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1 Introduction

Let R” (n > 2) be the n-dimensional Euclidean space and §”! be the unit sphere in R”
equipped with the induced Lebesgue measure do = do (-). Suppose that € L(S"!) sat-
isfies the cancelation condition

/S . Q(y)do(y)=0. 11)

For a suitable function ¢ and a measurable function / on [0, 0c), we denote by T 4, the
singular integral operator along the surface

T ={x=¢(y)y :yeR"}
defined as follows:

h /
) %f (x=o(yl)y) dy (L2)

Tonef (%) = p.v./
for f in the Schwartz class S(R"). If ¢ =1, then Tqy, is the classical singular integral
operator Tq j, which is defined by

Tasf)=p. [ M)y (13)
g I
When & =1, we denote simply Tq ¢ and Tq ) by T and Tg, respectively.
The L? boundedness of singular integrals along the surface has attracted the attention
of many authors [1-3], etc. There are several papers concerning rough kernels associated
to surfaces as above [4—6]. As one of them, we count the following one.
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Theorem A ([5]) Let h € A, for somey >2,1<p <00, Q€ H(S"™). Let ¢ be a nonneg-
ative C* function on (0,00) satisfying
(i) @(2) is strictly increasing and ¢(2t) > Ap(t) for all t > 0 and some A > 1,
(i) @(2) satisfies a doubling condition ¢p(2t) < c¢(t) for all t > 0 and some ¢ > 1,
(ili) ¢'(£) = CLop(2)/t for all t > 0 and some C;.
Then Tq g is bounded on L? (R").

This is, in fact, stated in the more general setting, i.e., for a weighted case (Theorem 1 and
Corollary 1in [5]), but we state this as above for our purpose and for the sake of simplicity.
We note here that condition (i) follows from (iii).

On the other hand, Triebel-Lizorkin space boundedness of rough singular integrals was
also investigated by many authors, see [7, 8] and [9].

Before stating the following result, let us recall the definitions of some function spaces.
First we give the definition of the Hardy space H'(S"™):

Hl (Sn—l)

sup
0<r<1

_ {w & L{(S™) | oy = /S 0P () do )

< oo},
Ll(sn—l)

where P, (x') denotes the Poisson kernel on $”* defined by

1-72

=, O0<r<land«,y eS".
lry’ = «'|"

Py (x/)

For1 <y <oo, A,(R,) is the collection of all measurable functions /4 : [0, 00) — C satis-
fying

1 (R 1y
||h||Ay=sup<§/ \h(t)]’/dt) <o,
R>0 0

Note that
LPR,) = A(Ry) C Ag(R,) C Ag(R,) fora< B,

and all these inclusions are proper.
As aresult of boundedness on Triebel-Lizorkin spaces, we cite the following one, which

is somewhat different from our setting, but closely related.

Theorem B ([9]) Let Q € H'(S"™) satisfy the cancelation condition (1.1) and h € A,, for
some 1<y <oo.Let P=(P,P,,...,P;) be real polynomials in y. Then, for the singular

integral
h(lyNQ)
Tonsf ) =p. [ X2 s(s - piy)ay
R |yl
(i) fora e Rand |zl7 - %| < min(%, %) and |$ - %l < min(%, %), there exists a constant

C > 0 such that || Tg,p,hfllp;q(Rd) < C”f”ﬁ;q(Rd);
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(ii) for o € R and |— - —| < Il’lll’l(z, LY and 1< q < oo, there exists a constant C > 0 such
that ||Tsz,p,hf||13§,q Rd) = C”f"Bg'q(Rd :

Remark1 We think that there is a gap in the proof of part (i) in the above theorem. Their
proof works in the same region as in our Theorem 1.1 below.

Besides H'(S"1), there is another class of kernels which leads to L” and Triebel-Lizorkin
space boundedness of singular integral operators T . It is closely related to the class F,
introduced by Grafakos and Stefanov [10]. We say Q € W.Fg = W F4(S") if

1
2

2e

”Q”W}-ﬂ = E/ilég—l(/sn 1 ,/gn 1 |l g m do—(y)dU(Z))

< 00. (1.4)

We note that | ,., L(S"™) C WFp, (5" C WFp (S") for 0 < B < B2 < 00.

About the inclusion relation between Fp, (S"™') and W Fp, (S"), the following is known:
when 7 = 2, Lemma 1 in [11] shows F5(S') € WFs(Sh). It is also known that Wy, (S?) \
(Fo(SHYUH'(SY) #0, f. [12].

Theorem C ([12]) Let h € A, for some 1<y < co. Suppose that Q € W Fg = W Fg(S"™)
for some B >max(y',2), and it satisfies the cancelation condition (1.1). Then the singular
integral operator Tq, is bounded on F“ /R if e €R, and (l/p,llq) belongs to the inte-

rior of the parallelogram P1P,P3P,, where P = (max 2 = ” 2) P, = ( L = V 2 (1

1)maxy2)P_(1 maxyZ)’l_maxyZ)andp4:(__max(y2)__1)1 max(yZ))

Let us recall the definitions of the homogeneous Triebel-Lizorkin spaces F; g= F}‘; q(R")
and the homogeneous Besov spaces BZ,q = Bqu(R"). For 0 < p,g < oo (p # >0) and « € R,
F;"q(R”) is defined by

1/q
Fp (R") = {f e S'(R"): Ifllzg, = H (Z 2|y *f|q> < oo} (L5)
keZ r
and B, !(R") is defined by
. l/q
By (R") = {f eS'(R") : flzg, = (Z 25| *fnzp) < oo}, (1.6)
keZ

where S’'(R”) denotes the tempered distribution class on R”, @k(é Y= ®2 ) fork e Z
and ¢ € C°(R”) is a radial function satisfying the following conditions:

i) 0<o=<1
(i) supp® C {£:1/2<|&] <2}

(ili)y ®>c>0 if3/5<|&<5/3; 1.7)

(iv) Y @(27¢)=1 (£+0).

JEL
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The inhomogeneous versions of Triebel-Lizorkin space and Besov space, which are de-
noted by F; (R") and By (IR") respectively, are obtained by adding the term [[®o * fl,
to the right-hand side of (1.5) or (1.6) with }_,_, replaced by Y ;2,, where ®; € S(R"),
supp50 c {&:1&] <2}, and 60(5) >c>0if |§] <5/3.

The following properties of the Triebel-Lizorkin space and the Besov space are well
known. Letl1 < p,g<oo, @ € R,and 1/p+1/p' =1,1/g+1/q =1

@) E),=B),=1% Fg,z =I# and
FZP = BZ,p forl<p<oo and Pgo,z =BMO;
(b) E~E,NI? and [fleg, ~ fllg, + Iflr (o> 0)

(© By, ~By,NL” and |lfllgg, ~ Iflz, + Iflw (@>0)

: . (1.8)
@ (Eg,)" =E7, and (Fi) =F;*;
(e) (By,) =B, and (By,) =B}
O (i Eiin)oq =B

P
(oq Za,0<p<00,0<q,q1,q2 <00, =(1-0)a; +0a,0<6 < 1).
See [13] and [14] for more properties of F}‘;{q and Bz,q. See Triebel [14], p.64 and p.244,
for (f).
Now we can state our first result.
Theorem 1.1 Let ¢ be a positive increasing function on (0, 00) satisfying

o(2t) <a¢(t) (t>0) for somec; >1 1.9)

and
o(t) = p(1)/ (t¢' (t)) € L®(0, 00). (1.10)

Let h € A, for some 1<y < oco. Suppose 2 € H'(S"™) satisfying the cancelation condition
(1.1). Then

(i) Tone is bounded on FI‘;’,q(R”)for a € Rand p, g with (}17, %) belonging to the interior
of the octagon P1P2R2P3P4P5R4P6 (hexagon P1P2P3P4P5P6 inthecasel<y <2),

1 1 1 1 1
Wherepl ( 1 m\x2y} 2_m4x2y )P2 E_mdx2y}) P3_( mdx{2y}’§)’
1 1 11 1
_( m1x2y}§+max2y)P5_(’§ max2y}) P6 ( _max )
1.
R2:(1 ZV’ZV) dndR‘L_(_y 1- 2},)
(i) Toug is boundedont,q(R”)foraeRandp,qsatisfying| ——|<m1n{2, LY and
l<g<oo.

See Figures 1 and 2 for the conclusion (i) of Theorem 1.1.

Example 1 As typical examples of ¢ satisfying conditions (1.9) and (1.10), we list the fol-
lowing three: t*logf(1 + t) (@ > 0, B > 0), (2t — 2t + Dt** (& > 0), and $(t) = 2> + ¢
(0<t<3), ¢(t) = 2¢% + tsint (¢t > 7). Note that linear combinations with positive coeffi-
cients of functions ¢’s satisfying the above two conditions also satisfy them, cf. [15].

Page 4 of 26
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Figure1 (1 <y <2). 1/q
(0,1)
(1,1)
P
Py
Ry
Py P3
Ry
P &
(0,0) (1,0) 1/p
Figure2 (2 <y <o0). 1/q P
(0,1) o Py
(1,1)
Ry
Ps
Py
Ry
A %00 Py (1,0) 1/p

We shall state our following result, which relates to two function spaces L(log L)(S" )
and the block spaces B;O’O) (8" ). Let L(log L)*(§"!) (for o > 0) denote the class of all mea-
surable functions Q on §"~! which satisfy

IAtozpesrs = [ [90/)|10g (2 + |20)]) dor () <o

Denote by L(log L)(S"™!) for L(log L)}(S"!). A well-known fact is L(log L)(5") c H'(S" ™).
Next, we turn to the block space BEIO'V) (8" 1). A g-block on 8"t is an L9(S"!) (1 < g < 00)

function b which satisfies

(i) suppbcCli;
, 1.11)
(i) Nblly < 1117M7,

where |I| = o (I), and I = B(xg,00) N S"! is a cap on §"~! for some x, € S"! and 6 € (0,1].
For 1< ¢ < 0o and v > —1, the block space B (S") is defined by

[e¢]
BOV(s" ) ={Qel (") 2= ab MOV ((3}) < oo, (112)
j=1
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where A; € C and b is a g-block supported on a cap J; on ", and
o0
MEP(61) = 3 {1+t (417 013

j=1

For Q ¢ B,(IO'V) (§"1), denote

||Q||B;o_v>(5n71) inf} M ({A N; ZA b, bjis a g-block ¢.
j=1
Then | - ”Bﬁf'”(sn-l) is a norm on the space BEIO'V)(S” 1), and (B ( 0w gn-1y . ||B(ov (1) is 2

Banach space.

Historically, the block spaces in R” originated in the work of Taibleson and Weiss on
the convergence of the Fourier series in connection with the developments of the real
Hardy spaces. The block spaces on $"! were introduced by Jiang and Lu [16] in studying
the homogeneous singular integral operators. For further information about the theory
of spaces generated by blocks and its applications to harmonic analysis, see the book [17]
and survey article [18]. The following inclusion relations are known:

(a) B;O‘Vl)(S”_l) C BEIO"’Z)(S”‘I) ifv;>v>-1;
(b) Bﬁg'v) (S"’l) C B;Z’V) (S”’l) ifl<gy <q foranyv>-1;

() U )13 (S”_l) c B;O'V) (S”‘l) forany g>1,v>-1;

p>1
() UB;()'V) (Snil) Z ULq (Snil) for any v> -1; (1.14)
7>1 q>1

(e) B(qo’v) (") cH'(S"") + Llog L)"*"(S"")  foranyg>1,v>-1;
(f) UB(qO,O) (Sn—l) C H! (Sn—l)'

g>1

The following theorem shows that if Q belongs to Llog L(S"!) or block spaces, then we
can get better results than Theorem 1.1.

Theorem 1.2 Let ¢ be a positive increasing function on (0,00) satisfying the same con-
dition as in Theorem 1.1. Let h € A, for some 1 <y < 0o, and Q € L'(S"™) satisfy the
cancelation condition (1.1). Then if @ € L(log L)(S" 1) U (Uregeno BE,O’O)(S”‘I)), then
(i) Tone is bounded on ng(R”)for a € Rand p, g with (117, %]) belonging to the interior
of the octagon Q1QaR2P3Q3QuR4Ps (hexagon Q1QaP3Q3Quls in the casel<y <2),
whereQI:(O 0), sz(l,, 0), Qs =(1,1), Q4=(1 1),P3=(3+
(zlm 2) Ry=(1- %’Zy) ode4—(§ 1—$);
(ii) TQ,M is bounded on M(]R”)for aeRandl<p,q<oo.

1
max 2y )

See Figures 3 and 4 for the conclusion of Theorem 1.2 for the cases 1 <y <2 and 2 <
y < 00, respectively.

As a corresponding result to Theorem C, we have the following theorem.
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Figure3 (1 <y <2). 1/q ¢
0,1) & Qs
° (Y
QA
Qs
PG 6
P: Py
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@1 %00y Qs (1,00 1/p
Figure4 (2 <y <o0). 1/q
(0.1) @ Qs
° (1,1)
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P )
Ps Py
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Ql QZ
@ 00 Q> (1,00 1/p

Theorem 1.3 Let ¢ be a positive increasing function on (0,00) satisfying the same condi-
tion as in Theorem 1.1. Let h € A, for some 1 <y < co. Suppose Q2 € WFyz = WF4(S"™?)
for some B > max(y’,2), and it satisfies the cancelation condition (1.1). Then
(i) the singular integral operator Tq )4 is bounded on F;q(R”), ife eRand (117, é)
belongs to the interior of the octagon Q1 QaRoP3Q3 Q4R4P6 (hexagon
Q19,P3030,4Ps in the case 1 <y <2), where Q) = (max y'2) max y 2))

1 max(y 2) (1 maxy 2) 1 1 1

Qz—(/+ (——/» )733 ( m B2/
Q3—(1 maxy 2)’1_maxy2) Q4_(l_max(y ,2) ;—l)l maXZg 2)),

_ /1 1 _ 1 max(y 2) 1 max(y’,2)
Po =~ iy + o) Re = (L= gy = 55505 50 + B505), and

_(L max(y’,2) 1___maxy2))

28y’ 2V 28y’
(ii) Toune is bounded on By, (R"), ifa € R, mang 2 p<l- maxz(; 2 and 1< q < oco.

This improves Theorem C sufficiently. See Figures 3 and 4 for the conclusion (i) of The-
orem 1.3.

The proofs of Theorems 1.1 and 1.3 will be given in Sections 2 and 3, respectively, and
the proof of Theorem 1.2 will be given in Section 4. The letter C will denote a posi-

tive constant that may vary at each occurrence but is independent of the essential vari-
ables.



Yabuta Journal of Inequalities and Applications (2015) 2015:107 Page 8 of 26

2 Proof of Theorem 1.1

2.1 Some lemmas

In [19], the following atom-decomposition of H!(S"!) was given. If @ € H(S"!) satisfying
(1.1), then

o0
Q=) ra, 21)
j=1

where 3 %) 3] < C[|Ql|;1(s+1) and each g is a regular H(§"!) atom. A function 2 on §"!
is called regular co-atom in H'(5"!) if there exist ¢ € $”"! and p € (0, 2] such that
(i) supp(a) C " NB(¢,p), where B(¢,p) ={y e R": [y — ¢| < p};
(i) llallze < p™
(iii) [ a(y)do(y) =0.
Let a be a regular co-atom. When n > 3, set
Q%ﬁ

X(1,1)(8) a(s,v1-s2y)do(y), (2.2)

sn=2

E.(s,€)=(1- 52)
and when #n = 2, set

€s (s, S/) = \/%X(,M)(s) [a(s, V1- 52) + a(s, —/1- 52)]. (2.3)

Next we prepare two lemmas, whose proofs can be found in Fan and Pan [4].

Lemma 2.1 Let Q be a regular oo-atom in H'(S"™Y) (n > 3). Then there exists a constant
¢ > 0, independent of Q, such that cEq(s,€') is an oo-atom in H'(R). That is, cEq(s,&')

satisfies

1
lcEq|lze <

~ 4r(E)’
/Eg(s,é/) ds=0,
R

suppEq C (51/ - 2r($/),$1/ + 2r($/)) and

where r(§') = ||| A& | and A (§) = (T*61, 762, TEp).

Lemma 2.2 Let Q be a regular co-atom in H'(S'). Then, for 1 < q < 2, there exists a con-
stant ¢ > 0, independent of Q, such that ceq(s,&') is a g-atom in H'(R), the center of whose
support is & and the radius r(£') = |E| 1 (v*&2 + T2EH)V2.

For Q € L (S" ), h e A, for some 1 < y < 00, and a suitable function ¢ on R,, we define

the maximal functions Mg ;¢4 by

Manaf @) =sw s [ 20V (- 6(01)y)| . 25)
keZ 2

k-1<|y| <2k

Let ¢ be a positive increasing function on (0, oo) satisfying ¢(2t) < c;¢(¢) (¢ > 0) for some
¢ > 1, and ¢(t) = ¢(t)/(t¢d'(¢)) € L*°(0,00). Then, as in the proof of Lemma 2.3 in [20],
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p-246, we have

=

Maygf (%) < lIA]la, (19201 2¢5n-1))

1
7

<[ Jet) i (1) wda () 26)

where M, g is the directional Hardy-Littlewood maximal function of g defined by

1
Myg(x) = sup — lg(x —ty')]| dt.

r>0 4V Jit)<r
For this directional maximal function M,,, we know that for 1 < p,q < oo,

(A{”[(Z(My"?)(x))q)%}p dj

jeZ

ol (o) T+’

JEL

This is just (2.7) in the proof of Lemma 2.3 of [8], p.496. From (2.6) and (2.7), we get the

following lemma.

Lemma 2.3 Let ¢ be a positive increasing function on (0,00) satisfying ¢(2t) < c;¢(2) (¢ >
0) for some c1 > 1, and ¢(t) = ¢(t)/(td'(t)) € L>(0,00). Let h € A,, for some 1 <y < oo. For

y' < p,q < 00, we have

()], £ ..
LP(RM) LP(RM)

JEL JEL

Proof Let {gj}jcz be a sequence of functions satisfying ||(Z}.EZ |g,r|q/)”q/ 20 oy < 1. Then,
noting p,q > ¥’ and using (2.6), the duality, and Minkowski’s inequality, we see that

’ /]l;n Z MQ,hvd’ﬁ (x)g, (x) dx
JEZ

L
7

e[ ([ 1200 (5 )0do 1)) oo as

JEZL

q

e [(S([. oo a0 ) as)

je€L

N

JEL

=cf [ lemI( [ [(Xonts)w)?)

JEZ

X

LV (R")

/

dx>y7 da(y/)}%.

SRS
s

]y

Page 9 of 26
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Hence by (2.7) we have
NTRT
14
[ X Masaswgeas| <cf [ lam)l( [ (Xiwlr) )" ao )]
RrR7 /eZ Sn—l R~” jEZ
1
q
Az,
jez LP(R™)
which implies our (2.8). O

Now, for Q € L'(5"!), we define the measures 0,4 on R” and the maximal operator

O—;;,h, <t>f () by
"Vh
/ f)dogper(x) = / f (¢(|x|)x’)szk_ldx‘szk(x)dx, (2.9)
R R ||
05 el @) = iugl loQuexl *f(%)], (2.10)

where |0 4«| is defined in the same way as 0q ¢4, but with Q replaced by || and /
by |A].
Then we have the following lemma.

Lemma 2.4 Let ¢ be a positive increasing function on (0,00) satisfying ¢(2t) < c1¢(¢) (¢ >
0) for some ¢ > 1, and ¢(t) = ¢(t)/(t¢'(t)) € L*(0,00). Let h € A, for some 1<y < oo,
Q e LY§" ). Then:
(1) If(llj, é) belongs to the interior of the octagon P1PyRyP3PyPsR4Pg, there exists C >0
such that

(2(E ).,

jeZ kel

q 1
2\ q
< Cllilla, 12113 sy <§:<§:L@7P> ) : (2.11)
jeZ “keZ LP(R")
_ (1 1 1 1 _(1 1 1 _ (1 1 1
where Py = (5 T max{2y}72 max{Z,y’})’ P2 - (5’ 27 max{2,y’})’ P3 - (f + max{2,y’}’ 5)’
_ (1 1 1 1 _(1 1 1 _q1 1 1
P4’ - (f + max{2,y'}’ 2 + max{2,y’})’ P5 - (5’ 2 + max[2,y’})’ P6 T2 T max{2y'}’ 5)’
_ 1 1 _ (1 1
Rz—(l—g,g),ﬂﬂdlﬁ—(g,l—g .

(Note that if1 <y <2, the octagon PyPyRyP3P4PsR4Pg reduces to the hexagon
PPy P3P,P5Pg.)
(if) If(i, é) belongs to the interior of Q1Q2Q3Q4, there exists C > 0 such that

H (Z > loansk *gk,j|q>

1
JjEZ keZ LP(R")

< Clhlla, 21571

(ZZWWH, (212)
LP(R")

JjEZ kel

where Ql = (070)’ Q2 = (%10)» QS = (1:1)» and Q4 = (%)1)
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Proof (a) Let1< y < oo. Since

Sup [oQnek * &kl < Sup loquexl * sup |ge;l < Mane (SUP |ge,/|>,
keZ kel Le LeZ

we get using Lemma 2.3

o\ 7 N
SUP|UQh¢k *gk1|> (Msz,h,¢<sup |gk,j|)>
jez keZ LP(R") jez keZ LP(R")

4\ 1
<C ( sup|gk,|>>
ke

On the other hand, there exists {/;} € LF' (07 with || {hf}”LP/(M/) =1 such that

(2.13)

LP(R")

1\ q
”( <Z|Uﬂ,h,¢,k *gk,i|> )

JEZ kel LP(RM)
- Z/ Z|Uszh¢k * g1 (%) | (%) d.

JEZ keZ
= Z/ Z|g/<, @) |15 @npkl * hi(x) dx

JEZ keZ
= Z/ Z|g’<1 x)|M§2h¢h (%) dx

JEL keZ

ay 1 N
(@) |, |Gorer) ],
jeZ “kel e\ @

where Q(y) = Q(—y'). So by Lemma 2.3 we obtain for y’ < p/,q < 00, i.e., 1<p,q<y,

1

9\ 7

(S(ge)) |
LP(R")

|

JEZ “keZ
ay & ) i
V() |, ()],
j€Z “keZ LPRHI N ez, L' (R7)
N 7
ez ],..
jEZ “kel LP(R™)

Now, let R; = (2 ,2y) Ry=(1- zw 2y) Ry=(1- 1 11— L) and Ry = (3 L1-+L 5,)- Then,
if (l —) belongs to the interior of the square R1R2R3R4, there are two pomts (p— q—) and

) such that
> q2

11 11

1 11 11

1
:——+__, — ,
p 2p1 2p; q 2611 2612
l<pi,qi<y and ¥y <ps,qs<oo.
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Hence, interpolating (2.13) with (2.14), we obtain (2.11) if ( }7, %1) belongs to the interior of
the square RiRyR3R,.
(b) Let 1 < y < 2. Using the Cauchy-Schwarz inequality, we get

1
Q(W)\h Y 2
|GQ,h,¢,k *gk,;(x)| = (/ w d)’)
2k-1<|y| <2k vl

N2 1 QONAYDI>Y )é
(x— RV~ 4
* (./zk—1<)’<2k ’gk,l (x ¢(|y|)y )‘ |J/|" 4

2 1
= C”h”A ||Q||L1 (sn- 1)(O‘|Q|,|h|2*7,¢,k * |kjl )(x)z

So, we have
N
AN
H( <Z|O'Q,h,¢,k *gk,jl) ) H
jeZ “keZ LP(R")
g\ 1
q
<C||h||Ay||sz||L1(S“ (Z(Zom,h|z-y,¢,k*|gk,,«|2) ) H
jeZ “kel LP(R")

Hence, noting |1|*” € A, />-,) and using (2.14) for /(2 - y), p/2 and /2 in place of y, p,
q, respectively, we see that (2.11) holds provided 1 < p/2,q/2 < y/(2 - y), i.e., 1/2 - 1/y' <
1/p,1/q < 1/2. By duality, it holds also provided 1/2 < 1/p,1/q < 1/2 + 1/y’. Interpolating
these two cases, we see that (2.11) holds if (117, é) belongs to the interior of the hexagon
P1PyP3PyPsPg.

(c) Noting A, C A, for y > 2, and interpolating cases (a) and (b) above, we see that (2.11)
holds if (}7, }1) belongs to the interior of the octagon Py PyRy P3Py PsR4Ps. This completes
the proof of Lemma 2.4(i).

(d) We shall prove Lemma 2.4(ii). If (1 1) belongs to the interior of the parallelogram

Q1Q2Q3Qq4, there are two points (p— E) and ( ) such that

1_(1 1)1 11 1_(1 1)1 11
V4 q/ b1 qu q q/) 01 qfh
l<pL,qi<y and ¥y <py,qa<o0.

Hence, interpolating (2.13) with (2.14), we obtain (2.12). Thus, we finished the proof of
Lemma 2.4. O

About the Fourier transform estimates of 0g .4« with € H*(S"™'), we have the follow-

ing.

Lemma 2.5 Let 1< q < +00 and Q be a regular co-atom in H(S") supported in S"1 N
B(ey, ), where e; = (1,0,...,0). Let ¢ be a positive increasing function on (0,00) satisfying
@(t) = p(t)/(td'(t)) € L*(0,00), and h € A, for some 1 <y < oco. Then there exist positive
constants C’s such that

|6enpx(&)| < CllAla 120l 12¢5m1), (2.15)
|6ansx&)] < Cllhllad(2°)|A- ()| (2.16)
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and

Clinll ,

(@A )2l (2.17)

|Ganex(®)| <

These are shown by using Lemmas 2.1 and 2.2 as in the proofs of Lemmas 3.3 and 3.4
in [20], pp.247-248. There these are stated for the case where a parameter p of positive
number arises, but one sees easily that these hold in our case (p = 0), too.

To show Theorem 1.1, we need a characterization of the Triebel-Lizorkin space in
terms of lacunary sequences. Let {a;};cz be a lacunary sequence with lacunarity a > 1,

ie.,

aji1

>a forjeZ. (2.18)

aj

Let n be a radial function in C*(R") satisfying xjz<1(§) < n(§) < xje1<(€) and [3%n(§)] <
co(a—1)7" for & € R” and « € Z". We define functions ¥; on R” by

vi() = n( : ) - n(i) (£ eR"). (2.19)

ajs1 aj

Then observe that

0! 05 |$| Sd]!|$| Zﬂﬂj+1,

vi(§) = (2.20)
1, aa;<|§| <aja,

and that
supp ¥ C {a; < |&| < aajn}, (2.21)
supp ¥ Nsupp ey =@ for |j—£| > 2, (2.22)
£%0%y;(6)| < Cy fora e Z7, (2.23)
oY) =1 (& eR"\{0}). (2.24)
JjEZ

Let U; be defined on R” by @;(S) =;(&) for £ e R”, i.e., Wj(x) = u}ﬂrlﬁ(aﬁlx) - a]'-’ﬁ(ajx).

Lemma 2.6 Define the multiplier S; by Sif = W, x f. Then, for 1 < p,q < 00, we have

(Slze))

jEZ “kel

’

LP(RM)

=)’

je€L

b3
where C is independent of {fj}jcz.
This is a consequence of Proposition 4.6.4 in Grafakos [21]. For the sake of completeness,

we will give a proof in the Appendix. From this lemma we have the following lemma with
minor change of the proof of Lemma 2.2 in [8].
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Lemma 2.7 Let v be as in Lemma 2.6. Denote A, (§) = (t%&,7&,...,7§,) for T > 0 and
& € R". Define the multiplier S;. by S/j,,\f(é) = w(akAT(E))f(S). Then, for 1 < p,q < 00, we
have

(Slgen))

jeZ kel

’

LP(R")

=|(zur)”

LP(R"
where C is independent of {f}cz.

We need one more lemma. If {a;}rcz satisfies furthermore ay,1/a; < d for some d > a,
we can characterize Triebel-Lizorkin spaces in terms of this lacunary sequence.
Denote by P the set of all polynomials in R”. Let 1 < p,q < 00, and « € R. For f €

S'(R")/P, we define the norm ”f||p%("’k’kez(w) by
prq

(2.25)

1/q
1 g tviee gy = H (Z a’| U *f|q)

keZ LP(R™)

Lemma 2.8 Let @ € R and 1 < p,q < 0o. Let {ax}kez be a lacunary sequence of positive

) is equivalent to the usual

numbers with d > ay.1/ay > a>1 (k € Z). Then “f”F;‘;INk’kEZ(RH

homogeneous Triebel-Lizorkin space norm |f|| 2@

This is stated in Proposition 1 in [22] for o # 0, but the proof of this part works also for
o =0.

2.2 Proof of Theorem 1.1
We have only to show Theorem 1.1 in the case Q is a regular atom with supp Q C §"1 N
B(&,7), where B(§,7) = {y € R%; |y — &] < t}. Using the definition of o ¢, we see that

h /
Taef (®) = p.v. f HODDY) (x=o()y)dy=>_ oanex +f(). (2.26)

n
R” Iyl ez,

Letay = 1/¢(27%), k € Z. Then as is known, {ay }xc7 is a lacunary sequence with lacunarity
a = 2Y19I:2@®,)  This follows from (1.10) (see, for example, [22]). Also, we have ay,1/ax < c1,
which follows from (1.9).

Let Y € C(R") be radial functions defined by (2.19). Set ¥y . (€) = Yi(A.(£)) and
Seef (€) = Ve (E)f(€), & € R™. Then, noting Y, ¥j(£) =1 (§ #0) and Y"__ . (£) =1

on supp ¥;, we have

1
Tonef ) =Y D Y Sikete(Oaupr * Sjx)®) = Y Qf (), (2.27)
keZ jeZ t=-1 JjEZ
where
1
Qif (x) = Z Z Sj—krt (T npk * Sickof)(%). (2.28)

keZ £=-1
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We follow the proof of Theorem 1 in [8], using our Lemma 2.7 and Lemma 2.4 in place of
Lemma 2.2 and Lemma 2.4 in [8], respectively, and we see that if « € R and (%, é) belongs
to the interior of the octagon Py PR, P3P, PsR,Ps, then we have

||Q1f||pgq R C”f”pa (R")- (2.29)

About L? estimate, we have
”Qif”sz(R") < Cg I/ max(v".2) ”f”ng(]R")' (2.30)

In fact, by Lemma 2.5, we get

16064 (E)| < CllAlay 1211151 (2.31)
|6amsxE )| < Cllhlla, ¢(2°)|A: () (2.32)
and
Clhlla,

(2.33)

Fanean®)] = Gorma @i

Also, we have

10 g o = ( f
(/R 2d§)1/2'

So, for j > 0, we have, using (2.33) and ¢(2*) = 1/a_; and ag,1/a; > a = Vleloom,),

ZZS/ kit Ok * St/ ) )

keZ t=-1

)1/2

ZZw, ke (Ac(€)) S €)Yk (A () (€)

keZ t=-1

1Q 19, e
1/2

¢ Ny zd)

= <EZ:/;1‘k<Ar(E)<ajk+2|GQ’h’¢’k(E)f(é:)| :

-2/ max(y ’2) 1/2
< Clila, 4@ e de
[Az (&)l
aj_k= =dj_k+2

a_
keZ ¥ %~ k+1

' / A —-2/max(y’,2) R 172
< Cllh|a, a0/ maxt2 (Z f (ﬂ) V@”ng)
kel ﬂ]'_k§|Ar(é)|§“j—k+2 -k

1/2
< Cllhla,a” ™" (/ F&)] ds)

—j/max(y’,2
< Ca7//maly )”f”jrg,z(]]gn)'

In the fourth inequality we used a;,1 < c14;.
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For j < -1, using (2.32) we get as before

1/2
1Qf 1129, e sC(Z / o |&Q,¢,h,k(sy(s)|2ds)
aj_k =47 =dj_k+2

keZ
2 12
M) Vr(g)de)

< Cllhla, (Zf

ez, Y -k <A () <ay_ m< Ak

/ |A: (§)|> ) 12
=ca @ de
’ <gzj ‘/“jkar(f)Sajkﬂ ( aj_k lf |
" 12
=G i( (€) dg)
! gzz /“jk<Ar(§)<ﬂik+2 Lf |

1/2
<ca( [ e a)

< CANfl 2w, 9, (-

Thus we have

. —|jl/ max(y’,2) .
”Ql'f”FS’Z(R”) <Ca jl/ max(y |V||F§,2(R")’

which shows the required estimate (2.30).

Interpolating these two cases (2.29) and (2.30), we see that if @ € R and (}7, é) belongs to
the interior of the octagon PPy QyP3P4P5Q4Ps, then Ty, is bounded on Fl‘jf q(]R”). This
completes the proof of Theorem 1.1(i).

Next, we prove (ii). Let |— - —| < mln{z, L1, 1< g <00, and & € R. Then, by Theo-
rem 1.1(ii), Tqye is bounded on Fl‘j‘,pl(R”) and FE;I(R") Since (F"‘ LR, F"‘*l(R”)) =
Bz,q(R”), we see by interpolation that T4 is bounded on B" (R”) This shows (11) and
completes the proof of Theorem 1.1.

3 Proof of Theorem 1.3
Let oo ek ak, Vi, and Si be the same as in the proof of Theorem 1.1. Then, noting

Y iz Vi(€) =1 (& #0) and Yj__, ¥j.¢(£) = 1 on supp y;, we have

1
Tonef ) =Y DY SikeelOangr * Siif)x) = Y Qf (), (3.1)
keZ jeZ t=-1 JjeZ
where
. 1
Qf®) =YY Sikee(Oanpk * Sjif) (). (3.2)
keZ t=-1

Using our Lemma 2.6 and Lemma 2.4(i) in place of Lemma 2.2 and Lemma 2.4 in [8],
respectively, we see, as in the proof of Theorem 1.1, that if « € R and ( }j, %) belongs to the
interior of the octagon Py Py Ry P3Py PsR4Ps, then we have

1Qf Nz, @ny < Clf Nz, eny- (3.3)
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Next, we approach the above estimate (3.3) by another method. We calculate the F;ji ,horm

of Qj more directly. Considering the support property of ¥, we have

1
‘I>q

1
S Z Z Sj-kre (@2 gk * Sj-if)

O.F] - - aq
1Qyf £, ey = ‘ (Z as
meZ keZ £=-1 LP(R™)
1 q tl?
< (Z a0\ Y " St (O g jom * Suf) )
mez l=-1 LP(R™)
1 q %
X (Z a%q Sm Z Sm+( (GQ,h,¢,j—m—1 * Sm+]f) )
meZ. £=0 LP(R™)
0 a\ 3
X (Z astnq Sm Z Sm+[ (Uﬂ,h,¢,j—m—1 * Sm—]f) )
meZ {=-1 LP(R"7)

By Fefferman-Stein’s vector-valued inequality for maximal functions, Lemma 2.4(ii), and

amlcl < ay < ay1la, we get

1
1Q Nz, < C D

=-1

1
<Cy’

£=-1

1
q
<Z apt 0@ ng,j-m * Smref I”) H
LP(R")

mez

1

q

(Za‘;ﬂsww) H
LP(R™)

meZ

1
q
(Z aftnq|SW(f|q) H < Cllfll g, memy
@)

meZ

=c|

ifo € Rand ( p%’ %) belongs to the interior of the parallelogram Q; Q;Q3Qa.
Interpolating (3.3) and (3.4), we obtain

||ij||ifgq(R") = C”f”ﬁgq(w)

(3.4)

(3.5)

ifa € R and (117, é) belongs to the interior of the octagon Q;Q2R,P3Q35Q4R4Ps (hexagon

Q1Q2P5Q3Q4P6 in the case 1 <y <2).
About L? estimate, we have

_ 1 B/ max(y’,2)
fllzo @ <C .
1@ g,y = (1 + |j|)
In fact, let ox = 0,4,k Then we have

2k - 4
6]((5):/%1 /Sn,lﬂ(y/)h(r)ejd)(r)y £ da(y/)_’”‘

r

First we have

161(8)] <201l a, 1211151

(3.7)
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Next, using Holder’s inequality and assuming [|€2||;1(sn-1) < 1 without loss of generality,

we have
/
1
Y dr ly
r

64(6)] < ( o & )/(
sznhnAy(/

o2 »
= 2||h||Ay (/(b(zk—l) /Sn_l Q(y)e—try £ do’(y’)

L) (P7Hr) ¥
$(2%)
<2||hlla, II¢|IL°C(]R+></
$(2k-1)

dr max2y )
r
= 2[|Alla, el

) )
« (/ / Q(y/)Q(Z/) e—ir()/,z/)_é ﬂ do ()/) do (Z/)> 2,y .
sn-1 Jgn-1 ¢(2k71) r

Q(y) e E g )
SYI 1

%Wyéd ( )

dr) max<2 max(2,y")

r

S (i (5) dr) a7

/ Q(y/)e—iry’f do (J/ )
sn-1

We see that
Ve dr 2k
‘/ e < 1og ¢(k3 <loge
4)(2/( 1) r ¢(2 - )
We see also
2

ok
‘/¢( ) —zr(y’ ) d}" <
o)

So, as in [10], p.458 (using Lemma 3.1 in [12]), we have for 8 > 1,

ok
‘ / e oirt/-2)6 4
¢(2k—1) r

C
<
~ logP(logcy)ep (281 &

PEDIENE - (v =y

P 2e X
o oy e Z

Hence we have

2/ 2
21kl 5, (W Fp ()Mt 21 @22

g ; 3.8
] = T fogteliog g P )
for $(24)[8] > - > e.
On the other hand, using the cancelation property of €2, we get easily
[6(E)] < 201l a, 121551, (2°) IE]. (3.9)

Now we can estimate the L?> norm of Qf :

@i,
(L

ZZS/ ket (OQng ke * Sj-if ) (%)

keZ t=-1

1/2
dx)
2 )1/2

ZZw, ket (€600 €)Wk (E)F (§)

keZ €=-1
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Note that ¢(2X)(&| = |&|/a_x > d/|E|/ajx > & for aj < |E| < aj_rs2 and j > 0, where
agalag > a=2""=®), So, for j > 2log,(c1/logc;) and aj_k < |€| < aj_is2, we have

08 401 g = ab > 1,

(4]

and hence we have

13 59, < C(Z /

kez ¥ H-k=IE1=0j ke

1 2B/ max(y’,2) . ) 1/2
<Cllh — d
: ”AV Z/ —k=<|§|<a;_ k+2<1+j> V(S)’ s)

keZ

1\ BImax2) W n O\
<cinls, (17) (=] e a)
1 kez ¥ 4-k=<I§|1=aj_j2

12
|6amepx( MG £) drf)

1 B/ max(y’,2) 1/2
<aims, (1) ([rera)

B/ max(y’,2)
V1l g, gy

=[5

For j < -2, we have ¢(2X)|¢| = |€|/a_x < a*¥ for a; x < |€| < aj_k+2. So, using (3.9) we get

as before

R ) 1/2
1041159, SC(Z / ENGIG] ds)

kez ¥ H-k=IE1=0ke

< Cllhla, (Z/

keZ k<|§‘<“/ k+2

<Cd f 2d>
= <gzz /ﬂ/k<fl<ﬂjk+2 lf(g)| ¢

1/2
<ca( [ e a)

< Cﬂjllf”pgz(wy

1/2

4+21‘U?(z§)|2d5)

1/2

For -2 <j < 2log,(c1/logcy), using (3.7), we get

1/2
1R 159 e <C(Z/ )| dé) = Cllf Nz, ey
aj_ k<\él<ﬂ1_k+2 '

keZ

Thus we have (3.6) for j € Z. Now, let Q) = (M2, maxz(g/’z)), Q=(5+ %}’,2)(% -

2/3 Y
2) ,2) ) )
) B, Py = (4 oy = 50 3 Q=0 P 1= ), Qq = (3 A (]
1 max y 2) 1 1 max(y 2) 1 max(y ,2)
5);1 ) P6—( max— —) Rz—(l—g— 28y 22y T T apy ), and
Ray=(L+ M - L max(’2) )y, Then, for ( ) belonging to the interior of the oc-

2y 28y’ 2;/ 28y’
tagon Q1 Q>R P3Q3Q94R4Ps (hexagon 9 Qﬂ’g Q3 Q4 Ps in the case 1 < y < 2), we can

find ( pil, %) in the interior of the octagon Q;Q2R;P3Q3QsR4Ps (hexagon Q1 Q2P3Q3Q4Ps
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inthe case 1<y <2) suchthat}’: % + 11;—19, é = g + 1{;—f,and1>9 > %M.Hence,for
a € R, taking o with o = (1 — 0)«; and interpolating between (3.6) and (3.5), we obtain
the desired estimate

-6p/max{y’,2

1Qif N, ey < C(1+ 1) W g ey (3.10)

Summing up this with respect to j, we finish the proof of Theorem 1.3(i). The proof of (ii)

is the same as in Theorem 1.1(i).

4 Proof of Theorem 1.2
In this section we shall give the proof of Theorem 1.2.

(A) LlogL case. Let Q € LlogL(S" ™) satisfying the cancelation property. Then let-
ting A, = [|2x2m-1<10(/)<2m | 1(sn-1) and A = {m € N: A,, > 27"}, we can construct €2, €
L*(S") (m € A) and Qg € ()., L"(S"™") such that

1S2ml2(5n-1) < C27, 1€2m 1l 11(sn-1) = C, (4.1)

> mAu < ClIQl g 151y (4.2)

meA

/ Qu(Y)do(y)=0 (m=0med), Q=Qo+ ) ApQ. (4.3)
st meA

From the above, we see that

Tounf = Taohsf + Y AnTonaf- (4.4)

meA

So, we consider Tq,, 1,¢. We use the notations in Section 3 with minor change such as Qun J
for 2, instead of Q}- for Q. Since ||, | ;1(sn-1) < C, we have as in Section 3 that

1Qmif Il g, remy < ClLf Nl emy (4.5)
if € R and (}7, é) belongs to the interior of the octagon Q; Q2R P3Q3Q4R4Ps (hexagon

Q1Q2P5Q3Q4P6 in the case 1 <y <2).
About L? estimate, we have

~ _ﬁ .
1Qumif Nl ny < Ca™ M If Il g, (g (4.6)

for some g with 0 < 8 < 1/2. In fact, let o,k = 0, hex Since ||l 11y < C and
12|l 2 (gn-1) < C2™, we get by Lemma 3.1 in [23], p.1567,

|&m,k($)| = C”h”Ap (4'7)
6at)] < 12 L H 101) 48)
9(2Fe |

16mi(®)] < Cllhlla, [6(24)E] ™, (4.9)
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where 8 is a fixed constant with 0 < 8 < 1/2. Using Plancherel’s theorem, (4.8), the support

property of v;, and ay,1/c1 < ax < ax.1/a, we get for j > 0,

|&m,k(s>f<5)|2ds)2

1Qunif g o < c(Z /

kez, Y 4-k= \5|<ﬂj—k+2

1 n ) 3
- C( ———— [ () dg)
keZZ/a/'—k<§|<“j—k+2 |¢(2k_1)g|% V |

1

< Ca—if(z / [ff(s)!zds)z
aj_k<I§|<aj_k+2

keZ %

_B;
<Ca m1|V||F32(Rn).
For j < 0, using (4.9) in place of (4.8), we get

~ B
1Qunif llzg, @ny < CarIf 19, ny-

This shows (4.6). Interpolating (4.6) and (4.5), we obtain for some 0 <6 <1,

~ _ﬁ .
1Qumf g ey < Ca™ VI Il o (4.10)

provided @ € R and (}7, %1) belongs to the interior of the octagon Q;QyR,P3Q3Q4R4Ps
(hexagon Q1 Q2P3Q3Q4Ps inthecasel<y <2).
From (4.10) and the definition of Qm,j it follows

B0 C
. —W|l| . .
||TQm,h,¢f||ng(Rn) <C E a ”f”;g'q(Rn) = ) — 50 ”f”pg

m
p ) = Cﬁ—eﬂfﬂpgq(wy
jez - m

We can see that the same estimate holds for 2. Thus, by (4.4) we have

I Tenaf kg, @n < c<1 + ZAmm) g, oy < CUF N, e

meA

provided « € R and (i, %1) belongs to the interior of the octagon Q;QR;P3Q3Q4R4Ps
(hexagon Q;Q,P3Q3Q4Ps in the case 1 < y < 2). This completes the proof of Theorem 1.2
in the case Q € Llog L(S" ™).

(B) Block space case. Let r > 1. Then if Q € B£°'°’(S"-1) and satisfies the cancelation con-
dition, it can be written as Q = Y, A €2, where A, € C and €2, is an r-block supported
ona cap By = B(x¢, 7¢) N 8" on §"! and

o0
Z Ael{1 +log(1B,| ™)} < 201211 500 sy < 00 (4.11)
=1

To each block €2,, we define

/ e / 1 e / /
Q((y) = Qg(y) — W 1 Q[(x)da(x).
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Let A = {£ € N;|B;| <1/2} and set

Qo =Q—ZMQ€. (4.12)
e

Then there exists a positive constant C such that the following hold for all £ € A:

/ () do(x) =0, (4.13)

Sn—

19211751y < CIBel ™Y, (4.14)

12l 1 (sm1y < 2, (4.15)

Q=+ ZMQK- (4.16)
e

Moreover, from (4.11) and the definition of €, it follows that

10/l <€ Y 27 Irel < ClIR o0 gy (4.17)
LeN\A
/ Qo(x') do(x') = 0. (4.18)
Sn—l
By (4.16), we have
Topnef(x) = Z e Ty nef (). (4.19)
Le AUO

So, we have only to show the boundedness of T, ;4f. We use the notations in Section 3
with minor change such as é[,}' for 2, instead of Qj for Q. Since [|S2¢||1(s»1) < C, we have
as in Section 3 that

1Qef iz, ey < CIIf g, (4-20)

ifa € R and (119, %) belongs to the interior of the octagon Q;Q2R2P3Q3Q4R.Ps (hexagon

Q1Q2P5Q3Q4P6 in the case 1 <y <2).
About L? estimate, we have

- _B
1Qeif 29, eny = Ca~ " lf g, o (4.21)

for some B with 0 < 8 < r. In fact, let oy = og, nexr For £ € A U {0}, we set my =

(log, [B|™ ”1+1, where [ -] denotes the greatest integer function.

Since ||l f1gn-1) < 2 and [|2¢ || ;2(gn-1) < C2™¢, we get by Lemma 3.1 in [23], p.1567
|604(&)| < Cllhllay (4.22)
IAlla, L+ llell)
X B
lp(25-1)& | ™

1604(6)| < Cllhllay |6(29)E| 7, (4.24)

|6ex(&)| < C , (4.23)
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where 8 is a fixed constant with 0 < 8 < r. Using Plancherel’s theorem, (4.23), the support
property of v/;, and ag,1/c1 < ax < ax.1/a, we get for j > 0,

G & @) ds) 2

10 g, < c(Z |

kez Y 4-k<51<aj_ki2

1 a2 )
- rera)
gz: v/a,-_k<|§<ﬂj—k+2 |p(25-1)E | "

7 . }
<C ‘m71( ®) 2d$)
’ /@ZZ /ﬂ/-k<lé<u;-k+z Lf |

B .
.
< Ca ™|l -

For j < 0, using (4.9) in place of (4.8), we get

~ B
m; 7
1Qeif 19, @my < Ca™ IIf 19, m)-

This shows (4.21). Interpolating (4.21) and (4.20), we obtain for some 0 <6 <1,

- 8 .
£l =, .
1Qesf g, ey < Ca™ e g (4.25)

provided « € R and (117, %]) belongs to the interior of the octagon Q;Q2RyP3Q3Q4R4Ps
(hexagon Q1Q2P3Q3Q4Ps inthecasel<y <2).
From (4.25) and the definition of Q, ; it follows

_B9y; C m
me U £11 . CHEN
1 Ty nof g mny < C E a " ll gy mmy < ) —5 Il g ey < Cﬁ@ Vg creny-
jeL —a "™

We can see that the same estimate holds for 2. Thus, by (4.14) we have

I Tonef llig, @n < C(1 + ZM’W) I llig ey < CllFll g, oy
LeA

provided @ € R and (}7, %) belongs to the interior of the octagon Q;Q2R,P3Q3Q4R4Ps
(hexagon Q;QP3Q3Q4Ps inthecasel<y <2).
This completes the proof of Theorem 1.2.

Appendix
In this section we shall prove Lemma 2.6. Let {g;};cz, ¥}, ¥}, and S; be the same as in
Lemma 2.6. Set 1;(§) = n(¢/a;,1) and dAJj(“;‘) =1;(€). Then we have

(i) (x) = /R ) d,

so we have

|| @) = C/Rn|3°‘n/($){ dt < c/ |0y ()] de.

upp 0% 1;
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From this and the definition of 1; we get

|<I>j(x)| < Ca”a]’il, (A1)
and for N € N,

N |®;(x)| < C; </MM P dr) < CM (A.2)

T T (@ - Dapa)N \ s, =~ ((a-Daj)N’ '
Thus, for N € N we have
a \" (@-Dan)"

b; <C . A.3

| ,(x)|_ (a—l) (1 +|(a - Dajax)N (A.3)
Next we have

(i) 8 () = ¢, / 0% i) €)™ dt,

Rn

so we have

o) <c [ Joenelds <c [ |9 &) (€)  de.

R supp 3% (§xn;)

From this and the definition of 1; we get

|V®;(x)| < Claaj)", (A.4)
and for N € N,

Mvowl oL [ prac L [y
|| | VD (x §C7/ " dr+ C—-— rdr
’ (@- D )y, (@-Dap) J.,
- (ﬂﬂj+1)"N : (aaj. )™ = (A5)
((a = Daj, )N~ ((a = Daj,1)

Thus, for N € N we have

a \""' ((a-Daj)"
o= (%) T ma (A0

Letb=a-1and B= (ﬁ)””. Taking N = n + 1 and using (A.3) and (A.6), we obtain

) 1/2
I:= b —y) - d.
/x >2M<Z| (=) k(x>|) .

keZ

Pi(x—y)—D d
< / Wé' W= y) - Dy(x)| dx

Oy (x - y) - ()|
< Y /|x|>2yl| k(x—y) - Pi(x)| dx

ak+1<|by‘71
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oy / | Dr(x = y)| + |Pr(x)| dx

ap=lbyl™ lel>21y]
< Y / 91|V @ (x - 0)| dx
ag<lby 1 7 20
+ Z |Dk(x—y)| + | Pr(x) | dx
apa =yt ¥ 20
(bakﬂ)n

<CB Y lbar.yl

a<lbyl

vce Y / (bak)"
|

w2ty (1barax])"

e (1+ |bagax])™!

ag =1yl

Z | J’| k+1/ (1+ |x|)”+1
are1<lbyl™ -1

o 1
+ CB Z / 5 dr
ﬂk+12\by\*1 2|baj41y|
1 1
<CB Y  |bylacn+CB ——

rr<lbyl”! A= lbyl ! 1yl @xn

Let ko be the integer satisfying ay, < |(@ — 1)y|™ < aj,+1. Then we have

1

A+l

1= S a4 CBayy
ko k<ko-1 k>ko

From ay,1/ax > a it follows that ax,; < a™'ag,, < --- < ak%+lg; for k < k. Hence we get

k—ko+1
Zak+1< Zaka 0+ = gy Zak O—a

k<ko-1 k<ko-1

From ay,i/ay > a it follows that ay,1 > aa, > --- > ak‘kOak0+1 for k > ky. Hence we get

>

k>ko

i 1 1 a
+1 Ak, 1ﬂk ko Gko+1 2o ak kg1 a—1

k>ko

Thus we have

a n+2
I1<C|{—— .
a-1

If we define ®; by &D} (&) = n(§/a;), we get CD} = @; ;. So, for @] we have the same estimate
as for ®;. Therefore, we obtain

) 1/2 a n+2
[ (Do) ()

keZ
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Now let B; = C, B = £2, define an £2-valued function K (x) by K(x) = {Wx(x)}xez, and the
linear operator T by T(f) = K * f for f € L*®(R") with compact support. Then we have
Il ||%V)||Bz lzr@e = 1 kez Wk *f|2)% lr@®ny, and so by Littlewood-Paley theory this is
equivalent to ||f || zr@») for any 1 < r < 00. By (A.7), the kernel K (x) satisfies the Hormander

condition. Thus, we can apply Proposition 4.6.4 in Grafakos [21], and get the conclusion

of Lemma 2.6.
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