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1 Introduction
Assuming that f (x), g(y) ≥ , f , g ∈ L(R+) = {f ;‖f ‖ = (

∫ ∞
 |f (x)| dx) 

 < ∞}, ‖f ‖,‖g‖ >
, we have the following well-known Hilbert integral inequality and the equivalent form
(cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dx dy < π‖f ‖‖g‖, ()

[∫ ∞



(∫ ∞



f (x)
x + y

dx
)

dy
] 


< π‖f ‖, ()

where the constant factor π is the best possible.
In , by introducing a pair of conjugate exponents (p, q) ( 

p + 
q = ), Hardy [] gave

some extensions of () and () as follows: For p > , f (x), g(y) ≥ , f ∈ Lp(R+), g ∈ Lq(R+),
‖f ‖p,‖g‖q > , we have the following Hardy-Hilbert integral inequality and the equivalent
form:

∫ ∞



∫ ∞



f (x)g(y)
x + y

dx dy <
π

sin(π/p)
‖f ‖p‖g‖q, ()

[∫ ∞



(∫ ∞



f (x)
x + y

dx
)p

dy
] 

p
<

π

sin(π/p)
‖f ‖p, ()

where the constant factor π
sin(π/p) is the best possible. For p = q = , inequalities () and ()

reduce respectively to () and ().
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Definition  If λ ∈ R = (–∞,∞), R+ = (,∞), kλ(x, y) is a measurable function in R
+ =

R+ × R+, satisfying for any t, x, y ∈ R+, kλ(tx, ty) = t–λkλ(x, y), then we call kλ(x, y) homoge-
neous function of degree –λ.

In , by using a general non-negative homogeneous function of degree – as
k(x, y), Hardy et al. [] gave some extensions of () and () as follows: For p > , kp =
∫ ∞

 k(u, )u
–
p du ∈ R+, f (x), g(y) ≥ , f ∈ Lp(R+), g ∈ Lq(R+), ‖f ‖p,‖g‖q > , we have the

following Hardy-Hilbert-type integral inequality and the equivalent form:

∫ ∞



∫ ∞


k(x, y)f (x)g(y) dx dy < kp‖f ‖p‖g‖q, ()

[∫ ∞



(∫ ∞


k(x, y)f (x) dx

)p

dy
] 

p
< kp‖f ‖p, ()

where the constant factor kp is the best possible. Some applications of () and () are pro-
vided in [].

In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an extension
of () with the homogeneous kernel of degree –λ as 

(x+y)λ . In , by using a general non-
negative homogeneous function of degree –λ as kλ(x, y) and adding another pair of con-
jugate exponents (r, s) ( 

r + 
s = ), Yang [] gave some extensions of () and () as follows:

For p, r > , �(x) = xp(– λ
r )–, �(y) = yq(– λ

s )– (x, y ∈ R+), kλ(r) =
∫ ∞

 kλ(u, )u λ
r – du ∈ R+,

f (x), g(y) ≥ ,

f ∈ Lp,�(R+) =
{

f ;‖f ‖p,� =
(∫ ∞


�(x)

∣
∣f (x)

∣
∣p dx

) 
p

< ∞
}

,

g ∈ Lq,� (R+), ‖f ‖p,�,‖g‖q,� > , we have the following Yang-Hilbert-type integral inequal-
ity and the equivalent form:

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y) dx dy < kλ(r)‖f ‖p,�‖g‖q,� , ()

[∫ ∞


y

pλ
s –

(∫ ∞


kλ(x, y)f (x) dx

)p

dy
] 

p
< kλ(r)‖f ‖p,�, ()

where the constant factor kλ(r) is the best possible.

Remark  (i) When λ = , r = q, s = p, () and () reduce respectively to () and (). (ii) By
(), setting y = 

z , we have the following Yang-Hilbert-type inequality with the best possible
constant factor and a non-homogeneous kernel:

[∫ ∞


z

pλ
r –

(∫ ∞


kλ(xz, )f (x) dx

)p

dz
] 

p
< kλ(r)‖f ‖p,�. ()

Using (), we may define Hilbert’s integral operator T : L(R+) → L(R+) as follows (cf.
[]): For any f ∈ L(R+), there exists Tf ∈ L(R+) satisfying

Tf (y) =
∫ ∞



f (x)
x + y

dx (y ∈ R+).
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Then by () we have ‖Tf ‖ ≤ π‖f ‖, and T is a bounded linear operator satisfying
‖T‖ ≤ π . Since the constant factor in () is the best possible, we have ‖T‖ = π .

About the discrete forms of () and (), in , Wilhelm [] gave an operator expres-
sion. In , by using the operator theory, Zhang [] gave some improvements of () and
the discrete form. In  to , [] considered a new Hilbert-type operator and its
applications, and [] and [] gave some multiple Hilbert-type operator expressions.

By using (), we can define the Yang-Hilbert-type integral operator T : Lp,�(R+) →
Lp,�(R+) as follows (cf. []): For any f ∈ Lp,�(R+), there exists Tf ∈ Lp,�(R+) satisfying

Tf (y) = yλ–
∫ ∞



f (x)
x + y

dx (y ∈ R+).

Then by () we have ‖Tf ‖p,� ≤ kλ(r)‖f ‖p,�, and T is a bounded linear operator satisfying
‖T‖ ≤ kλ(r). Since the constant factor in () is the best possible, we have ‖T‖ = kλ(r).

About the composition of two Hilbert-type operators, the main objective is to build the
expression ‖TT‖ = ‖T‖ · ‖T‖. Recently, [] published a composition of two discrete
Hilbert-Hardy-type operators with particular kernels. Adiyasuren et al. [] published a
composition of two half-discrete Hilbert-Hardy-type operators with some particular ker-
nels, and [] and [] published some composition of two Hilbert-Hardy-type integral
operators with particular kernels. These works are hard and interesting.

In this paper, applying the way of real and functional analysis and estimating the weight
functions, we build some lemmas and deduce some Hilbert-type and Hilbert-Hardy-type
integral inequalities with the best possible constant factors. The equivalent forms, the
reverses and the operator expressions are all considered. The composition formulas of
two Hilbert-Hardy-type integral operators and some examples are given, which are some
extensions of the results of [] and [].

2 Some lemmas
In the following, we agree on that p >  (p �= ), 

p + 
q = .

Lemma  (cf. [], Lemma ..) Suppose that λ ∈ A = (, c) ( < c ≤ ∞), k(s)
λ (x, y) are non-

negative homogeneous functions of degree –λ in R
+,

k(s)
(

λ



)

:=
∫ ∞


k(s)

λ (u, )u
λ
 – du (s = , , ), ()

there exists a constant δ ∈ (, λ
 ) such that k(s)( λ

 ± δ) ∈ R+. Then, for any δ ∈ [, δ), we
have k(s)( λ

 ± δ) ∈ R+ and

lim
δ→+

k(s)
(

λ


± δ

)

= k(s)
(

λ



)

(s = , , ).

With the assumptions of Lemma , we set the following conditions.

Condition (i) For λ ∈ A, there exist constants δ ∈ (, δ) and L >  such that

k(s)
λ (u, )u

λ
 +δ ≤ L

(
u ∈ (,∞); s = , 

)
. ()
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Condition (ii) For λ ∈ (, ) ∩ A, there exists a constant L >  such that

k(s)
λ (u, )(u – )λ ≤ L

(
u ∈ (,∞); s = , 

)
. ()

Condition (iii) For λ ∈ (, ) ∩ A, there exist constants a ∈ (,λ) and L >  such that

k()
λ (u, )ua ≤ L

(
u ∈ (,∞)

)
. ()

Example  For λ ∈ A = (,∞), s = , , , the functions

k(s)
λ (u, ) =


(u + )λ

,


uλ + 
,

ln u
uλ – 

,
| ln u|β–

(max{u, })λ (β ≥ )

satisfy Conditions (i) and (iii). In fact, for b = λ
 + δ or b = a ∈ (,λ), we find

lim
u→+

k(s)
λ (u, )ub = lim

u→∞ k(s)
λ (u, )ub = .

In view of the continuity, k(s)
λ (u, )ub (s = , , ) are bounded in (,∞) and then satisfy ()

and ().

It is evident that for λ ∈ A = (, ), the functions

k(s)
λ (u, ) =


(u – )λ

(
u ∈ (,∞); s = , 

)

satisfy Condition (ii).

Definition  With the assumptions of Lemma  and Condition (i), we define the following
two sequences of real functions:

F̃k(y) :=

{
yλ– ∫ 

 k()
λ (x, y)x

λ
 + 

pk – dx, y ∈ (, ),
, y ∈ [,∞),

G̃k(x) :=

{
xλ– ∫ ∞

 k()
λ (x, y)y

λ
 – 

qk – dy, x ∈ (,∞),
, x ∈ (, ],

()

where k > max{ 
|q|δ

, 
pδ

} (k ∈ N = {, , . . .}).

Setting u = x/y ( < y < ), we find

F̃k(y) = y
λ
 + 

pk –
∫ 

y


k()

λ (u, )u
λ
 + 

pk – du

= y
λ
 + 

pk –
(∫ ∞


k()

λ (u, )u
λ
 + 

pk – du –
∫ ∞


y

k()
λ (u, )u

λ
 + 

pk – du
)

= y
λ
 + 

pk –k()
(

λ


+


pk

)

– F(y), ()

F(y) := y
λ
 + 

pk –
∫ ∞


y

k()
λ (u, )u

λ
 + 

pk – du
(
y ∈ (, )

)
.
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(a) If k()
λ (u, ) satisfies Condition (i) (for λ ∈ A), then by () we have

 ≤ F(y) ≤ Ly
λ
 + 

pk –
∫ ∞


y

u– λ
 –δ u

λ
 + 

pk – du =
Ly λ

 +δ–

δ – 
pk

(
y ∈ (, )

)
.

(b) If k()
λ (u, ) satisfies Condition (ii) (for λ ∈ (, ) ∩ A), then by () we have

 ≤ F(y) ≤ Ly
λ
 + 

pk –
∫ ∞


y

u
λ
 + 

pk –

(u – )λ
du v=/(yu)= Lyλ–

∫ 



v
λ
 – 

pk –

( – yv)λ
dv

≤ Lyλ–

( – y)λ

∫ 


v

λ
 – 

pk – dv =
L

λ
 – 

pk

yλ–

( – y)λ
(
y ∈ (, )

)
.

Still setting u = x/y (x > ), we obtain

G̃k(x) = x
λ
 – 

qk –
∫ x


k()

λ (u, )u
λ
 + 

qk – du

= x
λ
 – 

qk –
(∫ ∞


k()

λ (u, )u
λ
 + 

qk – du –
∫ ∞

x
k()

λ (u, )u
λ
 + 

qk – du
)

= x
λ
 – 

qk –k()
(

λ


+


qk

)

– G(x), ()

G(x) := x
λ
 – 

qk –
∫ ∞

x
k()

λ (u, )u
λ
 + 

qk – du
(
x ∈ (,∞)

)
.

(c) If k()
λ (u, ) satisfies Condition (i) (for λ ∈ A), then by () we have

 ≤ G(x) ≤ Lx
λ
 – 

qk –
∫ ∞

x
u– λ

 –δ u
λ
 + 

qk – du =
Lx λ

 –δ–

δ – 
qk

(
x ∈ (,∞)

)
.

(d) If k()
λ (u, ) satisfies Condition (ii) (for λ ∈ (, ) ∩ A), then by () we have

 ≤ G(x) ≤ Lx
λ
 – 

qk –
∫ ∞

x

u
λ
 + 

qk –

(u – )λ
du v=x/u= Lxλ–

∫ 



v
λ
 – 

qk –

(x – v)λ
dv

≤ Lxλ–

(x – )λ

∫ 


v

λ
 – 

qk – dv =
Lxλ–

( λ
 – 

qk )(x – )λ
(
x ∈ (,∞)

)
.

Remark  In view of the results of (a)-(d), there exists a large constant L >  such that
(a) F(y) ≤ Ly λ

 +δ– (y ∈ (, ); λ ∈ A);
(b) F(y) ≤ L yλ–

(–y)λ (y ∈ (, ); λ ∈ (, ) ∩ A);

(c) G(x) ≤ Lx λ
 –δ– (x ∈ (,∞); λ ∈ A);

(d) G(x) ≤ L xλ–

(x–)λ (x ∈ (,∞); λ ∈ (, ) ∩ A).

Lemma  With the assumptions of Lemma , () k()
λ (u, ) (k()

λ (u, )) satisfies Condition (i)
or Condition (ii); () if k(s)

λ (u, ) (s = , ) only satisfy Condition (i), then λ ∈ A; otherwise,
λ ∈ (, ) ∩ A. Then we have

L̃k :=

k

∫ ∞



∫ ∞


k()

λ (xy, )̃Fk(y)G̃k(x) dy dx ≥
∏

i=

k(i)
λ

(
λ



)

+ o() (k → ∞). ()
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Proof In view of () and (), we have

L̃k =

k

∫ ∞



∫ 


k()

λ (xy, )
[

y
λ
 + 

pk –k()
λ

(
λ


+


pk

)

– F(y)
]

×
[

x
λ
 – 

qk –k()
λ

(
λ


+


qk

)

– G(x)
]

dy dx = I – I – I + I, ()

where we define

I :=

k

k()
λ

(
λ


+


pk

)

k()
λ

(
λ


+


qk

)

×
∫ ∞



(∫ 


k()

λ (xy, )y
λ
 + 

pk – dy
)

x
λ
 – 

qk – dx,

I :=

k

k()
λ

(
λ


+


qk

)∫ ∞



(∫ 


k()

λ (xy, )F(y) dy
)

x
λ
 – 

qk – dx,

I :=

k

k()
λ

(
λ


+


pk

)∫ ∞



(∫ 


k()

λ (xy, )y
λ
 + 

pk – dy
)

G(x) dx,

I :=

k

∫ ∞



(∫ 


k()

λ (xy, )F(y) dy
)

G(x) dx.

It is evident that

I – I – I ≤ L̃k ≤ I + I. ()

By Fubini’s theorem, we obtain that (cf. [])

∫ ∞



(∫ 


k()

λ (xy, )y
λ
 + 

pk – dy
)

x
λ
 – 

qk – dx

u=xy=
∫ ∞



(∫ x


k()

λ (u, )u
λ
 + 

pk – du
)

x– 
k – dx

=
∫ ∞



(∫ 


k()

λ (u, )u
λ
 + 

pk – du
)

x– 
k – dx

+
∫ ∞



(∫ x


k()

λ (u, )u
λ
 + 

pk – du
)

x– 
k – dx

= k
∫ 


k()

λ (u, )u
λ
 + 

pk – du

+
∫ ∞



(∫ ∞

u
x– 

k – dx
)

k()
λ (u, )u

λ
 + 

pk – du

= k
(∫ 


k()

λ (u, )u
λ
 + 

pk – du +
∫ ∞


k()

λ (u, )u
λ
 – 

qk – du
)

.

Since {k()
λ (u, )u

λ
 + 

pk –}∞k= (u ∈ (, )) is increasing, by Levi’s theorem (cf. []), it follows
that

∫ 


k()

λ (u, )u
λ
 + 

pk – du →
∫ 


k()

λ (u, )u
λ
 – du (k → ∞).
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Since k()
λ (u, )u

λ
 – 

qk – ≤ k()
λ (u, )uμ+δ– (u ∈ (,∞)) and

 ≤
∫ ∞


k()

λ (u, )u
λ
 +δ– du ≤ k()

(
λ


+ δ

)

< ∞,

then by the Lebesgue convergence control theorem (cf. []), we have

∫ ∞


k()

λ (u, )u
λ
 – 

qk – du →
∫ ∞


k()

λ (u, )u
λ
 – du (k → ∞).

Hence, by Lemma , we find, for k → ∞,

I = k()
(

λ


+


pk

)

k()
(

λ


+


qk

)

×
(∫ 


k()

λ (u, )u
λ
 + 

pk – du +
∫ ∞


k()

λ (u, )u
λ
 – 

qk – du
)

→
∏

s=

k(s)
(

λ



)

. ()

() We estimate I.
(a) If k()

λ (u, ) satisfies Condition (i) for λ ∈ A, then by Remark (a) we have

 ≤ J :=
∫ ∞



(∫ 


k()

λ (xy, )F(y) dy
)

x
λ
 – 

qk – dx

≤ L
∫ ∞



(∫ ∞


k()

λ (xy, )y
λ
 +δ– dy

)

x
λ
 – 

qk – dx

u=xy= L
∫ ∞



(∫ ∞


k()

λ (u, )u
λ
 +δ– du

)

x–δ– 
qk – dx

=
L · k()

λ ( λ
 + δ)

δ + 
qk

< ∞.

(b) If k()
λ (u, ) satisfies Condition (ii) for λ ∈ (, ) ∩ A, then by Remark (b) we have

 ≤ J ≤ L
∫ 



(∫ ∞


k()

λ (xy, )x
λ
 – 

qk – dx
)

yλ–

( – y)λ
dy

u=xy= L
∫ 



(∫ ∞


k()

λ (u, )u
λ
 – 

qk – du
)

y
λ
 + 

qk –

( – y)λ
dy

= L · k()
(

λ


–


qk

)

B
(

 – λ,
λ


+


qk

)

< ∞.

Therefore, in view of (a) and (b), we have I →  (k → ∞).
() We estimate I.
(c) If k()

λ (u, ) satisfies Condition (i) for λ ∈ A, then by Remark (c) we have

 ≤ J :=
∫ ∞



(∫ 


k()

λ (xy, )y
λ
 + 

pk – dy
)

G(x) dx

≤ L
∫ ∞



(∫ ∞


k()

λ (xy, )y
λ
 + 

pk – dy
)

x
λ
 –δ– dx
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u=xy= L
∫ ∞



(∫ ∞


k()

λ (u, )u
λ
 + 

pk – du
)

x–δ– 
pk – dx

=
L · k()( λ

 + 
pk )

δ + 
pk

< ∞.

(d) If k()
λ (u, ) satisfies Condition (ii) for λ ∈ (, ) ∩ A, then by Remark (d), we have

 ≤ J ≤ L
∫ ∞



(∫ ∞


k()

λ (xy, )y
λ
 + 

pk – dy
)

xλ–

(x – )λ
dx

u=xy= L
∫ ∞



(∫ ∞


k()

λ (u, )u
λ
 + 

pk – du
)

x
λ
 – 

pk –

(x – )λ
dx

= L · k()
λ

(
λ


+


pk

)

B
(

 – λ,
λ


+


pk

)

< ∞.

Therefore, in view of (c) and (d), we have I →  (k → ∞).
By () and the above results, we have (). �

Lemma  Suppose that () λ ∈ A = (, c) ( < c ≤ ∞), k(s)
λ (x, y) are non-negative homoge-

neous functions of degree –λ in R
+,

k(s)
(

λ



)

=
∫ ∞


k(s)

λ (u, )u
λ
 – du (s = , , ),

there exists a constant δ ∈ (, λ
 ) such that k(s)( λ

 ±δ) ∈ R+; () k()
λ (u, ) (k()

λ (u, )) satisfies
Condition (i) or Condition (ii); () if both k()

λ (u, ) and k()
λ (u, ) satisfy Condition (ii), then

k()
λ (u, ) satisfies Condition (iii); () if k(s)

λ (u, ) (s = , ) only satisfy Condition (i), then λ ∈
A; otherwise, λ ∈ (, ) ∩ A. Then we have the reverse of (), namely

L̃k =

k

∫ ∞



∫ ∞


k()

λ (xy, )̃Fk(y)G̃k(x) dy dx

=
∏

s=

k(s)
(

λ



)

+ o() (k → ∞). ()

Proof We have four cases to show that in any case, I →  (k → ∞).
Case (i). λ ∈ A, F(y) ≤ Ly λ

 +δ– (y ∈ (, )), G(x) ≤ Lx λ
 –δ– (x ∈ (,∞)). We have

J :=
∫ ∞



(∫ 


k()

λ (xy, )F(y) dy
)

G(x) dx

≤ L
∫ ∞



(∫ ∞


k()

λ (xy, )y
λ
 +δ– dy

)

x
λ
 –δ– dx

u=xy= L
∫ ∞



(∫ ∞


k()

λ (u, )u
λ
 +δ– du

)

x–δ– dx

=
L

δ
k()

(
λ


+ δ

)

< ∞.
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Case (ii). λ ∈ (, ) ∩ A, F(y) ≤ Ly λ
 +δ– (y ∈ (, )), G(x) ≤ L xλ–

(x–)λ (x ∈ (,∞)). We have

J ≤ L
∫ ∞



(∫ ∞


k()

λ (xy, )y
λ
 +δ– dy

)
xλ–

(x – )λ
dx

u=xy= L
∫ ∞



(∫ ∞


k()

λ (u, )u
λ
 +δ– du

)
x λ

 –δ–

(x – )λ
dx

= Lk()
(

λ


+ δ

)

B
(

 – λ,
λ


+ δ

)

< ∞.

Case (iii). λ ∈ (, ) ∩ A, F(y) ≤ L yλ–

(–y)λ (y ∈ (, )), G(x) ≤ Lx λ
 –δ– (x ∈ (,∞)). We have

J ≤ L
∫ 



(∫ ∞


k()

λ (xy, )x
λ
 –δ– dx

)
yλ–

( – y)λ
dy

u=xy= L
∫ 



(∫ ∞


k()

λ (u, )u
λ
 –δ– du

)
y λ

 +δ–

( – y)λ
dy

= Lk()
(

λ


– δ

)

B
(

 – λ,
λ


+ δ

)

< ∞.

Case (iv). λ ∈ (, ) ∩ A, Fk(y) ≤ L yλ–

(–y)λ (y ∈ (, )), Gk(x) ≤ L xλ–

(x–)λ (x ∈ (,∞)), k()
λ (u, )

satisfies Condition (iii). We have

J ≤ LL

∫ ∞



(∫ 


(xy)–a yλ–

( – y)λ
dy

)
xλ–

(x – )λ
dx

= LL

∫ ∞



(∫ 



yλ–a–

( – y)λ
dy

)
xλ–a–

(x – )λ
dx

= LLB( – λ,λ – a)B( – λ, a) < ∞.

Hence, in any case, I = 
k J →  (k → ∞).

Therefore, by () and (), we have the reverse of (), and then () follows. �

3 Some equivalent Hilbert-type inequalities
We set functions ϕ(x) := xp(– λ

 )–, ψ(y) := yq(– λ
 )– (x, y ∈ R+) in the following theorem.

Theorem  Suppose that () λ ∈ A = (, c) ( < c ≤ ∞), k(s)
λ (x, y) are non-negative homoge-

neous functions of degree –λ in R
+,

k(s)
(

λ



)

=
∫ ∞


k(s)

λ (u, )u
λ
 – du (s = , , ),

there exists a constant δ ∈ (, λ
 ) such that k(s)( λ

 ± δ) ∈ R+; () k()
λ (u, ) (k()

λ (u, )) satis-
fies Condition (i) or Condition (ii); () if both k()

λ (u, ) and k()
λ (u, ) satisfy Condition (ii),

then k()
λ (u, ) satisfies Condition (iii); () if k(s)

λ (u, ) (s = , ) only satisfy Condition (i),
then λ ∈ A; otherwise, λ ∈ (, ) ∩ A. For p > , f (x), G(y) ≥ , f ∈ Lp,ϕ(R+), G ∈ Lq,ψ (R+),
‖f ‖p,ϕ ,‖G‖q,ψ > , and

Fλ(y) :=

{
yλ– ∫ ∞

 k()
λ (x, y)f (x) dx, y ∈ {y > ; f (y) > },

, y ∈ {y > ; f (y) = }, ()
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we have the following equivalent inequalities:

I :=
∫ ∞



∫ ∞


k()

λ (xy, )Fλ(y)G(x) dy dx <
∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ‖G‖q,ψ , ()

J :=
[∫ ∞


x

pλ
 –

(∫ ∞


k()

λ (xy, )Fλ(y) dy
)p

dx
] 

p
<

∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ , ()

where the constant factor
∏

s= k(s)( λ
 ) is the best possible.

In particular, for g(y) ≥ , g ∈ Lq,ψ (R+), ‖g‖q,ψ > , and

G(x) = Gλ(x) :=

{
xλ– ∫ ∞

 k()
λ (x, y)g(y) dy, x ∈ {x > ; g(x) > },

, x ∈ {x > ; g(x) = }, ()

we have the following inequality:

∫ ∞



∫ ∞


k()

λ (xy, )Fλ(y)Gλ(x) dy dx <
∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ‖g‖q,ψ , ()

where the constant factor
∏

s= k(s)( λ
 ) is still the best possible.

Proof By () and () (for r = s = ), we have

J =
[∫ ∞


y

pλ
 –

(∫ ∞


k()

λ (xy, )Fλ(x) dx
)p

dy
] 

p
≤ k()

(
λ



)

‖Fλ‖p,ϕ , ()

‖Fλ‖p,ϕ =
[∫ ∞


yp(– λ

 )–
(

yλ–
∫ ∞


k()

λ (x, y)f (x) dx
)p

dy
] 

p

=
[∫ ∞


y

pλ
 –

(∫ ∞


k()

λ (x, y)f (x) dx
)p

dy
] 

p

< k()
(

λ



)

‖f ‖p,ϕ . ()

Then we have ().
By Hölder’s inequality (cf. []), we have

I =
∫ ∞



(

x
λ
 – 

p

∫ ∞


k()

λ (xy, )Fλ(y) dy
)

(
x– λ

 + 
p G(x)

)
dx ≤ J‖G‖q,ψ . ()

Then by () we have ().
On the other hand, suppose that () is valid. Setting

G(x) := y
pλ
 –

(∫ ∞


k()

λ (xy, )Fλ(x) dx
)p–

(x ∈ R+),

we find ‖G‖q
q,ψ = Jp. If J = , then () is trivially valid; if J = ∞, then by () we have

‖Fλ‖p,ϕ = ∞, which contradicts the fact of (). Assuming that  < J < ∞, then by () we
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have

‖G‖q
q,ψ = Jp = I <

∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ‖G‖q,ψ ,

‖G‖q–
q,ψ = J <

∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ ,

then we have (), which is equivalent to ().
Since we find similar to () that

‖Gλ‖q,ψ =
[∫ ∞


xq(– λ

 )–
(

xλ–
∫ ∞


k()

λ (x, y)g(y) dy
)q

dx
] 

q

=
[∫ ∞


x

qλ
 –

(∫ ∞


k()

λ (x, y)g(y) dy
)q

dy
] 

q
< k()

(
λ



)

‖g‖q,� ,

setting G(x) = Gλ(x) in (), we have ().
For any k > max{ 

|q|δ
, 

pδ
} (k ∈ N), we set

f̃ (x) =

{
x

λ
 + 

pk –, x ∈ (, ),
, x ∈ [,∞),

g̃(y) =

{
, y ∈ (, ],
y

λ
 – 

qk –, y ∈ (,∞).

Then we have

F̃k(y) =

{
yλ– ∫ 

 k()
λ (x, y)x

λ
 + 

pk – dx, y ∈ (, ),
, y ∈ [,∞)

=

{
yλ– ∫ ∞

 k()
λ (x, y)̃f (x) dx, y ∈ {y > ; f̃ (y) > },

, y ∈ {y > ; f̃ (y) = },

G̃k(x) :=

{
xλ– ∫ ∞

 k()
λ (x, y)y

λ
 – 

qk – dy, x ∈ (,∞),
, x ∈ (, ]

=

{
xλ– ∫ ∞

 k()
λ (x, y)̃g(y) dy, x ∈ {x > ; g̃(x) > },

, x ∈ {x > ; g̃(x) = }.

If there exists a positive constant K ≤ ∏
s= k(s)( λ

 ) such that () is valid when replacing
∏

s= k(s)( λ
 ) by K , then, in particular, we have

L̃k =

k

∫ ∞



∫ ∞


k()

λ (xy, )̃Fk(y)G̃k(x) dy dx <

k

K ‖̃f ‖p,ϕ ‖̃g‖q,ψ = K .

By (), we find
∏

s= k(s)( λ
 ) + o() ≤ L̃k < K , and then

∏
s= k(s)( λ

 ) ≤ K (k → ∞). Hence
K =

∏
s= k(s)( λ

 ) is the best possible constant factor of ().
The constant factor in () is the best possible. Otherwise, setting G(x) = G̃λ(x), we

would reach a contradiction that the constant factor in () is not the best possible. By
the equivalency, if the constant factor in () is not the best possible, then by () we
would reach a contradiction that the constant factor in () is not the best possible. �
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Theorem  Suppose that () λ ∈ A = (, c) ( < c ≤ ∞), k(s)
λ (x, y) are non-negative homoge-

neous functions of degree –λ in R
+,

k(s)
(

λ



)

=
∫ ∞


k(s)

λ (u, )u
λ
 – du (s = , , ),

there exists a constant δ ∈ (, λ
 ) such that k(s)( λ

 ±δ) ∈ R+; () k()
λ (u, ) (k()

λ (u, )) satisfies
Condition (i) or Condition (ii); () if both k()

λ (u, ) and k()
λ (u, ) satisfy Condition (ii), then

k()
λ (u, ) satisfies Condition (iii); () if k(s)

λ (u, ) (s = , ) only satisfy Condition (i), then λ ∈
A; otherwise, λ ∈ (, ) ∩ A. For  < p < , f (x), G(y) ≥ , f ∈ Lp,ϕ(R+), G ∈ Lq,ψ (R+), ‖f ‖p,ϕ ,
‖G‖q,ψ > , and Fλ(y) being as (), we have the equivalent reverses of () and () with
the best possible constant factor

∏
s= k(s)( λ

 ).

In particular, for g(y) ≥ , g ∈ Lq,ψ (R+), ‖g‖q,ψ > , and G(x) = Gλ(x) as (), we have the
reverse of () with the best possible constant factor

∏
s= k(s)( λ

 ).

Proof By the reverse Hölder inequality (cf. []), we obtain the reverses of () and ().
Then we deduce the reverse of ().

By the reverse Hölder inequality, we have

I =
∫ ∞



(

x
λ
 – 

p

∫ ∞


k()

λ (xy, )Fλ(y) dy
)

(
x– λ

 + 
p G(x)

)
dx ≥ J‖G‖q,ψ . ()

Then by the reverse of (), we obtain the reverse of ().
On the other hand, suppose that the reverse of () is valid. Setting G(x) as (), we find

‖G‖q
q,ψ = Jp. If J = ∞, then the reverse of () is trivially valid; if J = , then by the reverse of

(), we have ‖Fλ‖p,ϕ = , which contradicts the reverse of (). Assuming that  < J < ∞,
by the reverse of (), we have

‖G‖q
q,ψ = Jp = I >

∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ‖G‖q,ψ ,

‖G‖q–
q,ψ = J >

∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ ,

and then the reverse of () follows, which is equivalent to the reverse of ().
For q < , since we find similar to the reverse of () that

‖Gλ‖q,ψ =
[∫ ∞


xq(– λ

 )–
(

xλ–
∫ ∞


k()

λ (x, y)g(y) dy
)q

dx
] 

q

=
[∫ ∞


x

qλ
 –

(∫ ∞


k()

λ (x, y)g(y) dy
)q

dy
] 

q
> k()

(
λ



)

‖g‖q,� ,

setting G(x) = Gλ(x) in the reverse of (), we have the reverse of ().
For any k > max{ 

|q|δ
, 

pδ
} (k ∈ N), we set f̃ (x), g̃(y) as Theorem . If there exists a positive

constant K ≥ ∏
s= k(s)( λ

 ) such that the reverse of () is valid when replacing
∏

s= k(s)( λ
 )
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by K , then, in particular, we have

L̃k =

k

∫ ∞



∫ ∞


k()

λ (xy, )̃Fk(y)G̃k(x) dy dx >

k

K ‖̃f ‖p,ϕ ‖̃g‖q,ψ = K .

By (), we find
∏

s= k(s)( λ
 ) + o() = L̃k > K , and then

∏
s= k(s)( λ

 ) ≥ K (k → ∞). Hence
K =

∏
s= k(s)( λ

 ) is the best possible constant factor of the reverse of ().
The constant factor in the reverse of () is the best possible. Otherwise, setting G(x) =

G̃λ(x), we would reach a contradiction that the constant factor in the reverse of () is not
the best possible. By the equivalency, if the constant factor in the reverse of () is not the
best possible, then by () we would reach a contradiction that the constant factor in the
reverse of () is not the best possible. �

4 Some corollaries on Hilbert-Hardy-type inequalities
In the following sections, if the best possible constant factor in a Hilbert-type inequality
is related to k(s)

j ( λ
 ) (s = , , , j = , , ) defined as follows, then we call this inequality

Hilbert-Hardy-type inequality. The related operator is called Hilbert-Hardy-type opera-
tor.

Assuming that k()
λ (xy, ) =  ( < 

x ≤ y), we find k()
λ (u, ) =  (u ≥ ), and

k()
(

λ



)

= k()


(
λ



)

:=
∫ 


k()

λ (u, )u
λ
 – du. ()

By Theorem  and Theorem , we have the following.

Corollary  With the assumptions of Theorem , for p > , k()
 ( λ

 ) ∈ R+, we have the follow-
ing equivalent inequalities:

∫ ∞


G(x)

∫ 
x


k()

λ (xy, )Fλ(y) dy dx < k()


(
λ



)

k()
(

λ



)

‖f ‖p,ϕ‖G‖q,ψ , ()

[∫ ∞


x

pλ
 –

(∫ 
x


k()

λ (xy, )Fλ(y) dy
)p

dx
] 

p
< k()



(
λ



)

k()
(

λ



)

‖f ‖p,ϕ , ()

where the constant factor k()
 ( λ

 )k()( λ
 ) is the best possible.

In particular, for g(y) ≥ , g ∈ Lq,ψ (R+), ‖g‖q,ψ > , G(x) = Gλ(x) as (), we have the
following inequality:

∫ ∞



∫ 
x


k()

λ (xy, )Fλ(y)Gλ(x) dy dx < k()


(
λ



) ∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ‖g‖q,ψ , ()

where the constant factor k()
 ( λ

 )
∏

s= k(s)( λ
 ) is still the best possible.

Corollary  With the assumptions of Theorem , for  < p < , k()
 ( λ

 ) ∈ R+, we have the
equivalent reverses of () and (), where the constant factor k()

 ( λ
 )k()( λ

 ) is the best pos-
sible.
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In particular, for g(y) ≥ , g ∈ Lq,ψ (R+), ‖g‖q,ψ > , G(x) = Gλ(x) as (), we have the
reverse of () with the best value k()

 ( λ
 )

∏
s= k(s)( λ

 ).
Assuming that k()

λ (xy, ) =  ( < y ≤ 
x ), then we find k()

λ (u, ) =  ( < u ≤ ), and

k()
(

λ



)

= k()


(
λ



)

:=
∫ ∞


k()

λ (u, )u
λ
 – du. ()

By Theorem  and Theorem , we have the following.

Corollary  With the assumptions of Theorem , for p > , k()
 ( λ

 ) ∈ R+, we have the fol-
lowing equivalent inequalities:

∫ ∞


G(x)

∫ ∞


x

k()
λ (xy, )Fλ(y) dy dx < k()



(
λ



)

k()
(

λ



)

‖f ‖p,ϕ‖G‖q,ψ , ()

[∫ ∞


x

pλ
 –

(∫ ∞


x

k()
λ (xy, )Fλ(y) dy

)p

dx
] 

p
< k()



(
λ



)

k()
(

λ



)

‖f ‖p,ϕ , ()

where the constant factor k()
 ( λ

 )k()( λ
 ) is the best possible.

In particular, for g(y) ≥ , g ∈ Lq,ψ (R+), ‖g‖q,ψ > , and G(x) = Gλ(x) as (), we have the
following inequality:

∫ ∞


Gλ(x)

∫ ∞


x

k()
λ (xy, )Fλ(y) dy dx < k()



(
λ



) ∏

s=

k(s)
(

λ



)

‖f ‖p,ϕ‖g‖q,ψ , ()

where the constant factor k()
 ( λ

 )
∏

s= k(s)( λ
 ) is still the best possible.

Corollary  With the assumptions of Theorem , if  < p < , k()
 ( λ

 ) ∈ R+, we have the
equivalent reverses of () and (), where the constant factor k()

 ( λ
 )k()( λ

 ) is the best pos-
sible.

In particular, for g(y) ≥ , g ∈ Lq,ψ (R+), ‖g‖q,ψ > , and G(x) = Gλ(x) as (), we have the
reverse of () with the best value k()

 ( λ
 )

∏
s= k(s)( λ

 ).

Remark  For x > , we set Ax, := (,∞), Ax, := (, 
x ), Ax, := ( 

x ,∞). By (), () and
(), putting k()

 ( λ
 ) := k()( λ

 ), for i = , , , we have the following Hilbert-Hardy-type in-
equalities:

[∫ ∞


x

pλ
 –

(∫

Ax,i

k()
λ (xy, )Fλ(y) dy

)p

dx
] 

p
< k()

i

(
λ



)

k()
(

λ



)

‖f ‖p,ϕ , ()

where the constant factor k()
i ( λ

 )k()( λ
 ) (i = , , ) is still the best possible.

For x > , we set some sets Bx, := (,∞), Bx, := (x,∞), Bx, := (, x). If k()
λ (x, y) =  (y ∈

R+\Bx,), then we find k()
λ (u, ) =  (u ≥ ), and

k()
(

λ



)

= k()


(
λ



)

:=
∫ 


k()

λ (u, )u
λ
 – du;
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if k()
λ (x, y) =  (y ∈ R+\Bx,), then we find k()

λ (u, ) =  ( < u ≤ ), and

k()
(

λ



)

= k()


(
λ



)

:=
∫ ∞


k()

λ (u, )u
λ
 – du.

Assuming that k()
 ( λ

 ) := k()( λ
 ), k()

i ( λ
 ), k()

j ( λ
 ) ∈ R+, for i, j = , , , setting

Fλ,j(y) :=

{
yλ– ∫

Bx,j
k()

λ (x, y)f (x) dx, y ∈ {y ∈ R+; f (y) > },
, y ∈ {y ∈ R+; f (y) = },

then it follows that Fλ,(y) = Fλ(y), and by () we have the following united expression of
Hilbert-Hardy-type inequalities:

[∫ ∞


x

pλ
 –

(∫

Ax,i

k()
λ (xy, )Fλ,j(y) dy

)p

dx
] 

p
< k()

i

(
λ



)

k()
j

(
λ



)

‖f ‖p,ϕ , ()

where the constant factor k()
i ( λ

 )k()
j ( λ

 ) (i, j = , , ) is the best possible.
In the same way, we still can find by () and () that

[∫ ∞


x

pλ
 –

(∫

Ax,i

k()
λ (xy, )Fλ,j(y) dy

)p

dx
] 

p
≤ k()

i

(
λ



)

‖Fλ,j‖p,ϕ , ()

‖Fλ,j‖p,ϕ < k()
j

(
λ



)

‖f ‖p,ϕ (i, j = , , ), ()

where the constant factors k()
i ( λ

 ) and k()
j ( λ

 ) are the best possible.

Example  (i) For k(s)
λ (x, y) = | ln x/y|β–

(max{x,y})λ (λ > ,β ≥ ; s = , , ), we find

k(s)


(
λ



)

=
∫ ∞


k(s)

λ (u, )u
λ
 – du =

∫ ∞



| ln u|β–

(max{u, })λ u
λ
 – du

= 
∫ 


(– ln u)β–u

λ
 – du

v=– ln u= 
∫ ∞


e– λ

 vvβ– dv = 
(


λ

)β


(β),

k(s)
i

(
λ



)

=
(


λ

)β


(β) (i = , ).

(ii) For k(s)
λ (x, y) = 

|x–y|λ ( < λ < ; s = , , ), we find

k(s)


(
λ



)

=
∫ ∞


k(s)

λ (u, )u
λ
 – du =

∫ ∞




|u – |λ u

λ
 – du

= 
∫ 




( – u)λ

u
λ
 – du = B

(

 – λ,
λ



)

,

k(s)
i

(
λ



)

= B
(

 – λ,
λ



)

(i = , ).
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5 A composition of two Hilbert-Hardy-type operators
For F ∈ Lp,ϕ(R+), we set hi(x) := xλ– ∫

Ax,i
k()

λ (xy, )F(y) dy (x ∈ R+; i = , , ). Then by ()
we have

‖hi‖p,ϕ ≤ k()
i

(
λ



)

‖F‖p,ϕ . ()

Definition  With the assumptions of Theorem , for any i = , , , k()
i ( λ

 ) ∈ R+, we define
a Hilbert-Hardy-type operator T (i)

 : Lp,ϕ(R+) → Lp,ϕ(R+) as follows: For any F ∈ Lp,ϕ(R+),
there exists a unified expression T (i)

 F = hi ∈ Lp,ϕ(R+) such that for any x ∈ R+, T (i)
 F(x) =

hi(x).

By (), we have ‖T (i)
 F‖p,ϕ ≤ k()

i ( λ
 )‖F‖p,ϕ . Hence, T (i)

 is a bounded linear operator with

∥
∥T (i)


∥
∥ := sup

F( �=θ )∈Lp,ϕ (R+)

‖T (i)
 F‖p,ϕ

‖F‖p,ϕ
≤ k()

i

(
λ



)

.

Since the constant factor in () is the best possible, we have ‖T (i)
 ‖ = k()

i ( λ
 ).

Definition  With the assumptions of Theorem , for any j = , , , k()
j ( λ

 ) ∈ R+, we define
a Hilbert-Hardy-type operator T (j)

 : Lp,ϕ(R+) → Lp,ϕ(R+) as follows: For any f ∈ Lp,ϕ(R+),
there exists a unified expression T (j)

 f = Fλ,j ∈ Lp,ϕ(R+) such that for any y ∈ R+, T (j)
 f (y) =

Fλ,j(y).

By (), we have ‖T (j)
 f ‖p,ϕ = ‖Fλ,j‖p,ϕ ≤ k()

j ( λ
 )‖f ‖p,ϕ . Hence, T (j)

 is a bounded linear
operator with

∥
∥T (j)


∥
∥ = sup

f ( �=θ )∈Lp,ϕ (R+)

‖T (j)
 f ‖p,ϕ

‖f ‖p,ϕ
≤ k()

j

(
λ



)

.

Since the constant in () is the best possible, we have ‖T (j)
 ‖ = k()

j ( λ
 ).

Definition  With the assumptions of Theorem , for any i, j ∈ {, , }, k()
i ( λ

 ), k()
j ( λ

 ) ∈
R+, we define a Hilbert-Hardy-type operator Ti,j : Lp,ϕ(R+) → Lp,ϕ(R+) as follows: For any
f ∈ Lp,ϕ(R+), there exists a unified expression Ti,jf = T (i)

 Fλ,j ∈ Lp,ϕ(R+) such that for any
x ∈ R+,

Ti,jf (x) = T (i)
 Fλ,j(x) = xλ–

∫

Ax,i

k()
λ (xy, )Fλ,j(y) dy.

It is evident that Ti,jf = T (i)
 Fλ,j = T (i)

 (T (j)
 f ) = (T (i)

 T (j)
 )f , and then Ti,j = T (i)

 T (j)
 . Hence,

Ti,j is the composition of T (i)
 and T (j)

 , and (cf. [])

‖Ti,j‖ =
∥
∥T (i)

 T (j)


∥
∥ ≤ ∥

∥T (i)


∥
∥ · ∥∥T (j)


∥
∥ = k()

i

(
λ



)

k()
j

(
λ



)

.

By (), we have

‖Ti,jf ‖p,ϕ =
∥
∥T (i)

 Fλ,j
∥
∥

p,ϕ ≤ k()
i

(
λ



)

k()
j

(
λ



)

‖f ‖p,ϕ .

Since the constant factor in () is the best possible, then the theorem follows.



Yang and Chen Journal of Inequalities and Applications  (2015) 2015:100 Page 17 of 18

Theorem  With the assumptions of Theorem , if for any i, j ∈ {, , }, k()
i ( λ

 ), k()
j ( λ

 ) ∈
R+, then we have the composition formula of two Hilbert-Hardy-type operators as follows:

‖Ti,j‖ =
∥
∥T (i)

 T (j)


∥
∥ =

∥
∥T (i)


∥
∥ · ∥∥T (j)


∥
∥ = k()

i

(
λ



)

k()
j

(
λ



)

. ()

Example  For k()
λ (xy, ) = 

|xy–|λ , k()
λ (x, y) = | ln(x/y)|β–

(max{x,y})λ (β ≥ ), λ ∈ (, ), by Example 
and (), we have

‖T,‖ =
∥
∥T ()

 T ()


∥
∥ =

∥
∥T ()


∥
∥ · ∥∥T ()


∥
∥ = B

(

 – λ,
λ



)(

λ

)β


(β),

‖T,j‖ =
∥
∥T ()

 T (j)


∥
∥ =

∥
∥T ()


∥
∥ · ∥∥T (j)


∥
∥ = B

(

 – λ,
λ



)(

λ

)β


(β) (j = , ),

‖Ti,‖ =
∥
∥T (i)

 T ()


∥
∥ =

∥
∥T (i)


∥
∥ · ∥∥T ()


∥
∥ = B

(

 – λ,
λ



)(

λ

)β


(β) (i = , ),

‖Ti,j‖ =
∥
∥T (i)

 T (j)


∥
∥ =

∥
∥T (i)


∥
∥ · ∥∥T (j)


∥
∥ = B

(

 – λ,
λ



)(

λ

)β


(β) (i, j = , ).
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