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Abstract
Let {Xn;n ≥ 1} be a sequence of independent and identically distributed
U[0, 1]-distributed random variables. In this paper, we are concerned with the almost
sure local central limit theorem of ‖Fn‖ and sup0≤t≤1 Fn(t), and some corresponding
results are derived.
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1 Introduction
Throughout this paper, let {Xn; n ≥ } be a sequence of independent and identically dis-
tributed U[, ]-distributed random variables and put Sn =

∑n
k= Xk . Define the uniform

empirical process Fn(t) = n– 

∑n

i=(I{Xi≤t} – t),  ≤ t ≤ , ‖Fn‖ = sup≤t≤ |Fn(t)|. It is well
known that there has been recently a lively interest in probability theory concerning al-
most sure versions of classical limit theorems. The prototype of such a theorem is the
almost sure central limit theorem (ASCLT), which has the simplest form as follows:

lim
n→∞


log n

n∑

k=


k

I
{

Sk√
k

≤ x
}

= �(x) a.s. (.)

for all x ∈ R; here and in the sequel, I{A} is the indicator function of the event A and
�(x) stands for the standard normal distribution function. This result was firstly proved
independently by Brosamler [] and Schatte [] under a stronger moment condition. Since
then, this type of almost sure version, which mainly dealt with logarithmic average limit
theorems, has been extended in various directions.

Especially, Fahrner and Stadtmüller [] and Cheng et al. [] extended this almost sure
convergence for partial sums to the case of maxima of independent and identically dis-
tributed (i.i.d.) random variables. Under some suitable conditions, they proved the fol-
lowing:

lim
n→∞


log n

n∑

k=


k

I
{

Mk – bk

ak
≤ x

}

= G(x) a.s. (.)
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for all x ∈ R, where ak >  and bk ∈ R satisfy

lim
k→∞

P
(

Mk – bk

ak
≤ x

)

= G(x)

for any continuity point x of G.
For Gaussian sequences, Csáki and Gonchigdanzan [] presented the validity of (.)

for maxima of stationary Gaussian sequences under some mild conditions. Furthermore,
Chen and Lin [] extended it to non-stationary Gaussian sequences. As for some other
dependent random variables, Peligrad and Shao [] and Dudziński [] derived some cor-
responding results about an almost sure central limit theorem. The almost sure central
limit theorem in a joint version for log average in the case of independent and identically
distributed random variables was obtained by Peng et al. [], a joint version of almost sure
limit theorem for log average of maxima and partial sums in the case of stationary Gaus-
sian random variables was derived by Dudziński []. In this direction, an extension of
almost sure central limit theory was studied by Hörmann [].

Moreover, Wu [–] explored the almost sure limit theorem for product of partial
sums, stable distribution and product of sums of partial sums, respectively. Zang [] de-
rived the almost sure limit theorem of random fields for more general weights than the
usual logarithmic average. Recently, Zhang [] established the almost sure central limit
theorem for uniform empirical processes with logarithmic average. And then, under some
regular conditions, a general result of almost sure central limit theorem for uniform em-
pirical processes with general weights was derived by Zang [] with the methodology of
Hörmann [].

On the other hand, Chung and Erdős [] proved the following result.

Theorem A Let X, X, . . . be a sequence of i.i.d. integer valued random variables with
EX = . Assume that every integer a is a possible value of Sk for all sufficiently large k.
Then

lim
n→∞


log Tn

n∑

k=

P(Sk = a)
Tk

=  a.s.,

where

Tn =
n∑

k=

P(Sk = a).

Further, if the condition EX
 = σ  < ∞ is satisfied, we have Tk ∼

√
k

σ
√

π
, therefore

lim
n→∞


log n

n∑

k=

P(Sk = )√
k

=
√


σ
√

π
a.s.

This result may be called almost sure local central limit theorem (ASLCLT), while (.)
may be called almost sure global central limit theorem.
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A more general version of this theorem was proved by Csáki et al. [] with finite third
moment, they derived

lim
n→∞


log n

n∑

k=

I{ak ≤ Sk < bk}
kP{ak ≤ Sk < bk} =  a.s.

if

n∑

k=

log k
k 

 P{ak ≤ Sk < bk}
= O(log n) as n → ∞,

where {an, n ≥ } and {bn, n ≥ } are both real sequences such that an ≤  ≤ bn for n ≥ .
In this paper, under some mild conditions, we are concerned with the almost sure local

central limit theorems of ‖Fn‖ and sup≤t≤ Fn(t), which is inspired by the above result,
especially Csáki et al. [] and the references therein concerning the almost sure local
central limit theorem.

The rest of this paper is organized as follows. In Section , a generalization of almost
sure local central limit theorem of uniform empirical process is formulated. In Section ,
proofs of our main results are established. In Section , the paper is concluded and some
statistical applications for future research are outlined.

2 Main results
In this section, let the real-valued sequences {un, n ≥ }, {vn, n ≥ } be such that un > vn,
and satisfy

∑

≤k<l≤n
pk pl 
=


lpkpl

= O(log n), (.)

where pk = P{vk < ‖Fk‖ ≤ uk}. Set

αk =

{


pk
I{vk < ‖Fk‖ ≤ uk}, pk 
= ,

, pk = 

and

βk =

{


qk
I{vk < sup≤t≤ Fk(t) ≤ uk}, qk 
= ,

, qk = ,

where qk = P{vk < sup≤t≤ Fk(t) ≤ uk} satisfies the corresponding condition (.).

Theorem . Let {Xn; n ≥ } be a sequence of independent and identically distributed
(i.i.d.) random variables. Then

lim
n→∞


log n

n∑

k=

αk

k
=  a.s. (.)
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Theorem . Let {Xn; n ≥ } be a sequence of independent and identically distributed
(i.i.d.) random variables. Then

lim
n→∞


log n

n∑

k=

βk

k
=  a.s. (.)

Remark . We believe that condition (.) can be weakened through more complicated
calculating procedures, so we will study it in the future work.

3 The proofs of the main results
In this section, we shall give some auxiliary lemmas which will be used to prove our main
result. The first lemma comes from Gonchigdanzan [].

Lemma . Assume that ξ, ξ, . . . are random variables such that Eξi =  for k = , , . . . .
Then

lim
n→∞


log n

E

( n∑

k=

ξk

k

)

= .

Furthermore, if ξk ≥  for k ≥  and

Var

( n∑

k=

ξk

k

)

� (log n)–ε

for some ε >  and large enough n, then

lim
n→∞


log n

n∑

k=

αk

k
=  a.s.

Here and in the sequel, an � bn denotes lim supn→∞ |an/bn| < ∞.

Lemma . If X, X, . . . are i.i.d. random variables with common distributed function F .
Denote Dn = supx | 

n
∑n

i= I{Xi ≤ x} – F(x)|, then there exist positive constants c and c such
that, for all n, all F , and all positive r, one has

 – P
(
Dn < r/n/) < ce–cr .

Proof This lemma is due to Kiefer and Wolfowitz []. �

Now, we give the proofs of our main results.

Proof of Theorem . Denote

Fk,l(t) = l– 


l∑

i=k+

(I{Xi≤t} – t),  ≤ t ≤ ,

‖Fk,l‖ = sup
≤t≤

∣
∣Fk,l(t)

∣
∣.
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Firstly, by Lemma ., it only needs to verify

Var

( n∑

k=

αk

k

)

� (log n)–ε .

Note that

Var

( n∑

k=

αk

k

)

=
n∑

k=

Var(αk)
k + 

∑

≤k<l≤n

Cov(αk ,αl)
kl

.

Furthermore, observe that if pk = , then

Var(αk) = ;

if pk 
= , then

Var(αk) =
 – pk

pk
≤ 

pk
,

and consequently

n∑

k=

Var(αk)
k ≤

n∑

k=


kpk

≤
∑

≤k<l≤n


lpkpl

� log n;

if pkpl = , then

Cov(αk ,αl) = ;

if pkpl 
= , we have

Cov
(
I
{

vk < ‖Fk‖ ≤ uk
}

, I
{

vl < ‖Fl‖ ≤ ul
})

≤ ∣
∣Cov

(
I
{‖Fk‖ ≤ uk

}
, I

{‖Fl‖ ≤ ul
})∣

∣

+
∣
∣Cov

(
I
{‖Fk‖ ≤ uk

}
, I

{‖Fl‖ ≤ vl
})∣

∣

+
∣
∣Cov

(
I
{‖Fk‖ ≤ vk

}
, I

{‖Fl‖ ≤ ul
})∣

∣

+
∣
∣Cov

(
I
{‖Fk‖ ≤ vk

}
, I

{‖Fl‖ ≤ vl
})∣

∣

=: A + A + A + A.

For A, k ≤ l, it follows that

A =
∣
∣Cov

(
I
{‖Fk‖ ≤ uk

}
, I

{‖Fl‖ ≤ ul
})∣

∣

≤ ∣
∣Cov

(
I
{‖Fk‖ ≤ uk

}
, I

{‖Fl‖ ≤ ul
}

– I
{‖Fk,l‖ ≤ ul

})∣
∣

+
∣
∣Cov

(
I
{‖Fk‖ ≤ uk

}
, I

{‖Fk,l‖ ≤ ul
})∣

∣

� E
∣
∣I

{‖Fl‖ ≤ ul
}

– I
{‖Fk,l‖ ≤ ul

}∣
∣
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+
∣
∣Cov

(
I
{‖Fk‖ ≤ uk

}
, I

{‖Fk,l‖ ≤ ul
})∣

∣

=: A + A.

Making use of Lemma . and Fubini’s theorem, we have

A � E
∣
∣‖Fl‖ – ‖Fk,l‖

∣
∣

� E
∣
∣
∣ sup
≤t≤

∣
∣Fl(t)

∣
∣ – sup

≤t≤

∣
∣Fk,l(t)

∣
∣
∣
∣
∣

� E sup
≤t≤

∣
∣
∣
∣Fl(t)

∣
∣ –

∣
∣Fk,l(t)

∣
∣
∣
∣

� E sup
≤t≤

∣
∣Fl(t) – Fk,l(t)

∣
∣

= E sup
≤t≤

l– 


∣
∣
∣
∣
∣

k∑

i=

(I{Xi≤t} – t)

∣
∣
∣
∣
∣

=
(

k
l

) 


E sup
≤t≤

k– 


∣
∣
∣
∣
∣

k∑

i=

(I{Xi≤t} – t)

∣
∣
∣
∣
∣

=
(

k
l

) 

∫ ∞


P

{

sup
≤t≤

k– 


∣
∣
∣
∣
∣

k∑

i=

(I{Xi≤t} – t)

∣
∣
∣
∣
∣

> x

}

dx

�
(

k
l

) 

∫ ∞


e–cx

dx

�
(

k
l

) 


.

In virtue of the independence of {Xn; n ≥ }, we have A = . Then

A �
(

k
l

) 


.

Furthermore, by similar reasoning, we have

Ai � k
l

, i = , , ,

and therefore,

A + A + A � k
l

.

Thus, according to our assumptions, we can derive

∑

≤k<l≤n

Cov(I{vk < Rk ≤ uk}, I{vl < Rl ≤ ul})
klpkpl

≤
∑

≤k<l≤n

A + A + A + A

klpkpl



Zhu Journal of Inequalities and Applications  (2015) 2015:103 Page 7 of 8

�
∑

≤k<l≤n


klpkpl

(
k
l

) 


=
∑

≤k<l≤n

√
kl/pkpl

= O(log n).

Hence, Var(
∑n

k=
αk
k ) � (log n). Further, we complete the proof of Theorem .. �

Proof of Theorem . The proof is similar to the above procedures, so we omit it here.
�

4 Concluding remarks
In this paper, we are concerned with the limit theory of uniform empirical process. A gen-
eralization of almost sure local central limit theorem of uniform empirical process has
been established.

Some statistical applications related to our main result deserve further investigation.
By virtue of being a new approach of testing based on ASCLT, Thangavelu [] investi-
gated hypothesis testing via the estimation of quantiles of the distribution of the concerned
statistics. Based on the theorem on ASCLT for rank statistics, he also proposed a small-
sample approximation for the two-sample nonparametric Behrens-Fisher problem. These
statistical applications concerning our work will be discussed in the future work.
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