unit vectors, we can write

‖rk‖ = ‖uk – δuk–‖ = ‖δuk – uk–‖.

Noting that δk ≥ , we get

‖uk – uk–‖ ≤ ∥∥( + δk)(uk – uk–)
∥∥ ≤ ‖uk – δuk–‖ + ‖δuk – uk–‖ = ‖rk‖. ()
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From (), (), and (H), we have

∣∣βMPRP+
k

∣∣ |g�
k dk–|
‖gk‖ ≤ ‖gk‖LB

μ|g�
k dk–|

|g�
k dk–|
‖gk‖ ≤ LB

εμ
. ()

From (), (), and (), it follows that there exists a constant M ≥  such that

∥∥∥∥–
(

 + βMPRP+
k

g�
k dk–

‖gk‖

)
gk

∥∥∥∥ ≤ ‖gk‖ +
LB
εμ

γ ≤ γ +
LB
εμ

γ
.= M. ()

Thus, from () and (), we get

∞∑
k=

‖rk‖ ≤
∞∑

k=

M


‖dk‖ =
∞∑

k=

M


‖gk‖
‖gk‖

‖dk‖ ≤ M


ε

∞∑
k=

‖gk‖

‖dk‖ < +∞,

which together with () completes the proof. �

The following theorem establishes the global convergence of the TMPRP method with
Wolfe line search () for general nonconvex functions. The proof is analogous to that of
Theorem . in [].

Theorem . Let the assumptions (H) and (H) hold. Then the sequence {xk} generated
by TMPRP method satisfies

lim inf
k→∞

‖gk‖ = . ()

Proof Assume that the conclusion () is not true. Then there exists a constant ε >  such
that for all

‖gk‖ ≥ ε, ∀k ≥ .

The proof is divided into the following two steps.
Step I. A bound on the steps sk . We observe that for any l ≥ k,

xl – xk =
l–∑
j=k

(xj+ – xj) =
l–∑
j=k

‖sj‖uj =
l–∑
j=k

‖sj‖uk +
l–∑
j=k

‖sj‖(uj – uk), ()

where sj = xj+ –xj and uk is defined in Lemma .. Using the triangle inequality and ‖uk‖ =
, we can write () as

l–∑
j=k

‖sj‖ ≤ ‖xl – xk‖ +
l–∑
j=k

‖sj‖‖uj – uk‖ ≤ B +
l–∑
j=k

‖sj‖‖uj – uk‖. ()

Let 
 be an arbitrary but fixed positive integer. It follows from Lemma . that there is an
index k
 such that

∑
i≥k


‖ui+ – ui‖ ≤ 



. ()
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If j > k ≥ k
 with j – k ≤ 
, then by () and Cauchy-Schwarz inequality, we have

‖uj – uk‖ ≤
j–∑
i=k

‖ui+ – ui‖

≤
(

(j – k)
j–∑
i=k

‖ui+ – ui‖

) 


≤
(








) 


=



.

Combining this with () yields

l–∑
j=k

‖sj‖ ≤ B, ()

where l > k ≥ k
 with l – k ≤ 
.
Step II. A bound on the direction dk . From () and (), we have

‖dk‖ ≤
(∥∥∥∥–

(
 + βMPRP+

k
g�

k dk–

‖gk‖

)
gk

∥∥∥∥ +
∣∣βMPRP+

k
∣∣‖dk–‖

)

≤ (
M +

∣∣βMPRP+
k

∣∣‖dk–‖
)

≤ M
 + 

(
βMPRP+

k
)‖dk–‖

≤ M
 +

Lγ ‖sk–‖

ε ‖dk–‖.

By the use of the same argument of the Case III of Theorem . in [], we can get the
conclusion (). This completes the proof. �

Remark . From Theorem ., we can see that the TMPRP method possesses better
convergence properties than CTPRP method in []. Since the TMPRP method converges
globally for nonconvex minimization problems with a Wolfe line search, while the CTPPR
method converges globally for nonconvex minimization problems with a strong Wolfe line
search. We also note that the term μ|g�

k dk–| in the denominator of () plays an important
role in the proof of Lemma ..

3 Numerical results
In this section, we present some numerical results to compare the performance of the
TMPRP method, the CG_DESCENT method in [] and the DTPRP method in [].

• TMPRP: the TMPRP method with Wolfe line search (), with μ = –, ρ = .,
σ = .;

• CG_DESCENT: the CG_DESCENT method with Wolfe line search (), with ρ = .,
σ = .;

• DTPRP: the DTPRP method with Wolfe line search (), with μ = ., ρ = ., σ = ..
All codes were written in Matlab . and run on a portable computer. We stopped the

iteration if the number of iterations exceeded , or ‖gk‖ < –. Here, we use some
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Figure 1 Performance profiles of TMPRP1 and CG_DESCENT about CPU time.

Figure 2 Performance profiles of TMPRP1 and DTPRP about CPU time.

test problems in [] with different dimensions. Our numerical results are listed in the
form NI/NF/CPU, where the symbols NI, NF, and CPU mean the number of iterations,
the number of function evaluations and the CPU time in seconds, respectively. ‘F’ means
the method failed. Here, the code of Wolfe line search () is adapted from []. In Figures 
and , we adopt the performance profiles by Dolan and Moré [] to compare the perfor-
mance based on the CPU time between the TMPRP method, the CG_DESCENT method
and the DTPRP method. That is, for each method, we plot the fraction P of problems for
which the method is within a factor τ of the best time. The left side of the figure gives the
percentage of the test problems for which a method is fastest; while the right side gives
the percentage of thee test problems that are successfully solved by each of the methods.
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The top curve is the method that solved the most problems in a time that was within a
factor τ of the best time. From Table  and Figures  and , we can see that the TMPRP
method performs better than the CG_DESCENT method and the DTPRP method, thus
the proposed TMPRP method is computationally efficient.

Table 1 The results for the methods on the tested problems

P n TMPRP1 CG_DESCENT DTPRP

Freudenstein and Roth 100 52/1,017/0.4,688 53/1,030/0.4219 94/2,037/0.8125
Trigonometric 5,000 118/539/5.6094 75/603/5.6250 57/170/2.2813
Extended Rosenbrock 5,000 44/868/1.7344 119/2,195/3.6875 54/956/1.8281
Generalized Rosenbrock 10 223/5,114/1.2500 567/13,632/3.5156 305/6,522/1.6719
White 1,000 48/874/1.3594 101/2,321/3.3438 71/1,474/2.0625
Beale 5,000 45/933/3.7344 98/2,182/8.3906 43/555/2.2031
Penalty 5,000 30/593/1.2969 26/516/1.1094 F
Perturbed quadratic 100 92/1,674/0.5469 114/1,974/0.6563 99/2,302/0.6875
Raydan 1 500 171/3,083/1.9219 231/3,882/2.3125 150/2,333/1.4688
Raydan 2 5,000 5/6/0.3750 6/60/0.6250 6/7/0.3438
Diagonal 1 100 88/1,462/0.6250 74/880/0.4063 83/1,608/0.6563
Diagonal 2 100 780/781/0.5938 104/341/0.1875 780/781/0.5313
Diagonal 3 100 101/1,492/0.7188 154/2,321/1.0781 77/767/0.4219
Hager 100 44/640/0.3281 32/251/0.1563 34/403/0.2188
Generalized tridiagonal 1 1,000 41/578/1.4844 31/403/1.0469 58/1,078/2.8594
Extended tridiagonal 1 1,000 41/432/1.1250 40/497/1.2188 46/724/1.8281
Extended three expo terms 5,000 45/759/5.5156 31/246/2.0781 21/174/1.5469
Generalized tridiagonal 2 1,000 56/785/1.3594 404/11,638/19.5938 61/1031/1.7813
Diagonal 4 5,000 48/815/1.3906 128/2,383/3.6406 55/673/1.1719
Diagonal 5 5,000 4/5/0.2969 4/8/0.3906 4/5/0.3281
Extended Himmelblau 5,000 30/438/1.0625 23/214/0.7500 20/178/0.7344
Generalized PSC1 5,000 222/1,100/5.7344 672/5,554/27.0156 F
Extended PSC1 5,000 55/916/5.0156 24/173/1.5156 24/187/1.4375
Extended Powell 5,000 193/2,649/17.4844 F 536/7,005/42.2031
Extended BD1 5,000 35/431/1.5156 49/856/2.8281 33/452/1.6250
Extended Maratos 1,000 66/1,121/0.6563 F 136/2,206/1.2344
Extended Cliff 5,000 48/262/1.6094 123/1,275/6.5000 F
Quadratic diagonal perturbed 5,000 433/6,793/3.6875 F 247/3,834/2.1094
Extended Wood 5,000 199/2,976/5.7188 F 131/2,075/4.1094
Extended Hiebert 5,000 2/32/0.4844 2/33/0.5313 3/62/0.5469
Quadratic QF1 5,000 731/12,453/19.8438 790/13,180/20.1875 882/14,508/22.3906
Extended QP1 1,000 65/1,662/1.0156 25/361/0.2813 16/157/0.1875
Extended QP2 5,000 64/988/5.1719 143/2,919/13.9219 78/1,170/6.4063
Quadratic QF2 5,000 777/14,146/24.6406 968/17,331/31.9219 814/14,358/24.7344
Extended EP1 5,000 101/2,391/6.6094 12/195/1.0000 136/3,136/8.0781
Extended tridiagonal 2 5,000 46/615/2.0156 63/1,270/3.4844 32/170/0.9219
BDQRTIC 100 159/2,473/0.8438 F 185/3,133/1.0156
TRIDIA 100 310/4,816/1.5938 440/7,143/2.2344 364/6,190/1.8281
ARWHEAD 5,000 35/702/2.2813 F F
NONDIA 5,000 30/626/1.8906 F 209/4,327/10.7344
NONDQUAR 5 713/779/0.4531 97/809/0.2813 F
DQDRTIC 5,000 80/1,234/2.7031 117/2,386/4.8750 81/1,108/2.4688
EG2 100 165/2,715/1.5,000 85/1,136/0.7969 F
DIXMAANA 5,001 21/191/7.0938 13/177/6.4688 10/70/2.8281
DIXMAANB 5,001 22/45/2.0000 13/127/4.7344 7/14/0.8750
DIXMAANC 5,001 17/136/5.1719 15/231/8.7500 6/17/0.9219
DIXMAANE 102 346/451/0.7031 186/5,359/5.4844 321/325/0.5313
Partial perturbed quadratic 100 87/1,905/1.6094 116/2,180/1.6719 77/1,326/0.9844
Broyden tridiagonal 5,000 114/1,927/5.1719 101/1,884/4.9531 119/2,029/5.2656
Almost perturbed quadratic 5,000 854/19,329/30.2969 F 866/19,516/32.0938
Tridiagonal perturbed quadratic 5,000 760/16,744/42.7813 959/22,230/52.9063 774/17,831/43.9063
EDENSCH 1,000 40/615/1.7188 35/450/1.1875 49/1,273/3.0938
HIMMELBHA 5,000 15/69/1.4063 F 17/18/0.6406
STAIRCASE S1 100 341/5,058/1.5781 F 510/7,591/2.4844
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Table 1 (Continued)

P n TMPRP1 CG_DESCENT DTPRP

LIARWHD 5,000 39/727/1.9688 165/3,873/9.7500 262/6,799/16.2500
DIAGONAL 6 5,000 5/6/0.3594 6/60/0.5313 6/7/0.3594
DIXON3DQ 100 578/9,208/3.0625 F 499/7,241/2.1563
ENGVAL1 5,000 36/611/1.7344 52/1,264/3.3906 F
DENSCHNA 5,000 23/249/1.9063 27/318/2.5938 19/93/1.0469
DENSCHNB 5,000 21/54/0.4844 10/79/0.4531 20/327/0.9063
DENSCHNC 5,000 23/191/2.6094 34/357/4.5938 F
DENSCHNF 5,000 25/343/1.1094 24/348/1.1250 23/363/1.2656
SINQUAD 100 505/10,201/4.1250 F F
BIGGSB1 100 489/5,248/1.7031 F 533/5,660/1.6406
Extended block-diagonal 1,000 30/506/0.8906 36/508/0.8750 26/374/0.5938
Generalized quartic 1 5,000 21/159/0.7500 18/342/1.0469 36/777/1.8594
DIAGONAL 7 5,000 53/2,509/14.1563 54/2,477/13.8125 F
DIAGONAL 8 5,000 57/2,710/18.3906 56/2,622/17.5781 F
Full Hessian 5,000 17/239/1.6094 18/305/1.9688 46/1,643/8.8750
SINCOS 5,000 26/250/1.5313 22/132/1.1719 F
Generalized quartic 2 5,000 48/996/2.4688 35/606/1.4375 39/704/1.6250
EXTROSNB 5,000 39/741/1.7500 159/7,756/14.8750 43/1,010/2.3281
ARGLINB 100 101/5,024/1.7969 111/5,498/1.7813 23/691/0.3125
FLETCHCR 5,000 61/1,662/4.0469 36/661/1.7813 61/1,976/4.7969
HIMMELBG 2 F 2/4/0.0313 F
HIMMELBH 5,000 18/103/0.7969 23/224/1.1406 16/91/0.6719
DIAGONAL 9 5,000 1/3/0.3594 1/3/0.3906 1/3/0.3594

4 Conclusion
This paper proposed three modified PRP conjugate gradient methods, which are some
improvements of recently proposed PRP conjugate gradient methods. The global conver-
gence of the proposed methods are established under the Wolfe line search. The effective-
ness of the proposed methods have been shown by some numerical examples. We find that
the performance of the TMPRP method is related to the parameter μ in βMPRP

k ; therefore,
how to choose a suitable parameter τ deserves further investigation.
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