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Abstract

In this paper, we first introduce the notions of (n, B)-normed space and
non-Archimedean (n, 8)-normed space, then we study the Hyers-Ulam stability of the
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1 Introduction

The stability problem of functional equations originated from a question of Ulam [1] in
1940 concerning the stability of group homomorphisms. Let (Gy,-) be a group and let
(Ga, x) be a metric group with the metric d(, -). Given ¢ > 0, does there exist § > 0 such that
if a mapping % : G; — G, satisfies the inequality d(h(x - y), h(x) * h(y)) < § for all x,y € G,
then a homomorphism H : G; — G exists with d(h(x), H(x)) < ¢ for all x € G;?

The case of approximately additive functions was solved by Hyers [2] under the assump-
tion that G; and G, are Banach spaces. In 1978, Rassias [3] proved a generalization of the
Hyers theorem for additive mappings. The result of Rassias has provided a lot of influence
during the past 36 years in the development of a generalization of the Hyers-Ulam stabil-
ity concept. This new concept is known as the Hyers-Ulam-Rassias stability of functional
equation.

The stability problems of several functional equations have been extensively investigated
by a number of authors, and there are many interesting results concerning this problem.
A large list of references can be found in [4-11].

In [12, 13], Gahler introduced the theory of 2-norms and n-norms on a linear space.
A systematic development of #n-normed linear spaces is due to Kim and Cho [14], Malceski
[15], Misiak [16] and Gunawan and Mashadi [17].

Recently, Park [18] investigated the approximate additive mappings, approximate Jensen
mappings and approximate quadratic mappings in 2-Banach spaces. This is the first re-
sult for the stability problem of functional equations in 2-Banach spaces. In 2012, Xu
and Rassias [19] examined the Hyers-Ulam stability of a general mixed additive and cu-
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bic functional equation in n-Banach spaces. In 2013, Xu [20] investigated approximate
multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in #n-Banach spaces.

In this paper, we first introduce the notions of (#, 8)-normed space and non-Archime-
dean (n, 8)-normed space, then we study the Hyers-Ulam stability of the Cauchy func-
tional equation and the Jensen functional equation in non-Archimedean (7, 8)-normed
spaces in Section 2. Finally, in Section 3, we investigate the Hyers-Ulam stability of the
pexiderized Cauchy functional equation in (#, 8)-normed spaces.

Now, we give some concepts concerning the (1, 8)-normed space.

Definition 1.1 Let X be a linear space over R with dimX >#n,ne Nand 0 < 8 <1, let
IIs...,-lg : X = R be a function satisfying the following properties:

(@) lI%1,...,%4llg = 0 ifand only if x1,...,x, are linearly dependent;

(b) [|%1,...,%,ll is invariant under permutations of x1,...,%y;

(© Ny nllp = P 120l

(d) ller e n-n,y +2llg < Mwns e Xn, Yllp + %155 %01, 2l
forall x;,...,x, € Xand o € R.

Then the function ||-,...,-||g is called an (#, 8)-norm on X and the pair (X, |-,...,|lg) is
called a linear (n, 8)-normed space or an (#, 8)-normed space.

We remark that the concept of a linear (#, 8)-normed space is a generalization of a linear
n-normed space (8 = 1) and of a f-normed space (n = 1). Now we present two examples
about #-normed space.

Example 1.2 [19] For xy,...,x, € R”, the Euclidean #-norm |y, ..., %,| £ is defined by

X 0 X
%1, .. XnllE = ’det(xi/)’ = abs , (1.1)

Xl Xun
where x; = (x;1,%50,...,%,) € R” foreach i =1,2,...,n.

Example 1.3 [19] The standard n-norm on X, a real inner product space of dimension
dim X > #n, is as follows:

1/2
(e, 1) cee (%1, %)

”xler,'H;xn”S = E ", E ’ (1.2)

(1) o0 (X Xn)

where (-, ) denotes the inner product on X. If X = R”, then this n-norm is exactly the same
as the Euclidean #-norm ||xy, ..., x,|  mentioned earlier. For n = 1, this #-norm is the usual
norm ||y || = (v, %1) 2.

Lemma 1.4 Let (X, ||-,...,-|lg) be a linear (n, B)-normed space,n > 2,0 < <1.Ifx; € X
and %1, 91, ..., Yu-1llg = 0 for all y1,...,y,21 € X, then x; = 0.

Proof Since dimX > n, we can take y;,...,7, from X such that they are linearly indepen-
dent. It follows from the assumption that ||x1,2,...,¥.llg = O, then by the definition of
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linear (n, B)-normed space we have that x1,,,...,y, are linearly dependent. Thus there

exist ay, oy, ..., o, € Rwith (o, a3,...,a,) #(0,...,0) such that
Xy + oYy + -+ Y, = 0.

Then we have «; # 0. (If oy = 0, since y,...,y, are linearly independent, then we have
o9 =0,...,a, = 0; this is a contradiction.) So we have

o Qy

X1=——Y2—"— —Yu. (1.3)
o (03]

Hence x; € span{y,,¥s,...,y,}. Similarly, let A; = {y1,%2,...,¥.} \ {y:}, we can obtain that
x1 € spand;, i =1,2,...,n. In the n-dimensional space span{y;, y»,..., ¥}, it is easy to get

that (), span4; = 0, from which it follows that x; = 0. O

Remark 1.5 Let (X, ||-,...,-|lg) be a linear (#, 8)-normed space, 0 < f < 1. One can show
that conditions (b) and (d) in Definition 1.1 imply that

|||x,Z],...,Zn_]||5 - ||yrzl)'“’zn—1”ﬂ| S ||x—y,21;~~;zn—1”ﬂ
forallx,ye X and z;,...,z,1 € Y.

Definition 1.6 A sequence {x,,} in a linear (#n, 8)-normed space X is called a convergent
sequence if there is x € X such that

lim ”xm =% V1o Yn-1 ”ﬁ =0
m— 00

for all yy,...,y,-1 € X. In this case, we call that {x,,} converges to x or that x is the limit of

{x,,}, write x,, — x as m — 00 or lim,,,_, o0 X, = X.

Definition 1.7 A sequence {x,,} in a linear (1, 8)-normed space X is called a Cauchy se-

quence if

lim |l%x — %2155 Z01llp = 0

m,k— 0o

forall z1,...,z,.1 € X.
We can easily get the following lemma by Remark 1.5.

Lemma 1.8 For a convergent sequence {x,,} in a linear (n, B)-normed space X,
lim ||%p, 215 .. 201l p = H im x,,,21,...,25-1 H
m— 00 m—> 00 ﬁ

forallz,...,z,1 € X.

Definition 1.9 A linear (1, 8)-normed space in which every Cauchy sequence is conver-
gent is called a complete (7, 8)-normed space.
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In 1897, Hensel [21] introduced a normed space which does not have the Archimedean
property. It turns out that non-Archimedean spaces have many nice applications (see [22—
24]).

Definition 1.10 A field K equipped with a function (valuation) | - | from K into [0, 00)
is called a non-Archimedean field if the function | - | : K — [0, c0) satisfies the following

conditions:

(1) |r| =0ifand onlyif r = 0;

(2) Irsl=Irllsl;

(3) |r+s| <max{|rl|,|s|} forall ,s € K;
(

4) there exists a member aq € K such that |ag| #O0, 1.

Definition 1.11 [25] Let X be a vector space over a scalar field K with a non-Archimedean
nontrivial valuation | - |. A function || - || : X — R is a non-Archimedean norm (valuation)
if it satisfies the following conditions:

(1) |lx|l =0 ifand only if x = 0;
2) Nrxll = [rlllxl;
(3") =+ vl < max{|lx|, |lyll} for all x,y € X and r € K.

The pair (X, || - ||) is called a non-Archimedean space if || - || is a non-Archimedean norm
on X.

Definition 1.12 Let X be a real vector space with dim X > # over a scalar field K with a
non-Archimedean nontrivial valuation | - |, where # is a positive integer and f is a constant
with 0 < 8 < 1. A real-valued function ||,...,-||g : X" — R is called an (#, 8)-norm on X if

the following conditions hold:

(N1) |l%1,...,%41lp = 0 if and only if x4,...,%, are linearly dependent;
(N2') |l%1,...,%,llg is invariant under permutations of x;,...,%y;

(N3) llaxs, 2, ..., x4l = ||? lx1, %, ..., %l g5
(

N4/) ”xO +x1rx27~~rxn||ﬁ = maX{on»xz;-wxnllﬁ, “xl!er'“!xn”ﬁ}

for all @ € K and x¢,xy,...,%, € X.
Then (X, ||-,...,-|lg) is called a non-Archimedean (1, 8)-normed space.

It follows from the preceding definition that the non-Archimedean (n, 8)-normed space
is a non-Archimedean n-normed space if 8 = 1, and a non-Archimedean S-normed space

if n =1, respectively.

Remark 1.13 A sequence {x,,} in a non-Archimedean (n, 8)-normed space X is a Cauchy
sequence if and only if {x,,,; —x,,} converges to zero.

Proof 1t follows from (N4/) that

”xm _xkryh . -;J’n—l”ﬁ

< max{||xa - %31, ynllp ik <j<m-1} (m>k)
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for all yy,...,y,-1 € X. So a sequence {x,,} is a Cauchy sequence in X if and only if {x,,,1 —

X} converges to zero. O

Throughout this paper, let N denote the set of positive integers and j, k, m, n € N, and let
n > 2 be fixed.

2 Cauchy functional equations

In this section, we assume that |2| # 1. Under this condition we investigate the Hyers-
Ulam stability of the Cauchy functional equation in which the target space Y is a complete
non-Archimedean (n, 8)-normed space. When the domain space X is a non-Archimedean

B-normed space, we can formulate our result as follows.

Theorem 2.1 Suppose that X is a non-Archimedean B,-normed space and that Y is a com-

plete non-Archimedean (n, B)-normed space, where n > 2, 0 < 8,8 < 1. Let 6 € [0,00),

g€ 0,00)with (p+q)pr>p,andlety:Y xY x--- x Y — [0,00) be a function. Sup-
——

n-1
pose that a mapping f : X — Y satisfies the inequality

“f(x + )’) _f(x) _f()/)l Z1yeeerZp-1 Hﬁ S 9 ||x||};;1 ”_)/H;W(Zl: LR rzn—l) (21)

forallx,y e X and z,,...,z,1 € Y. Then there exists a unique additive mapping A : X — Y
such that

Hf(x) - A(x)’ 2150 9Zp-1 || B E 9 |2_ﬁ | ”xlllgrq (Zl’ o ’Zn—l) (22)

forallxe Xandz,...,z,1 €Y.

Proof Putting y = x in (2.1) and dividing both sides by |27, we get

_f(x)rzlt ceerZp-1

Hf (2x)
2

<6127 Ixllg "y (a1, - s 2e1) (a)
5

forallx € X and z, ..., 2,1 € Y. Replacing x by 2”x in (a) and dividing both sides by [2"#|,

we get

—— Y Z1ye .y Zp

’f (2"x)  f(2"x)
Qm+1 om

B

1
omp

1
‘Z—ﬂ‘}zm@*qml [l " (21, .. 201)
=0|27P| 2P PP x5 (21, s Znn)
forallx € X and zy,...,z,1 € Y. Since (p + )51 > B and |2| # 1, we have

lim H2’m’1f(2”’*1x) =27 (2"%), 21, . » 21 ||ﬁ =0

m— 00

for all x € X and z,...,z,-1 € Y. Considering Remark 1.13, we get that {27"f(2"x)} is a
Cauchy sequence in Y for all x € X. Since Y is a complete space, we can define the mapping
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A:X— Yby

A(x) = lim 27"f (2”’x) (b)

m— 00

forallx € X.
Next, we show that A is additive. It follows from (2.1), (b) and Lemma 1.8 that

|AG+y) = A) = AY), 21, ..., 201 ||‘3

lim [277P]||f (2% + 2y) = f(2"%) = f(2"), 21, ..., Zu1 ||ﬂ

m— 00

lim (2777|277 27y|§ ¥ (2. o 200)

m— 00

IA

= lim 204~ Iyl v (2. 20a)
forallx,y € X and z3,...,z,.1 € Y. Since (p + q) 1 > B and |2] #1, we get
”A(x +9)—AX) —AW), 21,5241 ||ﬂ =0
forallx,y € X and zj,...,2,1 € Y. By Lemma 1.4, we get

Alx+y)—Alx)-A(y) =0

for all x,y € X. So the mapping A is additive.
Replacing x by 2x in (a) and dividing both sides by |2f|, we get

22 2
’f O L | <6127 251 s ). ©
B
Thus by (a) and (c), we get
22
H,/(x) _%) 2159 Zp-1 5
2
< max{ "@ —fx), 215 zu1|| > f(;x) —f(ix),zl,...,z,,_l }
B B

< max{6 |27 ||lxll5 ¥ (2., 241), 0

2725 | ||2x||,p31rqw(zlv e :Zn—l)}
forallx € X and z3,...,2z,-1 € Y. Since (p + )1 > B and |2| #1, we get
Hf(x) - 2_2f(2x)1 ZlyeeerZp-1 ”ﬁ S |2_ﬂ |9 ”x”?quw(zl: e )Zn—l)

forallx € X and zy,...,z,.1 € Y.

By induction on m, we can conclude that

H,f(x) - Zimf(zmx)) Z1yev+3Zp-1 || B = |27ﬁ ‘9 ”x”f;;qw(zlt oo rzn—l) (d)
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forallme N,x € X and z3,...,z,.1 € Y. Replacing x with 2x in (d) and dividing both sides
by |27, we get

127 2x) =271 F (27 %), 21, ..., 20t ||ﬂ < ‘2’2‘3|9||2x||1;1+q1p(zl,...,z,,_l) (e)
forallx € X, z1,...,2,1 € Y and m € N, It follows from (a) and (e) that
If ) =27 (2" %), 215 .., 20 ||ﬁ <[27F ’9||x||§:qgﬂ(z1,...,zn_1)

forallx € X, z1,...,2z,.1 € Y and m € N. This completes the proof of (d).
Taking the limit as m — oo in (d), we can obtain (2.2).
Finally, we need to prove the uniqueness of A. Let A’ be another additive mapping sat-
isfying (2.2),
||A(x) - A/(x)r 21y Zp-1 “ﬁ
= |2’m’3 | ||A(2mx) —A'(2"%), 21,201 ||ﬁ

< ‘Z_mﬁ ‘ max{ HA(2"’x) —f(2'”x),zl, . ..,z,,_1|

e V(2mx) —A’(2’”x),z1,...,zn_1 ||ﬁ}
< \2"’“3 | !2‘5 |9 ||2W’x||g:q1/f(zl, e Znl)

=020 P " 2P| x5 (21, s Zncn)
forallx € X and z, ..., 2,1 € Y. Taking the limit as m — 00, we get
||A(x) —A/(x),Zb cee3Zp-1 ”/3 =0

for all x € X and z,...,z,1 € Y. By Lemma 1.4, we get A(x) = A'(x) for all x € X. So A is
the unique additive mapping satisfying (2.2). O

When the domain space X is a vector space, we get the following theorems with a gen-
eralized control function.

Theorem 2.2 Let X be a vector space and Y be a complete non-Archimedean (n, B)-
normed space, where n > 2 and 0 < 8 < 1. Let ¢ : X> — [0, 00) be a function such that

lim ‘27’-‘“(/)(2 x,2 y) =0 (2.3)

m— 00

forallx,ye X,andlet ¢ : Y x Y x --- x Y — [0,00) be a function. The limit
—_—

n-1

lim max{[27°|p(2 7%, 27'%) : 1 <j < m} (2.4)

m—> 00

exists for all x € X, and it is denoted by ¢(x). Suppose that a mapping f : X — Y satisfies
the inequality

[fGe+9) =f ) =fO) 21,20 | 4 < 06NV (21, 201) (2.5)



Yang et al. Journal of Inequalities and Applications (2015) 2015:112 Page 8 of 18

forallx,y e X and zi,...,2z,-1 € Y. Then there exists an additive mapping A : X — Y such
that

Hf(x) - A(x)’ VAPRRRRY 2/} ” B S Q’Z(x)llf(zl» e Zn—l) (2~6)
forallxe X and zy,...,z,.1 € Y. Moreover, if

lim lim max{[277|p(2 "%, 2 %) :1+k<j<m+k}=0 (2.7)

k— 00 m— o0

forall x € X, then A is a unique additive mapping satisfying (2.6).

Proof Putting y = x in (2.5) and dividing both sides by 27|, we get

—f(x),z1,...»Zn1

Hf (2x)
2

< [27|e@x2)¥ (21, .. 201) (f)
8

forallx € X and zj,...,z,1 € Y. Replacing x by 2x in (f) and dividing both sides by |2/],
we get

1215+ +3Zp-1

‘ F%)  f(2x)
2y

< |27}ﬁ | |27ﬂ |(p(2]x) 2ix)w(zlr e ;Zn—l)
B

forall x € X, z1,...,2,-1 € Y and j € N. Taking the limit as j — oo and considering (2.3),

we get
2ty Vx
lim S . )—f( - ),zl,...,zn_l =0
j—00 2/+1 2 5

forallx € X and z3,...,z,1 € Y. Considering Remark 1.13, we know that {27 (2"x)} is a
Cauchy sequence. Since Y is a complete space, we can define the mapping A : X — Y by

A(x) = lim 27"f (2”‘x)

m— 00

forall x € X.
Next, we prove that A is additive:

|AG +y) - Ax) = AB) 21, .» 201 Hﬁ
<[27F||A(2"x + 27y) - A(2"x) = A(2"), 21, ..., Zu1 ||‘3

< |2’””3 |<p (2”‘x, 2"‘x) Y(z1,..erZn1)

for all x,y € X and zy,...,2z,1 € Y. Taking the limit as m — oo and considering (2.3), we
get

JAG+5) - A@) - AG). 21,120 = O

forallx € X and z3,...,2,-1 € Y. By Lemma 1.4, we know that A is additive.
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Replacing x by 2x in (f) and dividing both sides by |2#|, we get

<277 |p(2x, 22) Y (21, ..., 201)

(2%x)  f(2x)
Hf 211 Zp-1

forallx € X and z,...,z,-1 € Y. Considering (f), we get

(2%x) _
H/(x) —fT,zl,...,z,,,l < max{ 2728 |g0(2x, 2x)}1//(21, e Zne1)
B
forallxe X, z,...,z,.1 €Y.
By induction on m, we get
(2"x) (2k1x, 21 )
Hj(x)—fz—m,zl,...,zn_l < max (pT l<k<miy(zi,....,zp1) (g
B

for all x € X and z,...,2,.1 € Y. Replacing x by 2x in (g) and dividing both sides by |2#|,

we get

(2kx, 2%x)

1Z1ye 9 Zp-1| = maX{W 1<k< m}l/f(zl;n-;zn—l)

H'@ _f(2m+1x)

2m+1

B

forallx € X, zi,...,2z,1 € Y and m € N, which together with (f) implies

m+1
H'/( )—L,zb...,zn_l

2m+1

B

o(x,x) (2%x, 2kx) )
|2ﬂ| ’ |2(k+1)/3| 15 =m lﬂ(zh ,Zn—l)

< max{

= max{[2-®VP|p(2%%,25x) : 0 <k < m) ¥ (z1,..., Z0m1)
= max{ |2‘kﬂ |<p(2k‘1x, 2k‘1x) l<k<m+ 1}1#(21, ey Znol)
forallx € X, zi,...,2,-1 € Y and m € N. This completes the proof of (g).
Taking the limit as m — oo in (g), we can obtain (2.6).
Now we need to prove the uniqueness of A. Let A’ be another additive mapping satisfying
(2.6). Since
lim [27%F | (2"
Jim |27715(2"%)

= lim |2 kﬂ| hm max{|2 ”3|<p(2’*k 1y, 0/+k-1 ):1 §j§m}

k—o00

= lim lim max{|2”3|<p(2’ Ly, 21 x): 1+k§j§m+k}

k— 00 m— 00

forallx € X and zy,...,z,_1 € Y, it follows from (2.7) that

||A(x) —A’(x),zl, ey Zp-1 Hﬂ

= klirr;o|2’kﬂ | ||A(2kx) —A’(ka),zl,...,z,,_l ||ﬂ
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< kli)n;op‘kﬁ | max { ||A(2kx) —f(ka),zl, e Znd

|[f(2kx) —A’(ka),zl, R ||ﬂ}

< lim 27 |5(2%) y (2, .., 20)

ﬁ,

=0
forallx € X and z, ...,2z,-1 € Y. Considering Lemma 1.4, we prove that A is unique. [

Next, we study the Hyers-Ulam stability of Jensen functional equation in a non-Archi-
medean (n, 8)-normed space.

Theorem 2.3 Let X be a vector space and Y be a complete non-Archimedean (n, B)-
normed space, where n > 2 and 0 < B < 1. Let ¢ : X> — [0, 00) be a function such that

lim |2mﬂ|¢<21m, 2%) -0 (2.8)

forallx,ye X,andlety:Y XY x --- x Y — [0,00) be a function. The limit
—_—

n-1

lim max{|2jﬂ|¢<%,0>:0§j§m—l} (2.9)

m— 00

exists for all x € X, which is denoted by ¢(x). Suppose that a mappingf : X — Y and f(0) = 0
satisfies the inequality

<NV (z,...201) (2.10)

H%(%) O =f O]

forallx,ye X and z1,...,z,1 € Y. Then there exists an additive mapping A : X — Y such
that

[f ) - A 21, 201 | < @Y 21,y 201) (2.11)

forallxe X and zy,...,z,.1 € Y. Moreover, if

lim lim max{|2jﬂ’¢<%,0> k<j< m+k—1} =0 (2.12)

k— 00 m—00

forall x € X, then A is a unique additive mapping satisfying (2.11).

Proof Putting y = 0 in (2.10), we get

=< §0(xr0)1ﬁ(21;-~-»zn—1) (al)

HZf(g) —f(x), 21,5 2n1
B

for all x € X and zy,...,z,-1 € Y. Replacing x by 55 in (al) and multiplying both sides by
|27|, we get

X X
2m+lf(2m+1> _2mf<2_m),21,...,zn_1

X
S |ZMﬂ|§0(_m; 0)¢(zl;"'12n—1)
P 2
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forallx € X and z, ..., 2,1 € Y. Taking the limit as m — 0o and considering (2.8), we get

X X
2m+1f'(2m+1) - 2mf<2m>,zl, ey Zp-1

for all x € X and zy,...,2,.1 € Y. Considering Remark 1.13, we know that {2"f(55)} is a

lim =0

m—> 00

B

Cauchy sequence. Since Y is a complete space, we can define the mapping A : X — Y by
. x
A(x) = lim 2”‘f(—) (b1)
m—00 om

forall x € X.
By induction on m, we get

2mf(21m) —f(®),z1,.., 241

B

< max{ |2k’3|<p(%,0) 0<k<m- 1}1//(21,...,2,11) (c1)

forallx € X, zi,...,2,-1 € Y and m € N. Replacing x by 7 in (c1) and multiplying both sides
by |2#|, we get

X X
2m+1f<2m+1> _2f<§),21,...,2n1 ,

x
< max{ ’2(k+1)ﬁ|<p<2k+1,0> 0<k<m- I}W(zl,...,zn_l)

forallx € X, z,...,z,-1 € Y and m € N. Considering the above inequality and (al), we have

X
2’”“f( e ) —f@&),z1,.. 5201

B

x
< max{go(x, 0), |2(k+1)ﬂ|(p<ﬁ’0> :0<k< m—l}l//(zl,...,znl)
- kB, % :
_max{|2 ’gz)(?,O) :0<k< m}w(zl,...,zn_l)

forallx € X, zi,...,2z,.1 € Y and m € N. This completes the proof of (cl).
Taking the limit as m — 0o in (c1), we can obtain (2.11).
Next, we prove that A is additive. Considering (2.8), (2.10) and (b1), we have

xX+Yy

HZA(T) —Ax) - AW), 215,20

B

xX+y X J
2 - o - ~ ] re ey Ap—
'f<2m+l) f<2m> f(2m> 21 Zp-1
. X Yy
,.}L“;o|2’”ﬂ|¢(2—m’z—m)‘/’(zl""'zn-l’

=0

= lim 27|

m—0Q

B

IA
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forallx,y € Xand z,...,z,-1 € Y. Considering Lemma 1.4, we have 2A(’%) —Ax)-Ay) =
0 for all x,y € X. Since f(0) = 0, A(0) = 0, we know that A is additive.

Now we need to prove the uniqueness of A. Let A’ be another additive mapping satisfying
(2.11). Since

kB
im 21 (5:)

= lim ’2’"3’ llm max{|2(’+kﬁ’g0<2/+k,0> :0§j§m—1}

k—00

k— 00 m—00

= lim lim max{|2’ﬂ|g0(5 0) :/(§j§m+k—1}
for all x € X, it follows from (2.12) that

||A(.?C) _A/(x)rzlr s Zp-1 Hﬂ

k X
_kli)n;o|2 ﬂ‘” (Zk) A/(Zk) Z15+009Zp-1 5
X X
G))e
2150009 Zp-1 }
b)) moome,

< ]1m ‘Zkﬁ‘(p< )I/f(Z1, Zn-1)

’

< lim |2kﬂ | max{
B

k— o0

=0
forallx € X and z,...,2z,-1 € Y. Considering Lemma 1.4, we prove that A is unique. [

3 Pexiderized Cauchy functional equations
In this section, we investigate the Hyers-Ulam stability of the pexiderized Cauchy func-
tional equation in (#, 8)-normed spaces.

Theorem 3.1 Let X be a vector space and Y be a complete (n, §)-normed space with 0 <
B <1.Let ¢:X>— [0,00) be a function satisfying

(x) = Z 27h ((p (2i_1x, O) + (p(O, 2i_1x) + (p(2i_1x, 2i_1x)) <00 (3.1)
and
lim 277 ¢(2"x,2"y) = 0 (3.2)

forallx,ye X. ¥ : Y XY x--- xY — [0,00) is a function. If mappings f,g,h: X — Y
[ ——
satisfy the inequality n-1

[f G+ 9) —g@) = hy), 21,20 | < 06DV (21, 20m1) (3.3)
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forallx,ye X and z,...,z,.1 € Y, then there exists a unique additive mapping A : X — Y
satisfying

Hf(x) —A(x), Z1y.v09Zp-1 ”/3

=< Q(x)l//(zh e :Zn—l) + ||h(0)r 2150009 Zp-1 ||/3 + ||g(0)r 215009 Zp-1 B’ (34')
”g(x) _A(x)r ZlyeeerZpn-1 ”ﬂ
S q)(x)w(zly ce )Zn—l) + ||g(0)’zl: ceerZp-1 ||/3 + 2 ”h(o)»zl; ceerZp-1 Hﬁ
+ (0(?@ 0)‘#(21,".,%71); (35)
||h(x) _A(x)7 215009 Zp-1 ||/3
S q>(x)1/f(21; v ’Zn—l) + ||h(0)) Z1reeerZp-1 ||/3 + 2”g(0),21; ceerZp-1 Hﬂ
+@(0,%)¥ (z1,...,24-1) (3.6)
forallxeXandz,...,z,.1 €Y.
Proof Putting y = x in inequality (3.3), we get
”f(zx) _g(x) - h(x)) Z1reeerZn-1 ||ﬁ S §0(x;x)1/f(21, e ;Zn—l) (37)
forallx € X and z1,...,2,-1 € Y. Putting ¥ = 0 in inequality (3.3), we get
“,f(x) _g(x) - h(o)r 2150 e9Zp-1 Hﬂ =< (O(x, 0)¢(Zh oo ¢Zn—1) (38)
forallx € X and z1,...,2,.1 € Y. It then follows from (3.8) that
H,f(x) _g(x)!zli ceesZp-1 Hﬂ = ¢(x7 O)W(Zh oo rzn—l) + ||h(0); Z1reeerZp-1 ”ﬂ (3~9)
forallx € X and z, ...,2z,-1 € Y. Putting x = 0 in inequality (3.3), we get
“f(y) —g(O) - h(y),zl, ceesZp-1 Hﬁ =< <P(0»J’)W(Zl; e rzn—l)
forally € X and zy,...,2,1 € Y. Thus, we obtain
Hf(x) —h(x),z1,...,2,-1 ”;3 < @(0,%)¥(z1,...,24-1) + ”g(O),zl, ey Znl ||ﬁ (3.10)

forallxe X and z;,...,z,.1 €Y.
Let us define
u(x; Z15een 72}171)
= || g(0),z1,..., 241 Hﬂ + | h(0), 21, ..., 201 Hﬂ + o)V (21,...,2,1)

+ (D(x’ 0)1/[(251, . 'rzn—l) + 90(0,?6)1//(21, oo :Zn—1)~
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Using (3.7), (3.9) and (3.10), we have

lf22) -2 @,z 20
< |[f(2x) —g(®) = h(®), 21, 20| 5 + |[€&) — (), 21, s 20t [ 4
+ ) —f@), 21,020 |
< 600,21z + [10), 21 cr 2], + 0 O 1 200)

+ (0(0>x)1/f(zlr ce rzn—l) + </)(x,x)1ﬁ(21, e ;Zn—l)
=ulx,z1,...,24-1) (3.11)

forallx € X and z, ...,2z,-1 € Y. Replacing x with 2x in (3.11), we get
Hf(sz) -2f(2x),z1,...,2n1 ”;3 <u(2%,21,...,24-1) (3.12)
forallx € X and zy,...,z,_1 € Y. It then follows from (3.11) and (3.12) that

|Lf(22x) - 22f(%), 215+, Zn1 ||‘g
Hf(Z2 ) 2f(2x),21, ..., 2y 1||5+2’3Hf (2x) - 2f (x )zl,...,z,,_1||ﬁ

<u%,21,...,2021) + 2Pu(, 21, .. Z01)

forallx€e X and z;,...,z,.1 € Y.

Applying an induction argument on 1, we will prove that

If (27%) = 27 @), 21,y 2| < Z‘z u(2™x, 21, 20) (3.13)

forallx € X, z1,...,2,.1 € Y and m € N. In view of (3.11), inequality (3.13) is true for m = 1.
Assume that (3.13) is true for some m > 1. Substituting 2x for x in (3.13), we obtain

“,f(szrl ) 2mf(2x) Z1yeeerZp— 1||ﬂ 221 D# 2m+1 lxler 1Zn—1)

forallx € X and zy,...,z,_1 € Y. Hence, it follows from (3.11) that

|V(2m+1x) — 2" (w), 21, 20 ||ﬂ

< Hf(Z"’”x) =2"f(x),21,.-->2Zn1 Hﬁ +2"F Hf(Zx) =2f(x),z1,..., 201 ”f3

< E 2-DA 2””1 ‘x,zl,.,,,z,,,l) +2"Pu(x, 21, ..., Ze1)

= Z 2(i_1)‘3u(2”’+1_ix, Ziyees z,,_l)
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forallx € X and z,...,z,-1 € Y, which proves inequality (3.13). By (3.13), we have
||2_”’f(2m ) —fx),z15. .. 24 1|| < 22(‘ 1=m)p 2’” %, z1,.. ,z,,_l) (3.14)

forallx € X, z1,...,z,..1 € Y and m € N. Moreover, if m, k € N with m < k, then it follows
from (3.11) that

||2—kf(2kx) - 2‘mf(2mx),zl, ceesZp-1 ”).‘3
k-

ZH “if (2ix) - 27V f (241 ),zl,,..,Zn_1||/3

,_.

3

>~
—

IA

9-(i+1)p ||2f(2ix) —f(ZMx),th,Zn_l ”ﬁ

)
3

>~

2B (2ix, 215 s Znm1)

&

Toa
R N

27V [(2%,0) Y (z1, ..., 2n1) + 0(0,2%) Y (21, - .., Z1)

T
3

+ @(2ix, 2ix)1/f(zl,...,zn,1) + ||h(0),21,...,zn,1 ||/3 + Hg(O),zl,..,,zn,l ||ﬁ]

>
—

<) 270 p(21%,0) + ¢(0,2'%) + ¢(2%,2°%) [¥ (21, ..., 241)

i

i
N

(| A0, 215 ..., Zua Hﬁ + | g(0),z1,..., 201 Hﬁ)

for all x € X and z;,...,z,-1 € Y. Taking the limit as m, kK — oo and considering (3.1), we

get

lim ||2 kf(2k )= 27" (2"%), 215 . 201 ||ﬂ =0

m,k— 00

forallx € Xand z,...,2z,-1 € Y. According to Definition 1.7, we know that {27 f(2"x)} is a
Cauchy sequence for everyx € X and zy, ..., 2,1 € Y. Since Y is a complete (#, 8)-normed
space, we can define a function A : X — Y by

Ax) = lim 27"f(2"x).
m—> 00
Replacing x, y by 2”x, 2"y in (3.3) and dividing both sides by 2", we get

27| f(27x + 27y) — g(27%) — h(27), 21, ... 201 ||ﬁ
<2y (2’"x, 2’"y) Yz, rZn1)
forallx € X and zy,...,z,_1 € Y. It follows from (3.9) that

g -2 g (),

<27"P[[|h(0), 21, 201 | 4 + 9 (272, 0) Y (21, ., 20) ] (3.15)
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forallx € X and z,...,2z,-1 € Y. Considering (3.1), we get

2—mﬁ¢(2mx, O)w(zl, R MY
o0

<2f 22_(”1)‘3 [(p(2ix, O)lp(zl,...,z,,_l) + (p(O, Zix)lp(zl, ey Zpe1)

i=m
+ ¢ (Zix, 2ix) Y(z,..., zn_l)]

— 0 asm — oo.
It follows from (3.15) that

lim 277g(2"x) = lim 27"f(2"x) = A(x) (3.16)

m—> 00 m— 00

for all x € X. Also, by (3.10), we have

”2_”’}1(2”’96) - 2_"‘f(2”’x),zl, ey Znl ”’3

=27,z zua [ 5 + 0(0.27"%) ¥ (21, . 200)] (3.17)
forallx € X and zy,...,2,-1 € Y. Similarly, it follows from (3.17) that

lim 27"h(2"x) = mli_)mOOZ’”‘f(Z”‘x) = A(x) (3.18)

m—> 00

forallx € X and z,...,2z,1 € Y. Thus, by (3.2), (3.16), (3.18) and Lemma 1.8, we get

||A(x +9) —AX) —AW), 21,5 2Zu1 ||ﬂ

= lim |27 (2"x +2"y) = 27"g(2"x) = 27"h(2"y), 21, 201 | 4

m—0Q

< lim Z’mﬂw(Z”’x, 2"y)Y (21, . r Zno1)

m—> 00

=0

forallx € X and z3,...,2,-1 € Y. Hence A(x + y) — A(x) — A(y) = 0.
Taking the limit as m — oc in (3.14), we get

x) —f(%), 215+ »Zp1
4G - I,
m
< W}I_I)noo ZI: 2(i’1””)‘8u(2””ix, Zlyenrs zn_l)
i

= lim (1—Z_mﬁ)(Hg(O),Zl,...,Zn_lHﬂ + Hh(O),Zl,...,Zn_l ”5)

m— 00

+ lim Z 20m DB (27, 0) Y (21, - 201) + 9(0, 277 %) Y (21, .., Z01)

i=1
+@ (Zm’ix, 2m_ix) ¥zy,..., z,,_l))

= | 1(0),21,..., 2401 Hﬂ + ] g(0),z1,..., 201 Hﬂ + O Y (z1,...,24-1)

forallx € X and zy,...,z,1 € Y, which proves (3.4).
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It remains to prove the uniqueness of A. Assume that A’ : X — Y is another additive
mapping which satisfies (3.4). Then we have

”A(x) —A'(%),215...,2Zu1 Hﬁ
<2 ||A(2’”x) —f(2"%),z1,..., 201 ||ﬂ +27mP Hf(Z’"x) —A'(2"x), 21,1201 ||ﬂ
< 27m/5+1(”g(0)1 Z1reeerZp-1 ||/3 + Hh(o)7 Z1reeerZp-1 ”ﬂ + @(2mx)w.(zb o ;Zn—l))

= 2""’3+1(Hg(0),z1,...,zn_l ||ﬁ + Hh(O),zl,...,zn_l Hﬁ)

o0
+2 ) 27%(p(27%,0) + (0,2 7x) + (2%, 27 %) ) ¥ (21, .., 201)

i=m+1

—0 asm— o0

forallx € X and z, ..., 2z,-1 € Y, which together with Lemma 1.4 implies that A(x) = A’ (x)
for all x € X. Using (3.4) and (3.9), we can get (3.5), and also using (3.4) and (3.10), we can
get (3.6). a
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