Wang and Si Journal of Inequalities and Applications (2015) 2015:104 ® Journal of Inequalities and Applications
DOI10.11 86/51 3660-015-0627-2 a SpringerOpen Journal

RESEARCH Open Access

Necessary and sufficient conditions for the
boundedness of rough multilinear fractional
operators on Morrey-type spaces

Zhiheng Wang' and Zengyan Si¢*

“Correspondence:

zengyan@hpu.edu.cn Abstract

2School of Mathematics and . . .

Information Science. Henan In this paper, we study the necessary and sufficient conditions on the parameters for
Polytechnic University, Jiaozuo, the boundedness of the multilinear fractional maximal operator Mg and the
454000, PR. China o multilinear fractional integral operator Zg o With rough kernels on Morrey spaces and
Full list of author information is . . ! .

available at the end of the article modified Morrey spaces, respectively. This extends some recent results of Guliyev,

Hasnov and Zeren; the necessary and sufficient conditions for the boundedness of
Mgy and I, on modified spaces are considered.

Keywords: multilinear fractional operators; rough kernels; Morrey-type spaces

1 Introduction
Kenig and Stein [1] studied the boundedness of multilinear fractional integral operator

Zom» 0 < o < mn, on Lebesgue spaces.

Lo (%) = / AONB0R): 2 IlO) .. ay,

@y [(X=Y1,0 = Yo, .00y X = Yy )|

we denote byj’ the m-tuple (f1,f2,...,fn) and by m, n nonnegative integers with m > 1,
n > 2. As one of the most important multilinear operators, the multilinear fractional inte-
gral operator has been widely studied; we refer the reader to [2—7] for an overview. In this
paper, we study the necessary and sufficient conditions on the parameters for bounded-
ness of the multilinear fractional maximal operator Mg, and the multilinear fractional
integrals Zg , with rough kernels on Morrey spaces and modified Morrey spaces, respec-
tively, whose definitions are given below.

LetO<a<mn,s>1, Qe L(S"™ 1) bea homogeneous function of degree zero on R"”.
The multilinear fractional integral operator and its corresponding maximal operator are,
respectively, defined by

To - | 20 Tt 5
i=1

reym [y L

- 1 “ -
Maf@ =sup e [ 26| [Tl 5
> i=1
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where dy = dy, - - dy,,. If m =1, Zq, is the homogeneous fractional integral operators
(see [8]). If m=1and Q =1, Zg, and Mg, are the Riesz potential I, and the fractional
maximal operator M, [9, 10] given by

1= [ TR g =sup

r>0

flx—y)dy.

N—0
r lyl<r

In the theory of partial differential equations, Morrey spaces play an important role.
Morrey spaces were introduced by Morrey [11] in 1938 in connection with certain prob-
lems in elliptic partial differential equations and the calculus of variation.

Definition 1.1 [12,13] Let1 < p < 00, 0 < A < n. We denote by L»* = [»*(R") the Morrey
space, and by WIP* = WIP*(R") the weak Morrey space, the sets of locally integrable
functions f(x), x € R”, with the finite norms

1

1 »

1/ Iy = sup (t_A/ [f()’)|pd3’> ,
B(x,t)

x€R",t>0

1 3
f lyzpn@gny = sup v sup (t7|{y € B(x, 1) : [f(y)| > r}|> ,

r>0  xeR”,t>0

respectively.

Definition 1.2 [14] Let1 <p<o0,0 <A < #, [¢t]; = min{L, }. We denote by [?* = IP*(R")
the modified Morrey space, and by WIP* = WIP*(R") the weak modified Morrey space,
the sets of locally integrable functions f(x), x € R”, with the finite norms

1

1 r
I lIzpagny = sup <— )tf(y)l”dy) ,
t

xernso \ [} JB@,

f lwiprqny = supr  sup (ﬁ“y € B(x,¢t): [f(y)| > r}|>p,
1

r>0  xeR",t>0

respectively.

It is easy to see that LPO(R") = IPO(R") = LP(R"), WLPO(R") = WIPO(R") = WLP(R"). If
A <0 or A > n, then IP*(R") = LP*(R") = ©, where O is the set of all functions equivalent
to 0 on R”. In addition, from [14], we know

P R") o 2R NP (RY), max{ [l e} < 1 o
We list two remarkable results on Morrey spaces for 1,.

Theorem A [13] LetO<a<n1<p<n/a,0 <i<n-—ap,1/q=1/p—al/n,and u/q=rlp.
Then for p > 1, the operator I, is bounded from LP*(R") to LY*(R") and for p =1, I, is
bounded from L' (R") to WLT*(R").

Theorem B [12,14] LetO<a<nm1<p<n/a,0 <A<n-ap.
(i) Ifp>1, then the condition 1/p —1/q = a/(n — 1) is necessary and sufficient for the
boundedness of the operator I, from LP*(R") to L¥*(R").



Wang and Si Journal of Inequalities and Applications (2015) 2015:104 Page 3 of 12

(ii) Ifp =1, then the condition1—1/q = a/(n — A) is necessary and sufficient for the
boundedness of the operator I, from LY*(R") to WL (R").

Motivated by these two results above, we study the necessary and sufficient conditions
on the parameters for the boundedness of the multilinear fractional maximal operator
Mg, and the multilinear fractional integral operator Zg , with rough kernels on Morrey
spaces and modified Morrey spaces, respectively. This extends a recent result of [14]; the
necessary and sufficient conditions for the boundedness of M,, and I, on modified spaces
are considered. If we denote by p, g the harmonic mean of py,...,p,, >1and qi,..., 4 > 1,
then our results can be stated as follows.

Theorem 1.1 Let 0 < <mn, 1 <s< 00 and Q € L*(S™1). Suppose 1% =>4 %, % = I% -
] 2 ]
P/

m(n—)\ and 0 < Aj<n——1
(i) Ifp>s dnd 2 Z,m1 5 , then the condition 1/p —1/q = a/(n — A) is necessary and
sufficient for the boundedness of the operator Mgy from
LPVM(R?) x - oo x [PmAm(RM) to L‘“(R”)
(ii) Ifp=sand x Z;Zl ﬁ = Z] lpq , then the condition 1/p —1/q = a/(n—A) is
necessary and sufficient for the boundedness of the operator Mg, from
LPPM(RY) X -« x LPm*m (R to WL (R™).

Moreover, the corresponding estimates for Lg o hold.

Theorem 1.2 Let o, 2, s, pj, Aj, p and A be as in Theorem 1.1.

(i) Ifp>s" and 3 = Z;m=1 2—;, then the condition a/n <1/p —1/q < a/(n — 1) is necessary
and sufficient for the boundedness of the operator Mg, from
IPPM(R?) x -« .. x [Pmm(RM) to Z“(R”)

(i) Ifp=sand 3", zﬁ = Z}ml v , then the condition a/n <1/p—1/g <a/(n—1\) is
necessary and sufficient for the boundedness of the operator Mg o from
IPYM(RM) x - - x LPmrm(RM) to WL (R™).

Moreover, the corresponding estimates for Lg o hold.

The organization of this paper is as follows: We will give the boundedness of Mg, and
Ta,« on Morrey spaces and on modified Morrey spaces in Section 2 and Section 3, respec-
tively. In Section 4, some applications are given.

2 Boundedness on Morrey spaces
In this section we study the boundedness of Mg, and Zg, on Morrey spaces. The fol-
lowing lemmas play an important role in the proof of Theorem 1.1.

Lemma 2.1 [12,14] LetO<a<n 1<p<n/a,0 <Ai<n-ap.
(i) Ifp > 1, then the condition 1/p —1/q = a/(n — 1) is necessary and sufficient for the
boundedness of the operator M,, from LP*(R") to L9*(R").
(ii) Ifp =1, then the condition1—1/q = a/(n — A) is necessary and sufficient for the
boundedness of the operator M, from LY*(R") to WLI*(R").

Lemma 2.2 [15] Let 0 < o < mn, and let f; € LP/(R") with 1 < p; < o0 for j =1,2,...,m. For
any 0 < € < min{o, mn — o}, there exists a constant C < 0o such that for any x € R”,

l\JI»—A

Zouf )] < Mo @] [Mau-f @]
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Lemma 2.3 Let 0 < <mn, 1 <5 < =%, and let f; € IP/(R") with 1 < p; < 00 for j =

1,2,...,m. Then there exists a constant C < 0o such that for any x € R",

"‘\I =

Maof () < H[Mﬂf JH&

i=1

Proof Since Q € L¥(S"1), using the Hélder inequality, we obtain

1

Q@ (x— )| dy
s [, 100 [Tl

< (fmlsz@)lv&)i(/y [T dy)

<V/1

>0 p

<Csup———— T (/H ]_[[f(x | dy>
yl<r

>0

1 - AT
§C<sup WH]S,/ Hlf,’(x—yz‘)‘ d)’)
r>0 I [yl<r j=1

1
C(sup pr— f / H[f X =Y | dy)
r>0 lyl<r byml<r .

m 1 1
< | | -
— C (Su(l)) rn—as//m

j=1 r>

-] dyj) S

ECSUP(rmn as/ l_[[f(x | dy)
y<r

1
J

IA

lyjl<r

\\»—-

:]§

[[[Moe 7] &

~.
Il
—_

This completes the proof of the lemma. d

Proof of Theorem 1.1 We first prove Theorem 1.1 is true for Mg ,; then the proof for Zq ,
follows.
(i) Sufficiency. The case p > s'. Since each p; > s/, by the Hélder inequality and Lemma 2.1

and Lemma 2.3, we have

1
. 1 . q
||MQ,D(f||Lq,A(Rn) = Sup (t_)L /( )|MQ,D(f(y)|qdy>
B(x,t

x€R”,t>0

1
<C sup (i/ ' )q
xeRn,10 \ £ JB(p)
" 1 RN 7
§CH sup (ﬁ/RJM%ﬁS(y)‘S, dy> ’

j=1 x€R”,t>0

l'[[Mm 0]

j=1
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< Cl_[”fs i;s]/s i (wn)

m
= CT TIN5 oy

j=1
1 1 o
where ;} = 17; - m )
Necessity. Suppose that Mg, is bounded from L™ x ... x [Pm*m to [9*, Let f.(x) =
(fi(ex),...,f(ex)) for all € > 0. Then by changing of the variables, we see that

Maofe(9) = € Maf (€9). (2.1)

Thus

- 1 . Va
[Maafllpar =€ sup (; / ( )!MQ,J(ey>\qdy)
B(x,t

xeR”,t>0

1 . 1/q
=e ™M sup (7/ |./\/lg,of(y)|qdy>
13 B(x,et)

x€R”,t>0

1 . . 1/q
sup [ —— Maofo)|"d )
xe]Ri’lB>0<(€t))L -/lli(ac,et)i Q‘Xf(y | 4

= e Y M o f | a0

_ 6—a—n/q+k/q

Since Mg, is bounded from LF1*1 x ... x LPm*m to L%*, we have
. . .
[Maof llar = € Mg ofe |00

m
< Ce T[] iy
j=1

= Cerlnra ]_[ ( / [fien|” dy)
j=1 xe]R”,t>()

1 AN
- C€a+ n-X) /611_[E Vl/p] sup <T V}‘(y) |p/ d)/)
tY B(x,et)

j=1 xeR™,t>0

m 1 . 1/p
- C€a+(n—k)/q HE(A/—VI)/p/ sup ( — w(y)|191 dy>

il xeR,1>0 \ (€6)"7 JB(xer)

m
_ C€a+(n—A)/q—(n—A)/p 1_[ Hﬁ” ik
7’

j=1

where C is independent of €.

If1/p <1/q + a/(n - 1), then for all f € LP1* x - x [Pm*n we have | Maef |l ar = 0 as
€ — 0.

Also, if1/p > 1/q+a/(n— 1), then for all f € LP1*1 x - - - x LPm’m we have ”MQ,J”Lq,A =0
as € — 00.

Therefore we get 1/p =1/g + a/(n — 1).
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(ii) Sufficiency. The case p = s'. We apply the Holder inequality to Lemma 2.3 to obtain

the fact
Maof(x) < ]_[[Mﬂf l’ ]_[ My f 7(x) CH[Map,f ]”L(
j=1 j=1 mp j=1

Forany 8>0,leteg =B, €1,€2,...,6m-1 > 0 and g, = 1 such that

g m
(i)pﬂ] — M, ]':1,2’.“,,,”’
&j-1 IS, i

. Hence, we have

L 1
where g; is given by 1 — 7 = M)

- e 1 gi_
{yeB(x,t):|MQ,J@)|>Cﬁ C}LJ{yeB(x,t) Map,f ]‘”(y >m}.

Then, by Lemma 2.1, we have
|{y € B, ) : | MaofO)| > B1]

m
=€
Jj=1

1 51‘—1
{yEB(xjt) [M"‘plf ]p (y > gjt()\—k/)/p,‘q/ }‘
m
" g tWpgNpG
th ( / - ) L Hsz
-1

m pjdj
C A
> (81 1) I,
1 1
> ||f” P/J»/) .
(31

| /\

8]1 b
{yeBx, M"‘ij ()/ (W) ”

IA

5

Hence, we obtain the following inequality:

- 1 N m
| Maaf oo =sup p_sup (;I{yeB<x,t>=|Mn,qf(y>i>ﬂ}l) < CTTusl

xeR",t>0 j=1

Necessity. Let Mg, be bounded from LP1*1 x ... x [Pm*m to WL9*, By using (2.1), we

obtain

1
q

N 1
IMaofellwiar =supr sup (7./ ) dy)
r>0  xeR750 \ L {yeB(x,t):| Maafe )I>r}

1
=supr sup (—k / 3 dy)
r>0  xe€R”,t>0 L {yeBxt):| Mg of (€y)|>re®}

1
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1 q
=esup r sup <7/ ) dy>
r>0  xeR”,t>0 L {yeB(x,et):| Mg of (y)1>re®}
1

—a—n/q+X/ o 1 1
=€ T supre® sup (— ) dy
>0 xeR™,t>0 (Et) {yeBx,et):| Mg of @)|>re®}

= e U Mo of llyran-
By the boundedness of Mg, from LFI*1 x ... x [Pm*m to WL, we have
IMaaf llwrar = € Maafellyrar

m
< Ce T f(e) | iy

Jj=1

m
~A)Ig—(n—=1)/,
< Cer N TSy
j=1

where C is independent of €.

If 1/p < 1/q + a/(n — 1), then for all]‘ € [PVM x ... x [Pmm e have ||MQ,J”WL11,A =0
ase — 0.

Also, if1/p > 1/q + a/(n— 1), then for allf € [PV} ... x [Pm?m e have IIMQ,JII wigh =
0ase — oo.

Consequently, we get 1/p = 1/q + a/(n — A).

Now we prove the corresponding estimates for Zg, hold. By the same arguments as
above we can get the necessity parts of Theorem 1.1(i) and (ii) for Zg .. So we just give the
sufficiency parts, respectively.

First we study the sufficiency of the condition in Theorem 1.1(i) for Zg 4.

Following the method used in [16], we choose a small positive number € with 0 < € <

min{e, @ -, "P%A — a}. One can then see from the condition of Theorem 1.1 that 1 <
s’<pj<mg'::j) and1§s/<pj<m:l__jj),andwe let
1 1 1 a+e 1 a+e
— = — + — et — — = — — ,
q P2 Pm Hn=A p n-»L
and
1 1 1 a-€ 1 a-€
—=—t— 4t — = =— - .
92 b1 P2 Pm n—L p n-»i

Now if each p; > s', then Theorem 1.1(i) implies that

”Msz,aafaf”Lél,k(Rn) = Hﬁ”ijvK;(Rn)» ||M9,a—sf||L712A(Rn) = Hﬁ”Lp,ul,’(Rn)-
A simple calculation yields % + % =1. Hence, using Lemma 2.2, the Holder inequality

and the above inequalities, we have

1 Z.af Nl L2 )

1 R i
(ot

x€R™,t>0
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1
1 -, 14 q q
<C sup (7 / [Mawsd @] Moo @] d )
x€R” >0 t R”
1 ] % 1 . i
=C sup <_A / [MQ,MJ(’C)]‘“ dx) " sup <7 / [Mg,a—J(x)]qZ dx) ”
xeR" >0 t R” xeR”,t>0 t R#”
< ClMaaref 1 s g M- 1
= Cl_[ ”f]:”LP/")‘]'(Rn)'
j=1
Now we study the sufficiency of the condition in Theorem 1.1(ii) for Zg .
A a4
For any 8 > 0, we denote u? = ,32 a2 (]_[I.'Z1 |[ﬁ||ij,Aj)‘?2 ' Then by Lemma 2.2, we have
[y € Bx,0): |IQ,J(y)| > B}
1 - 41
<C|{y e B0 C[Maad @]* [Maa-f@)]* > )]
<C|{yeB@&1): x/_[/\/lga+<f(x)] n
1
+|{y € B t): VC[Mou-f @)]* > Bin}]
C| eB(x,t) Mgzwgf(x) >Cu? H + !{yeB(x,t) Mau- J(x) > CB%/u? }|
q 72
[( - H W51y ) + C(ﬁ2 T TWAN 2 ) ]
1 !
<ct (E 1‘[ |m||ij,Aj> .
j=1
Hence, we obtain the following inequality:
1 m
- 1 - q
IZaaf s =sup £ sup 0(; [y € B,0): |Zauf )] > ﬂ}!) <TI0
> xeR”t> j=1
Thus we complete the proof of Theorem 1.1. d

3 Boundedness on modified Morrey spaces

In this section we study the boundedness of Mg, and Zg, on modified Morrey spaces.

The following inequality for M, in Modified Morrey spaces is valid.

Lemma 3.1 [14] LetO<a<n,1<p<nla,0 <Ai<n-oap.
(i) Ifp>1, then the condition a/n <1/p —1/q < a/(n — A) is necessary and sufficient for
the boundedness of the operator My, from TP* to L.
(ii) Ifp =1, then the condition a/n <1-1/q < a/(n— 1) is necessary and sufficient for
the boundedness of the operator My from L** to WL,

We are ready to prove Theorem 1.2.
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Proof Similar to the proofs of sufficiency in Theorem 1.1, we will get the sufficiency parts
for Mg, and Zq 4, respectively. Now, we give only the proof of necessity for Mg, since
the main steps and the ideas are almost the same as Zq .

Let [€];,+ = max{1, €}. Then by (2.1), we obtain

. 1 . 1/q
[Mafllzar =€ sup (— / ( )}MQ,J<ey)!qdy)
B(x,t

xeR",t>0 [t]iL

1 . 1/q
=e %M sup (—/ |./\/lgyo<f(y)|qdy)
Blex,et)

xeR”,t>0 [t]iL

Alq ”
_ —a-nlq [Gt]1> < 1 /‘ - )
=€ su - su M Y ) J
NI))( ) o\ Tet]] B(ex,et)| aef O dy
X -
= E_a_n/q[ellq,+||MQ,(xf||Zq.A

and

S 1 q
[Mafellwiar = sup r sup <—A/ . d)’)
0 xeRmes0 \ [E]7 JyeBn | Mool 0)157)

1
=supr sup | — ) dy
0 xeRn0 \ ] JpeB@oriMaafiey)sre)

1
—nl 1 q
=e™supr sup | — ) dy
r>0  xeR”,t>0 [t]1 {yeBlex,et):| Mg of (y)|>re®}

1
q

x sup re*  sup (% {y € Blex,€t) : |ng(y)| > re"}|> !

r>0 xeR™,t>0 [eth
ek -
= e *Me]l!, IMaof lwiar-
(i) Let Mg, be bounded from IP1*1 x ... x LPm*m to L%, Then we have

_A N
[Maaf llzar = €€l ! I Maafe e

_a M
< Ce™™fe] 1 ]_[\lﬁ(e)Hzm
j=1

" 1 i e
= Ce“”’/q[e]LZ l_[ sup <7/ lﬁ(fy)| ’ dy)
B(x,t)

j=1 x€R,t>0 [t]l

am 1 AN
= Ce*™M[e], ! He‘”/p/ sup (— I dy)
)

=1 xeR",t>0 [t]ij Bex,et
. om Ajlpj
_4 ) €t 1 7'E]
< Ceoun/q[e]lz l—le—nlp] Sllp<[ ] )
i 0 \ [th

1 . 1/pj
X su — [’ d
b < [Et]ki Blex,et) lf}(y)| y)

xeR”,t>0
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s Lo m
<Ce a+n/q— n/p E] q f+l_[ ”ﬁ”zpj’)“j
j=1

A_k
<Ce a+nlg— n/p f q 1_[ ”f”Lp/ "

where C is independent of €.
If1/p < 1/q +a/n, then forall f € IPv*1 x .. x [PmPm we have | Maf ||zar = 0 as € — 0.
Also, if1/p > 1/q+a/(n— 1), then for all f € TP1*1 x - - - x LPmm we have IIMQ,JIIZq,x =0
as € — o0.
Therefore we get o/n <1/p —1/qg < a/(n—1).
(i) Let Mg, be bounded from PV x ... x IPm*n to WL%*. Then we have

IMaof llygar = € "e], ||M9qfe||mm

cernalel,t TT1Ae) i,
j=1

A m
lq—n, p
< Ceo+nla-nip| 11’+ 1_[ |[ﬁ||zpi,xj,
j=1

Q>

where C is independent of €.

If 1/p < 1/q + a/n, then for all]’ € TPV} x ... x IPmhm, we have ”MQ,J”‘,VZq,A =0 as
e —0.

Also,if1/p > 1/q+a/(n-1), then forall f € IPv*1 x ... x [Pm*m we have || Maof Il wia: =
0ase — oo.

Consequently, we geta/n <1/p-1/qg <a/(n-1).

This completes the proof of Theorem 1.2. d

4 Some applications

As an application, we first obtain a result parallel to Theorem A for the operator Mg,
and Zg .

Corollary 4.1 Let«, 2, s,p]; Aj, p, and ) be as in Theorem 1.1,1/q = 1/p—a/n, ju/q = Alp.
(i) Ifp>s and % =20 q—;, then there exists a constant C < 00 such that

m
|Maof llzammny < CH M"ﬁﬂ‘i(ﬂ%'

Jj=1

(i) Ifp=sand A3 7, ﬁ = Z]ml n , then there exists a constant C < 00 such that

m
IMauf aann = C | WM 27 ey
j=1

Moreover, similar estimates hold for L.

Proof The proof follows from similar steps in Corollary 3.1, [17], here we omit the proof.
O
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As another application, we obtain the Olsen inequality which is a multi-version of the
results considered by Olsen in [18] in the study of the Schrédinger equation with perturbed
potentials W on R”. As a consequence of Theorem 1.1 and the Holder inequality, we have
the following.

Corollary 4.2 Let o, 2, s, pj, Aj, p, and ) be as in Theorem 1.1,1/p —1/q = a/(n — 1) and
let W € LU=P/ek We get the following.

. . .
(i) Ifp>s and % = Z;Zl q—’,, then there exists a constant C < 0o such that
'

||W'M9,qf||[,mk(Rn) =< C||W”L(n—k)/a,k(w)|[fl||1}71v11(1Rn) X X ”_fm”[}’m.)»m(]Rn)'

ii =g mo1_m ;
(i) Ifp=sand 1} 7, b = 21 b then there exists a constant C < oo such that

||W'Mﬂ,o¢f||WLp'A(Rﬂ) = C”W”WL(nfk)/u,A(Rn)”fl||Ln1v\1 ®ny X oo X |Lfm”[}9m)~m (R7)*
Moreover, similar estimates hold for L.

Remark 4.1 We point out that similar results in Corollary in 4.1 and 4.2 hold on modified
Morrey spaces; we do not list them here.
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