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Abstract
In this paper, we consider a class of bidimensional discrete-time risk models, which
are based on the assumptions that the claim counts obey some specific bivariate
integer-valued time series such as bivariate Poisson MA (BPMA) and the bivariate
Poisson AR (BPAR) processes. We derive the moment generating functions (m.g.f.’s) for
these processes, and we present their explicit expressions for the adjustment
coefficient functions. The asymptotic approximations (upper bounds) to three
different types of ruin probabilities are discussed, and the marginal value-at-risk (VaR)
for each model is obtained. Numerical examples are provided to compute the
adjustment coefficients discussed in the paper.
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1 Introduction
Bidimensional risk theory has gained a lot of attention in the last two decades due to its
complexity and various uses in different fields. Chan et al. [] studied three types of ruin
probabilities with phase-type distributions. Yuen et al. [] introduced the bivariate com-
pound binomial model to approximate the finite-time survival probability of the bivariate
compound Poisson model with common shock. Li et al. [] studied the ruin probabilities
of a bidimensional perturbed insurance risk model, and they obtained the upper bound
for the infinite-time ruin probability by using the martingale technique. Avram et al. []
studied the joint ruin problem for two insurance companies that divide between claims
and premia in some specified proportions. Badescu et al. [] extended the bidimesional
risk models proposed by Avram et al. and derived the Laplace transform of the time until
at least one insurer is ruined. For other important works on bidimensional risk models,
see Cai and Li [], Dang et al. [], Chen et al. [], etc.

The univariate integer-valued time series models, such as the integer-valued moving av-
erage (INMA), the integer-valued autoregressive (INAR), and the integer-valued moving
average autoregressive (INARMA) models, are based on appropriate thinning operations.
This category of models has been proposed by many authors: see, e.g., Al-Osh and Alzaid
[, ] and McKenzie [, ]. Quoreshi [] proposed a bivariate integer-valued mov-
ing average (BINMA) model which is applied to examining the correlation between the
stock transaction series. Pedeli and Karlis [] introduced a bivariate integer-valued AR()
(BINAR()) model with the innovations of bivariate Poisson (BP) and bivariate negative
binomial (BNB) distributions.
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Considering the dependent relationship of the claim counts among different periods, the
univariate integer-valued time series has been applied to describe it, Cossétte et al. [, ]
applied the Poisson MA() and Poisson AR() processes to discrete-time risk models.

Let us consider an example in car insurance policies. They usually contain at least two re-
sponsibilities: the third-party insurance and CDW coverage. If we regard the claim counts
of each one responsibility of the policies as integer-valued time series, and they are corre-
lated, then the whole claim counts should be a bivariate integer-valued time series, and the
models proposed by Pedeli and Karlis [] meet this situation perfectly. In this paper, we
extend their risk models to bidimensional contexts, and we study the bidimensional risk
models based on the bivariate claim counts obeying bivariate integer-valued time series.

The paper is structured as follows. In the next section, we propose a class of general
bidimensional risk models based on bivariate time series for the bivariate claim counts
r.v.’s. In Section , we present the risk models based on the bivariate claim counts obeying
bivariate Poisson MA() (BPMA()) and the bivariate Poisson AR() (BPAR()) process
generated by binomial thinning operations. For each model, we examine its properties
and derive the expressions for adjustment coefficient and its compound distributions. In
Section , we present the asymptotic approximations to the three different types of ruin
probabilities by large deviation theorems for our models. A numerical example is provided
to show the adjustment coefficients and the marginal VaR values in Section . Besides, the
detailed proofs of the important results are presented in the Appendix.

2 Bidimensional discrete-time risk models
In this section, we consider the bidimensional risk model as follows. Let (Rn, Rn) be the
bidimensional discrete-time surplus process

(
Rn

Rn

)
=

(
u

u

)
+ n

(
π

π

)
–

n∑
i=

(∑Ni
j= Xij∑Ni
k= Yik

)
, ()

where
• u and u are the positive initial reserves of the first and second business, respectively;
• π and π are the premia rates of the first and second business, respectively;
• {(Ni, Ni), i = , , . . .} are the bivariate claim counts of the two businesses in ith

period;
• {Xij, i, j = , , . . .} are a sequence of i.i.d. claim size r.v.’s of the first business;
• {Yik , i, k = , , . . .} are a sequence of i.i.d. claim size r.v.’s of the second business;
• {Xij, i, j = , , . . .} and {Yik , i, k = , , . . .} are mutually independent.

In this paper, we adhere our concentrations to the light-tailed distributions. Xij (Yik) are
the copies of r.v. X (Y ) whose distribution function (d.f.) is F(x), x >  (G(y), y > ), with
mean μ (μ) and the m.g.f. mX(t) (mY (s)).

Let (N(n), N(n)) =
∑n

i=(Ni, Ni) be the aggregate bivariate claim counts of n periods;
(Wi, Wi) = (

∑Ni
i= Xij,

∑Ni
i= Yij) be the bivariate aggregate claims of the two businesses in

ith period, i = , , . . . ; and (Sn, Sn) =
∑n

i=(Wi, Wi) be the aggregate bivariate claims for
the two businesses. We can denote them with vector notation N(n), Wi, and Sn, respec-
tively.

There are three types of ruin probabilities defined through different times of ruin:
• Tmax = inf{n | max{Rn, Rn} ≤ , n ∈ N+};
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• Tsum = inf{n | Rn + Rn ≤ , n ∈ N+};
• Tmin = inf{n | min{Rn, Rn} ≤ , n ∈ N+}.

The corresponding ruin probabilities are denoted by
• �max(u, u)=P{Tmax < ∞ | (R, R) = (u, u)};
• �sum(u, u)=P{Tsum < ∞ | (R, R) = (u, u)};
• �min(u, u)=P{Tmin < ∞ | (R, R) = (u, u)}.

3 Claim count time series based on ◦-thinning operation
In this section, we firstly introduce the bivariate Poisson distribution and the bivariate
binomial thinning operator, ‘◦’. Let M, M, and M be three mutually independent Poisson
r.v.’s with their corresponding parameters λ > , λ > , and λ > , according to Marshall
and Olkin [], (U , V ) = (M + M, M + M) (M is called the common shock r.v. in insurance
field), obeys the bivariate Poisson (BP) distribution, whose probability mass function is

P(U = n, V = n) =
n∧n∑

n=

λ
n–n
 λ

n–n
 λn

(n – n)!(n – n)!n!
exp{–λ – λ – λ}, ()

where n ∧ n = min(n, n), and E[U] = Var[U] = λ + λ, E[V ] = Var[V ] = λ + λ, and
Cov[U , V ] = λ, we write it BP(λ,λ,λ). Its probability generating function (p.g.f.) is

P̂(t, s) = exp
{
λ(t – ) + λ(s – ) + λ(ts – )

}
. ()

For the BP r.v.’s, Pedeli and Karlis [] derived the bivariate binomial thinning operators
referring simply to the univariate binomial thinning mechanism. Let the binomial thinning
operator α and α (α,α ∈ [, ]) act on U and V , respectively, we can write it as

(
α 
 α

)
◦

(
U
V

)
=

(∑U
i= δ

()
i∑V

j= δ
()
j

)
, ()

where {δ()
i , i = , , . . .}, and {δ()

j , j = , , . . .}, are two mutually independent sequences of
i.i.d. Bernoulli r.v.’s with mean α and α, respectively. Furthermore, their joint p.g.f. is

P̂(t, s) = exp
{
λ[αt + ᾱ – ]

} × exp
{
λ[αs + ᾱ – ]

}
× exp

{
λ
[
(αt + ᾱ)(αs + ᾱ) – 

]}
, ()

where ᾱ =  – α and ᾱ =  – α.

3.1 Risk model for BPMA(1)
.. Definition and properties
Let us consider a BPMA() process for {(Ni, Ni), i = , , . . .}, its dynamics is defined as
follows:

(
Ni

Ni

)
=

(
α 
 α

)
◦

(
ε,i–

ε,i–

)
+

(
εi

εi

)
, i = , , . . . , ()
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where {(εi, εi), i = , , . . .} are a sequence of i.i.d. BP(λ,λ,λ) r.v.’s. For discrimination, we
have

α ◦ εi =
εi∑
j=

δ
()
i+,i,j, α ◦ εi =

εi∑
j=

δ
()
i+,i,j, i = , , . . . , ()

where {δ()
i,i–,j, i, j = , , . . .} and {δ()

i,i–,j, i, j = , , . . .} are two independent sequences of i.i.d.
Bernoulli r.v.’s with means α and α, respectively.

From () and (), we have

(
N

N

)
=

(
α ◦ ε + ε

α ◦ ε + ε

)
=

(∑ε
j= δ

()
j + ε∑ε

j= δ
()
j + ε

)
,

(
Nk

Nk

)
=

(
α ◦ ε,k– + εk

α ◦ ε,k– + εk

)
=

(∑εk
j= δ

()
k,k–,j + εk∑εk

j= δ
()
k,k–,j + εk

)

for k = ,  . . . .
As stated in Al-Osh and Alzaid [, ], the marginal distributions of {(Ni, Ni), i =

, , . . .} are uniquely determined by the distributions of {(εi, εi), i = , , . . .}, hence, they
have identical bivariate Poisson margins and

E[Ni] = Var[Ni] = E[α ◦ ε,i– + εi] = ( + α)(λ + λ),

E[Ni] = Var[Ni] = E[α ◦ ε,i– + εi] = ( + α)(λ + λ).

The covariances are listed as follows:

Cov[Ni, Ni] = ( + αα)λ, i = ,  . . . ;

Cov[Nki, Nk,i+h] =

{
αk(λ + λ), if h = ;
, if h > ;

k = , ;

Cov[Nki, Nj,i+h] =

{
αjλ, if h = ;
, if h > ;

k �= j = , .

.. Expression for adjustment coefficient function
Generally speaking, adjustment coefficients are regarded as the safety indices of the sur-
plus processes, they are the positive zero-roots of the adjustment coefficient functions.
In classical unidimensional Lundberg-type risk models, most of which assumed that the
surplus processes are Lévy processes, the adjustment coefficient functions are obtained
via martingale techniques: the cumulate generating functions (c.g.f.’s) of the net loss pro-
cesses. However, in our risk models, the whole surplus processes are not Lévy processes
anymore. According to Nyrhinen [] and Müller and Pflug [], there also exist adjust-
ment coefficient functions for the unidimensional non-Lévy contexts using another ap-
proach: let cn(t) be the c.g.f. of the aggregate net loss process (aggregate claims minus
aggregate premia incomes) at time n, the adjustment coefficient function is given by c(t) =
limn→∞ 

n cn(t). In this subsection, we derive the joint c.g.f., which is denoted by cn(t, s), of
the aggregate net losses process based on model BPMA(). Analogously to Cossétte et al.
[], the adjustment coefficient function c(t, s) is given by c(t, s) = limn→∞ 

n cn(t, s).
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Proposition . The expression for c(t, s) for model BPMA() is given by

c(t, s) = λ
(
αm

X(t) + ᾱmX(t) – 
)

+ λ
(
αm

Y (s) + ᾱmY (t) – 
)

+ λ
[(

αm
X(t) + ᾱmX(t)

)(
αm

Y (s) + ᾱmY (t)
)

– 
]

– πt – πs. ()

Proof See the Appendix. �

Remark . Referring to the last item of (), we have

λ
[
(n – )

(
αm

X(t) + ᾱmX(t)
)(

αm
Y (s) + ᾱmY (s)

)
+

(
αmX(t) + ᾱ

)(
αmY (s) + ᾱ

)
+ mX(t)mY (s) – (n + )

]
. ()

It is very necessary to explain this item. As mentioned for the assumptions of (), (), and
(), we can decompose (εi, εi) into (ε′

i + ε′
i, ε′

i + ε′
i) for every i = , , , . . . , where ε′

i, ε′
i,

and ε′
i are three mutually independent Poisson r.v.’s with their corresponding parameters

λ, λ, and λ, and ε′
i is called a common shock r.v. Thus there exists a sub-BPMA() process

embedding in {(Ni, Ni), i = , , . . .}, we denote {(N ′()
i , N ′()

i ), i = , , . . .} and its expression
is

(
N ′()

i

N ′()
i

)
=

(
α ◦ ε′

i– + ε′
i

α ◦ ε′
i– + ε′

i

)
=

⎛
⎝∑ε′

i–
j= δ

()
i,i–,j + ε′

i∑ε′
i–

j= δ
()
i,i–,j + ε′

i

⎞
⎠ ,

here {(δ()
i,i–,j, δ

()
i,i–,j), i = , , , . . .} are also expressed as a sequence of i.i.d. bivariate

Bernoulli r.v.’s (see Marshall and Olkin []) by some authors. Since in our assumptions,
Xij and Yij are mutually independent, the assumption of independence between δ

()
i,i–,j and

δ
()
i,i–,j cannot cause a contradiction. Thus, () is the joint m.g.f. of the compound sub-

BPMA() process.

Proposition . (Sn, Sn) follows a bivariate compound Poisson distribution. That means
we can express it as

Sn =

{∑N(n)
j= C(n)

j , N(n) > ,
, N(n) = ,

Sn =

{∑N(n)
j= C(n)

j , N(n) > ,
, N(n) = ,

where N(n) and N(n) are of marginal Poisson distributions with the parameter (n +α)(λ +
λ) and (n+α)(λ +λ), respectively; {C(n)

j , j = , , . . .} and {C(n)
j , j = , , . . .} are two mutually

independent sequences of i.i.d. r.v.’s with the mixed convolutional d.f.’s as

FC(n)
j

(x) =


n + α

[
(n – )αF∗(x) +

(
 + α + (n – )ᾱ

)
F(x)

]
,

GC(n)
j

(y) =


n + α

[
(n – )αG∗(y) +

(
 + α + (n – )ᾱ

)
G(y)

]
,

where F∗(x) and G∗(y) are -fold convolutions.
If n → ∞, then (N(n), N(n)) asymptotically obeys BP(nλ, nλ, nλ). Furthermore,

FC(n)
j

(x) d→ αF∗(x) + ᾱF(x), FC(n)
j

(y) d→ αG∗(y) + ᾱG(y).
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Proof Referring to () and Remark ., we easily get the conclusion. �

3.2 Risk model for BPAR(1)
.. Definition and properties
We consider another bivariate time series model for count data to decide the relationship
of the bivariate claim counts among the different periods. Suppose that the claim count
process {(Ni, Ni), i = , , . . .} is a bivariate Poisson AR() (BPAR()) process, whose au-
toregressive dynamics is given by

(
Ni

Ni

)
=

(
α 
 α

)
◦

(
N,i–

N,i–

)
+

(
εi

εi

)
, i = , , . . . , ()

where {(εi, εi), i = , , . . .} are a sequence of i.i.d. BP(λ,λ,λ) r.v.’s. If and only if
{(Ni, Ni), i = , , . . .} is a stationary process, α,α ∈ [, ). For convenience, we suppose
(N, N) to be the initial r.v. of the BPAR() process and to be a copy of (ε, ε). Similarly
to BPMA(), the dependence structure of BPAR() process can be unfolded as

(
N

N

)
=

(∑N
j= δ

()
j + ε∑N

j= δ
()
j + ε

)

and
(

Nk

Nk

)
=

(∑N
j=

∏k
h= δ

()
hj +

∑k–
i=

∑εi
j=

∏k
h=i+ δ

()
hij + εk∑N

j=
∏k

h= δ
()
hj +

∑k–
i=

∑εi
j=

∏k
h=i+ δ

()
hij + εk

)

for k = ,  . . . .
As mentioned in previous subsection, {δ()

hij , h > i = , , , . . . , j = , , . . .} and {δ()
hij , h > i =

, , , . . . , j = , , . . .} are two independent sequences of i.i.d. Bernoulli r.v.’s with mean α

and α, respectively. We can get the expectations and covariances of the BPAR() process,
for k, j = ,  ; i = , , . . . , and h = , , , . . . ,

E[Nki] = Var[Nki] =
λk + λ

 – αk
, Cov[Nki, Nk,i+h] = αh

k
λk + λ

 – αk
,

Corr[Nki, Nk,i+h] = αh
i , Cov[Nki, Nj,i+h] = αh

j
λ

 – αα
,

Corr[Nki, Nj,i+h] = αh
j

λ
√

( – α)( – α)
( – αα)

√
(λ + λ)(λ + λ)

, k �= j = , .

.. Expression for adjustment coefficient function
Proposition . Assuming that α,α ∈ [, ) and αmX(t) < , αmY (s) < , then the ex-
pression for c(t, s) is given by

c(t, s) = λ

[
ᾱmX(t)

 – αmX(t)
– 

]
+ λ

[
ᾱmY (s)

 – αmY (s)
– 

]

+ λ

{
ᾱᾱmX(t)mY (s)

 – ααmX(t)mY (s)

[
αmX(t)

 – αmX(t)
+

αmY (s)
 – αmY (s)

+ 
]

– 
}

– πt – πs; ()
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and for the special situation if α = , α > , and αmY (s) <  still holds, we have

c(t, s) = λ
(
mX(t) – 

)
+ λ

[
ᾱmY (s)

 – αmY (s)
– 

]

+ λ

[
ᾱmX(t)mY (s)

 – αmY (s)
– 

]
– πt – πs; ()

symmetrically, if α = , α > , and αmX(s) <  still holds, then

c(t, s) = λ

[
ᾱmX(t)

 – αmX(t)
– 

]
+ λ

(
mY (s) – 

)

+ λ

[
ᾱmX(t)mY (s)

 – αmX(t)
– 

]
– πt – πs. ()

Proof See the Appendix. �

Remark . Equally referring to the last item of (), we focus on

λ

[
An

{
mX(t)

}
Bn

{
mY (s)

}
+ mX(t)mY (s)

n–∑
i=

Ai
{

mX(t)
}

Bi
{

mY (s)
}

– (n + )

]
. ()

Referring to Remark ., there exists a sub-BPAR() process embedding in {(Ni, Ni), i =
, , . . .}, we denote it {(N ′()

i , N ′()
i ), i = , , . . .} with the dynamical formula

(
N ′()

i

N ′()
i

)
=

(
α 
 α

)
◦

(
N ′()

i–

N ′()
i–

)
+

(
ε′

i

ε′
i

)

for i = , , . . . , n; and {ε′
i, i = , , . . .} is a sequence of mutually independent r.v.’s with d.f.’s

Po(λ), N ′()
 = N ′()

 is a copy of ε′
. Equation () is the joint m.g.f. of

∑n
i=(

∑N ′()
i

j= Xi,j,∑N ′()
i

j= Yi,j).
Given () and Remark ., we have the following conclusion.

Proposition . For  < α,α < , (Sn, Sn) follows the bivariate compound Poisson dis-
tribution as

Sn =

{∑N(n)
j= C(n)

j , N(n) > ,
, N(n) = ,

Sn =

{∑N(n)
j= C(n)

j , N(n) > ,
, N(n) = ,

where N(n) and N(n) are of marginal Poisson distributions with the parameters (n+α)(λ +
λ) and (n + α)(λ + λ), respectively; and {C(n)

j , j = , , . . .} and {C(n)
j , j = , , . . .} are two

independent sequences of i.i.d. r.v.’s with the mixed convolutional d.f.’s as

FC(n)
j

(x) =


n + α

{
(nᾱ + ᾱα)F(x)

+
n–∑
i=

[
α + αi

 + (n – i)ᾱα
i

]
F∗i(x) +

(
αn–

 + αn

)
F∗n(x)

}
,
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GC(n)
j

(y) =


n + α

{
(nᾱ + ᾱα)G(y)

+
n–∑
i=

[
α + αi

 + (n – i)ᾱα
i

]
G∗i(y) +

(
αn–

 + αn

)
G∗n(y)

}
.

If n → ∞, then (N(n), N(n)) asymptotically obeys BP(nλ, nλ, nλ), and furthermore,

FC(n)
j

(x) d→ ᾱ

∞∑
i=

αi–
 F∗i(x), GC(n)

j
(y) d→ ᾱ

∞∑
i=

αi–
 G∗i(y).

4 Approximations to ruin probabilities
In this section, we mainly discuss the approximations to �max(u, u) and �sum(u, u) for
the two different models mentioned above.

Define t := sup{t; mX(t) < ∞}, s := sup{s; mY (s) < ∞}, and G := {(t, s); c(t, s) < ∞, (t, s) >
(, )}. Recalling the expressions of c(t, s) of the two different models we mentioned and
the assumptions that Xij (Yij) are of i.i.d. light-tailed distributions, it is clear that t >  and
s > , and G is nonempty.

Lemma . As to the adjustment coefficient functions for BPMA() and BPAR() cases,
the following statements hold.

(a) The equation c(t, s) =  has at least one root in G.
(b) For given l ≥ , the equation c(t, lt) =  has only one root in (, t).
(c) For given l ≥ , if v >  solves c(t, lt) = , then c(t, lt) >  for all t > v and c(t, lt) <  for

all  < t < v.

Proof We only prove the BPMA() case here, the BPAR() case could be proved the same
way.

Let s = lt, for some given l ≥ ,

dc(t, lt)
dt

= λm′
X(t)

(
αmX(t) + ᾱ

)
+ λlm′

Y (lt)
(
αmY (lt) + α

)
+ λ

[
m′

X(t)
(
αmX(t) + ᾱ

)(
αm

Y (lt) + ᾱmY (lt)
)

+ lm′
Y (lt)

(
αm

X(t) + ᾱmX(t)
)(

αmY (lt) + α
)]

– ( + ρ)( + α)(λ + λ)μ – l( + ρ)( + α)(λ + λ)μ,

so that

dc(t, lt)
dt

∣∣∣∣
t=

= ( + α)(λ + λ)μ + l( + α)(λ + λ)μ

– ( + ρ)( + α)(λ + λ)μ – l( + ρ)( + α)(λ + λ)μ < .

For every t >  and l ≥ , we have dc(t,lt)
dt > .

This means that the function c(t, s) is convex in t ∈ (, t), since c′
(, ) <  and c′

(, ) <
, m′

X(t), and m′
Y (s) are the monotone increasing functions of t and s. Obviously dc(t,lt)

dt is
a monotone increasing function of t; given l ≥ , there exist t >  and some l >  so that
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dc(t,lt)
dt

> , and (a) and (b) are proved. Hence the equation for c(t, lt) can have at most one
root in (, t).

(c) The result is obvious from the convexity of c(t, lt) on (, t). �

Lemma . Referring to Lemma ., and letting 	 = {(t, s); c(t, s) = , (t, s) ∈ G}, then
(a)  < dc(t,s)

dt + dc(t,s)
ds < ∞ for (t, s) ∈ 	;

(b) cn(t, s) < ∞ for (t, s) ∈ 	.

Proof (a) There exists l ≥  such that s = lt, then c(t, s) = c(t, lt) =  for any (t, s) ∈ 	. By
the intermediate point in the mean value theorem, there exists ξ ∈ (, t) such that c(t, lt) –
c(, ) = c′

(ξ , lξ )t + c′
(ξ , lξ )lt = . Since dc(t,lt)

dt >  for t ≥ , c′
(t, lt) + c′

(t, lt)l > c′
(ξ , lξ ) +

c′
(ξ , lξ )l = . Varying l from  to ∞, the conclusion is proved.
For (b), since for BPMA() process,

cn(t, s) = (n – )c(t, s) + λ
[
( + α)mX(t) + ᾱ – 

]
+ λ

[
( + α)mY (s) + ᾱ – 

]
+ λ

[(
αmX(t) + ᾱ

)(
αmY (s) + ᾱ

)
+ mX(t)mY (s) – 

]
< ∞

for BPAR() process, we just present  < α,α <  case,

cn(t, s) = (n – )c(t, s)

+ λ

{
mX(t)[ – An{mX(t)} + ᾱ]

 – αmX(t)
+ An

{
mX(t)

}
– 

}

+ λ

{
mY (s)[ – Bn{mY (s)} + ᾱ]

 – αmY (s)
+ Bn

{
mY (s)

}
– 

}

+ λ

{
mX(t)mY (s)

 – ααmX(t)mY (s)
L′ + An

{
mX(t)

}
Bn

{
mY (s)

}
– 

}
,

where

L′ =  – An–
{

mX(t)
}

Bn–
{

mY (s)
}

+
αᾱmX(t)[ – An–{mX(t)}]

 – αmX(t)

+
ᾱαmY (s)[ – Bn–{mY (s)}]

 – αmY (s)
,

since αmX(t) <  and αmY (s) <  for every point (t, s) ∈ 	, recalling the expressions of
An{mX(t)} and Bn{mY (s)} we gave in the Appendix, cn(t, s) < ∞. So, the conclusion is
proved. Here actually, 	 is a smooth curve on the first quadrant. �

As for the ruin problems of the bidimensional risk models, many authors just gave the
upper bounds for �max(u, u) via martingale inequalities (see Chan et al. [] and Li et al.
[]) for Lévy processes, because the Cramér-Lundberg constants are hardly to be obtained.
Since our risk models are non-Lévy processes, many classical results of ruin theory, espe-
cially the Wald martingale theorem, cannot be applied. The large deviations theorem has
been introduced to approximate the ruin probabilities by Glynn and Whitt []. However,
their attention mainly adhered to the univariate contexts. We borrow the idea of Glynn
and Whitt [] and extend their main results to the bivariate contexts.

Theorem . For the two risk models, �max(u, u)
log∼ inf(t,s)∈	 e–tu–su as u, u → ∞,

where (t∗, s∗) = arg inf(t,s)∈	{e–tu–su} is the adjustment coefficient.
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Proof See the Appendix. �

For �sum(u, u) is actually the univariate probability measure. By the theorem of the
univariate large deviations, it is easy to get the following result.

Theorem . For the two risk models, �sum(u, u)
log∼ e–t∗(u+u) as u + u → ∞, where

t∗ = arg{t; c(t, t) = , t > } is the adjustment coefficient.

Proof The joint m.g.f. of Sn + Sn – nπ – nπ is cn(t, t), and the expression for adjustment
coefficient function is c(t, t), then, by the univariate large deviations theory proposed by
Glynn and Whitt [], we get the proof of the result. �

Theorem . For our two models, we have

�min(u, u) ≤ �(u) + �(u) – �max(u, u),

where �(u) and �(u) are the marginal ruin probabilities of the first and the second busi-
nesses, respectively. Furthermore, the approximations to �(u) and �(u) are presented
as

�(u)
log∼ e–t′u , u → ∞, ()

�(u)
log∼ e–s′u , u → ∞, ()

where for model BPMA(), t′ and s′ are the positive roots of (λ + λ)(αm
X(t′) + ᾱmX(t′) –

) –πt′ and (λY +λ)(αm
Y (s′) + ᾱmY (s′) – ) –πs′, respectively; and for model BPAR(), t′

and s′ are the positive roots of (λ + λ)( ᾱmX (t′)
–αmX (t′) – ) – πt′ and (λ + λ)( ᾱmY (s′)

–αmY (s′) – ) – πs′,
respectively.

Proof For the approximations to marginal ruin probabilities see Cossétte et al. []. �

Remark . For �min(u, u), since �max(u, u) = o(e–t′u–s′u ),

�min(u, u) ∼ �(u) + �(u), as u, u → ∞.

5 Numerical experiments and simulations
5.1 Calculations for adjustment coefficients
Let u : u =  : , λ = , λ = , λ = , X, and Y follow the exponential distributions with
parameters β and β, respectively, i.e. μ = /β, mX(t) = 

–t/β
, t < β, and μ = /β,

mY (s) = 
–s/β

, s < β; the safety loading coefficient ρ = . for two classes of businesses.
We calculate out three groups of adjustment coefficients. The first group of adjustment
coefficients, (t∗, s∗) for �max(u, u); the second group of adjustment coefficients, t∗ for
�sum(u, u); and the third group of adjustment coefficients t′ and s′ for �(u) and �(u),
respectively. For Tables -, we arrange the values of α in vertical rows and the values of
α in horizontal rows.

5.2 Calculations for marginal VaR
In this subsection, we give the marginal VaR values for our two different models with the
assumptions that Xij and Yij are of mutually independent exponential r.v.’s with parame-
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Table 1 The adjustment coefficient (t∗, s∗) of �max for model BPMA(1)

(α1, α2) 0 0.25 0.5 0.75 1

(t∗ , s∗) 0 (0.2279, 0.8665) (0.2483, 0.7304) (0.2618, 0.6692) (0.2735, 0.6319) (0.2839, 0.6061)
0.25 (0.1633, 0.8835) (0.1802, 0.7474) (0.1907, 0.6865) (0.1998, 0.6496) (0.2078, 0.6242)
0.5 (0.1265, 0.8938) (0.1413, 0.7577) (0.1500, 0.6972) (0.1573, 0.6606) (0.1637, 0.6355)
0.75 (0.1016, 0.9014) (0.1147, 0.7653) (0.1219, 0.7052) (0.1279, 0.6689) (0.1332, 0.6442)
1 (0.0832, 0.9073) (0.0950, 0.7714) (0.1010, 0.7116) (0.1058, 0.6757) (0.1101, 0.6513)

Table 2 The adjustment coefficient (t∗, s∗) of �max for model BPAR(1)

(α1, α2) 0 0.25 0.5 0.75 0.95

(t∗ , s∗) 0 (0.2279, 0.8665) (0.2674, 0.6271) (0.3142, 0.3926) (0.3671, 0.1718) (0.4004, 0.0264)
0.25 (0.1386, 0.8914) (0.1709, 0.6499) (0.2116, 0.4111) (0.2620, 0.1860) (0.2991, 0.0273)
0.5 (0.0611, 0.9172) (0.0833, 0.6570) (0.1139, 0.4333) (0.1571, 0.1963) (0.1974, 0.0289)
0.75 (0.0067, 0.9405) (0.0158, 0.7000) (0.0306, 0.4586) (0.0570, 0.2160) (0.0943, 0.0328)
0.95 (0.0000, 0.9444) (0.0000, 0.7083) (0.0000, 0.4722) (0.0001, 0.2360) (0.0114, 0.0433)

Table 3 The adjustment coefficient t∗ of �sum for model BPMA(1)

(α1, α2) 0 0.25 0.5 0.75 1

t∗ 0 0.3922 0.4074 0.4133 0.4178 0.4212
0.25 0.3226 0.3355 0.3453 0.3531 0.3593
0.5 0.2788 0.2926 0.3035 0.3123 0.3196
0.75 0.2493 0.2630 0.2741 0.2832 0.2908
1 0.2278 0.2411 0.2519 0.2610 0.2687

Table 4 The adjustment coefficient t∗ of t∗ of �sum for model BPAR(1)

(α1, α2) 0 0.25 0.5 0.75 0.95

t∗ 0 0.3922 0.3999 0.3565 0.2182 0.0468
0.25 0.2855 0.2994 0.2947 0.2070 0.0467
0.5 0.1707 0.1851 0.1996 0.1782 0.0463
0.75 0.0686 0.0751 0.0854 0.0998 0.0447
0.95 0.0096 0.0100 0.0108 0.0128 0.0200

Table 5 Adjustment coefficients of the marginal ruin probabilities for model BPMA(1)

α 0 0.25 0.5 0.75 1

t′ 0.1667 0.1396 0.1265 0.1186 0.1134
s′ 0.9444 0.8130 0.7562 0.7229 0.7008

Table 6 Adjustment coefficients of the marginal ruin probabilities for model BPAR(1)

α 0 0.25 0.5 0.75 0.95

t′ 0.1583 0.1250 0.0833 0.0417 0.0083
s′ 0.8972 0.7083 0.4722 0.2361 0.0472

ter , i, j = , , . . . . Then, according to Propositions . and ., we derive the asymptotic
densities of Sn for large n as

fSn (x, y) = e–n(λ+λ+λ)

+ e–n(λ+λ+λ)
∞∑

k=

∞∑
k=

k∧k∑
k=

nk+k–kλ
k–k
 λ

k–k
 λk

(k – k)!(k – k)!k!
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×
k∑

i=

(
k

i

)
αi

ᾱ
k–i
 Ga(x; k + i, )

×
k∑
j=

(
k

j

)
α

j
ᾱ

k–j
 Ga(y; k + j, )

and

fSn (x, y) = e–n(λ+λ+λ)

+ e–n(λ+λ+λ)
∞∑

k=

∞∑
k=

k∧k∑
k=

nk+k–kλ
k–k
 λ

k–k
 λk

(k – k)!(k – k)!k!

× ᾱ
k


[ ∞∑
i=

αi–
 Ga(x; i, )

]∗k

ᾱ
k


[ ∞∑
j=

α
j–
 Ga(y; j, )

]∗k

for model BPMA() and model BPAR(), respectively, and where Ga(x; i, ) and Ga(y; j, )
are gamma densities with parameters (i, ) and (j, ) for the variables x and y, respectively.
And we also get the marginal densities for model BPMA():

fSn (x) = e–n(λ+λ) + e–n(λ+λ)
∞∑

k=

[n(λ + λ)]k

k!

×
k∑

i=

(
k

i

)
αi

ᾱ
k–i
 Ga(x; k + i, ),

fSn (y) = e–n(λ+λ) + e–n(λ+λ)
∞∑

k=

[n(λ + λ)]k

k!

×
k∑
j=

(
k

j

)
α

j
ᾱ

k–j
 Ga(y; k + j, );

and the marginal densities for model BPAR() for  < α,α < :

fSn (x) = e–n(λ+λ) + e–n(λ+λ)
∞∑

k=

[n(λ + λ)]k

k!

× ᾱ
k


[ ∞∑
i=

αi–
 Ga(x; i, )

]∗k

,

fSn (y) = e–n(λ+λ) + e–n(λ+λ)
∞∑

k=

[n(λ + λ)]k

k!

× ᾱ
k


[ ∞∑
j=

α
j–
 Ga(y; j, )

]∗k

.

So, VaRSn (·) = VaRSn (·) if α = α and λ = λ at the same levels for the two models, de-
noted as VaRSn (·). Then the marginal VaR for each one is presented in Tables  and .
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Table 7 Marginal VaR for model BPMA(1)

α 0 0.25 0.5 0.75 1

VaRS5 (0.90) 15.98 20.60 24.10 30.20 35.28
VaRS5 (0.95) 18.12 23.21 28.40 33.68 39.05

Given λ1 = λ2 = λ = 1, n = 5, the marginal VaR at level θ = 0.90, 0.95.

Table 8 Marginal VaR for model BPAR(1)

α 0 0.25 0.5 0.75 0.95

VaRS3 (0.90) 10.65 13.60 17.42 22.41 27.33
VaRS3 (0.95) 12.46 15.75 20.11 25.60 30.93

Given λ1 = λ2 = λ = 1, n = 3, the marginal VaR at level θ = 0.90, 0.95.

6 Conclusions and comments
In this paper, we propose a class of bidimensional discrete-time risk models whose bivari-
ate claim counts obey the BPMA() and BPAR() processes, we derive their adjustment
coefficients functions and the asymptotic distributions for the bivariate compound claim
processes in finite time, we obtain the upper bounds for three types of ruin probabilities
by large deviations theory, and we present examples to compute the three types of the
adjustment coefficients for their corresponding ruin probabilities as well as the marginal
VaR values.

However, there are many further works that can be done. We can extend the assump-
tions to the general ones that the bivariate claim seizes are copula distributed in com-
mon shocks, and the distributions of the claim sizes of two businesses are heavy-tailed
distributed. Then the approximations to the three types of ruin probabilities should be
discussed in another way.

Appendix
The proof of Proposition 3.1
We have cn(t, s) = log mSn (t, s) – n(πt + πs), where

mSn (t, s) = E
[
etSn esSn

]
. ()

According to Cossétte et al. [], we have the expression for the m.g.f.

mSn (t, s) = P̂N(n)

(
mX(t), mY (t)

)
()

and

P̂N(n) (t, s) = E
[
tN+N+···+Nn sN+N+···+Nn

]
. ()

So, we mainly focus on P̂N(n) (t, s), and we have

E
[
tN+N+···+Nn sN+N+···+Nn

]
= E

[
tε+

∑ε
j= δ

()
j+ε+

∑ε
j= δ

()
j+···+εn+

∑ε,n–
j= δ

()
n,n–,j

× sε+
∑ε

j= δ
()
j+ε+

∑ε
j= δ

()
j+···+εn+

∑ε,n–
j= δ

()
n,n–,j

]
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= E
[
t
∑ε

j= δ
()
j s

∑ε
j= δ

()
j

] × E
[
tεn sεn

]

×
n–∏
i=

{
E
[
tεi+

∑εi
j= δ

()
i+,i,j sεi+

∑εi
j= δ

()
i+,i,j

]}
. ()

The first item can be calculated as

E
[
t
∑ε

j= δ
()
j s

∑ε
j= δ

()
j

]
= exp

{
λ(αt + ᾱ – ) + λ(αs + ᾱ – ) + λ

[
(αt + ᾱ)(αs + ᾱ) – 

]}
, ()

and the second item in () can easily be found,

E
[
tεn sεn

]
= exp

{
λ(t – ) + λ(s – ) + λ(ts – )

}
. ()

Similarly, we can calculate the last item in (),

E
[
tεi+

∑εi
j= δ

()
i+,i,j sεi+

∑εi
j= δ

()
i+,i,j

]
= exp

{
λ

(
αt + ᾱt – 

)
+ λ

(
αs + ᾱs – 

)
+ λ

[(
αt + ᾱt

)(
αs + ᾱs

)
– 

]}
. ()

Substituting (), (), and () into (), we have

P̂N(n) (t, s) = exp
{
λ

[
(n – )

(
αt + ᾱt

)
+ ( + α)t + ᾱ – (n + )

]}
× exp

{
λ

[
(n – )

(
αs + ᾱs

)
+ ( + α)s + ᾱ – (n + )

]}
× exp

{
λ
[
(n – )

(
αt + ᾱt

)(
αs + ᾱs

)
+ (αt + ᾱ)(αs + ᾱ) + ts – (n + )

]}
. ()

As for (), we get the m.g.f. of BPMA() as

mSn (t, s) = exp
{
λ

[
(n – )

(
αm

X(t) + ᾱmX(t)
)

+ ( + α)mX(t) + ᾱ – (n + )
]}

× exp
{
λ

[
(n – )

(
αm

Y (s) + ᾱmY (s)
)

+ ( + α)mY (s) + ᾱ – (n + )
]}

× exp
{
λ
[
(n – )

(
αm

X(t) + ᾱmX(t)
)(

αm
Y (s) + ᾱmY (s)

)
× (

αmX(t) + ᾱ
)(

αmY (s) + ᾱ
)

+ mX(t)mY (s) – (n + )
]}

. ()

Then

c(t, s) = lim
n→∞


n

log mSn (t, s) – (πt + πs). ()

The proof of Proposition 3.3
We firstly concentrate on the case  < α,α < . The other special cases can be proved
analogously. The p.g.f. of N(n) with base number (t, s) is

P̂N(n) (t, s) = E
[
tN+N+···+Nn sN+N+···+Nn

]
= E

[
t
∑N

j= δ
()
j+

∑N
j= δ

()
jδ

()
j+···+∑N

j=
∏n

m= δ
()
mj
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× s
∑N

j= δ
()
j+

∑N
j= δ

()
jδ

()
j+···+∑N

j=
∏n

m= δ
()
mj

]
× E

[
tε+

∑ε
j= δ

()
j+

∑ε
j= δ

()
jδ

()
j+···+∑ε

j=
∏n

m= δ
()
mj

× sε+
∑ε

j= δ
()
j+

∑ε
j= δ

()
jδ

()
j+···+∑ε

j=
∏n

m= δ
()
mj

]
× · · ·
× E

[
tε,n–+

∑ε,n–
j= δ

()
n,n–,j × sε,n–+

∑ε,n–
j= δ

()
n,n–,j

]
× E

[
tε,n sε,n

]
. ()

The first item of () can be calculated as follows:

E
[
t
∑N

j= δ
()
j+

∑N
j= δ

()
jδ

()
j+···+∑N

j= δ
()
jδ

()
j···δ()

nj

× s
∑N

j= δ
()
j+

∑N
j= δ

()
jδ

()
j+···+∑N

j= δ
()
jδ

()
j···δ()

nj
]

=
∞∑

n=

∞∑
n=

{ n∑
k=

(
n

k

)
tkα

k
 ᾱ

n–k


k∑
k=

(
k

k

)
tkα

k
 ᾱ

k–k


× · · ·

×
k,n–∑
kn=

(
k,n–

kn

)
tknα

kn
 ᾱ

k,n––kn


}

×
{ n∑

k=

(
n

k

)
skα

k
 ᾱ

n–k


k∑
k=

(
k

k

)
skα

k
 ᾱ

k–k


× · · ·

×
k,n–∑
kn=

(
k,n–

kn

)
sknα

kn
 ᾱ

k,n––kn


}

× P(N = n, N = n)

=
∞∑

n=

∞∑
n=

{
αt

[
αt

(
. . .αt(αt + ᾱ) + ᾱ + · · · ) + ᾱ

]
+ ᾱ

}n

× {
αs

[
αs

(
. . .αs(αs + ᾱ) + ᾱ + · · · ) + ᾱ

]
+ ᾱ

}n

× P(N = n, N = n)

= exp
{
λ

[
An(t) – 

]
+ λ

[
Bn(s) – 

]
+ λ

[
An(t)Bn(s) – 

]}
. ()

Here An(t) and Bn(s) are the polynomials ranked n with recursive formulas

A(t) = , B(s) = ,

A(t) = αtA(t) + ᾱ, B(s) = αsB(s) + ᾱ, ()

Ai(t) = αtAi–(t) + ᾱ, Bi(s) = αsBi–(s) + ᾱ

for i = , , . . . , n.
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Analogously, we can calculate the other items of () in the same way,

E
[
tε+

∑ε
j= δ

()
j+

∑ε
j= δ

()
jδ

()
j+···+∑ε

j= δ
()
jδ

()
j···δ()

nj

× sε+
∑ε

j= δ
()
j+

∑ε
j= δ

()
jδ

()
j+···+∑ε

j= δ
()
jδ

()
j ···δ()

nj
]

=
∞∑

n=

∞∑
n=

tn
{
αt

[
αt

(· · ·αt(αt + ᾱ) + ᾱ + · · · ) + ᾱ
]

+ ᾱ
}n

× sn
{
αs

[
αs

(· · ·αs(αs + ᾱ) + ᾱ + · · · ) + ᾱ
]

+ ᾱ
}n

× P(ε = n, ε = n)

= exp
{
λ

[
tAn–(t) – 

]
+ λ

[
sBn–(s) – 

]
+ λ

[
tsAn–(t)Bn–(s) – 

]}
. ()

For the kth item we have

E
[
tεk +

∑εk
j= δ

()
k+,k,j+···+∑εk

j= δ
()
k+,k,jδ

()
k+,k,j ···δ

()
n,k,j

× sεk+
∑εk

j= δ
()
k+,k,j+···+∑εk

j= δ
()
k+,k,jδ

()
k+,k,j···δ

()
n,k,j

]
= exp

{
λ

(
tAn–k(t) – 

)
+ λ

(
sBn–k(s) – 

)
+ λ

(
tsAn–k(t)Bn–k(s) – 

)}
. ()

The second last item is

E
[
tε,n–+

∑ε,n–
j= δ

()
n,n–,j sε,n–+

∑ε,n–
j= δ

()
n,n–,j

]
= exp

{
λ

(
tA(t) – 

)
+ λ

(
sB(s) – 

)
+ λ

(
tsA(t)B(s) – 

)}
()

and the last item is

E
[
tεn sεn

]
= exp

{
λ

(
tA(t) – 

)
+ λ

(
sB(s) – 

)
+ λ

(
tsA(t)B(s) – 

)}
. ()

Combining ()∼(), the p.g.f. of the BPAR() process is

P̂N(n) (t, s) = exp

{
λ

[
An(t) + t

n–∑
i=

Ai(t) – (n + )

]}

× exp

{
λ

[
Bn(s) + s

n–∑
i=

Bi(s) – (n + )

]}

× exp

{
λ

[
An(t)Bn(s) + ts

n–∑
i=

Ai(t)Bi(s) – (n + )

]}

= exp

{
λ

[
t( – An(t) + nᾱ)

 – αt
+ An(t) – (n + )

]}

× exp

{
λ

[
s( – Bn(s) + nᾱ)

 – αs
+ Bn(s) – (n + )

]}

× exp

{
λ

[
ts

 – ααts
L(t, s) + An(t)Bn(s) – (n + )

]}
, ()



Ma et al. Journal of Inequalities and Applications  (2015) 2015:105 Page 17 of 22

where

L(t, s) =  – An–(t)Bn–(s) +
αᾱt( – An–(t) + (n – )ᾱ)

 – αt

+
ᾱαs( – Bn–(s) + (n – )ᾱ)

 – αs
+ (n – )ᾱᾱ.

Then the m.g.f. of BPAR() is

mSn (t, s) = exp

{
λ

[
mX(t)( – An{mX(t)} + nᾱ)

 – αmX(t)
+ An

{
mX(t)

}
– (n + )

]}

× exp

{
λ

[
mY (s)( – Bn{mY (s)} + nᾱ)

 – αmY (s)
+ Bn

{
mY (s)

}
– (n + )

]}

× exp

{
λ

[
mX(t)mY (t)L{mX(t), mY (s)}

 – ααmX(t)mY (t)

+ An
{

mX(t)
}

Bn
{

mY (s)
}

– (n + )
]}

. ()

For the polynomials Ai{mX(t)} and Bi{mY (s)}, i = ,  . . . , n, recalling the recursive for-
mulas in (), we have

Ai(t) = (αt)i + ᾱ(αt)i– + ᾱ(αt)i– + · · · + ᾱ(αt) + ᾱ

=
ᾱ + α(αt)i – (αt)i+

 – αt
;

Bi(s) = (αs)i + ᾱ(αs)i– + ᾱ(αs)i– + · · · + ᾱ(αs) + ᾱ

=
ᾱ + α(αs)i – (αs)i+

 – αs
.

Then, if αmX(t) <  and αmY (s) < , we have Ai{mX(t)} < ∞ and Bi{mY (s)} < ∞ for i =
, , , . . . .

For special situations, if α =  and α > , then An(t) ≡ , and so for the Ak(t)’s, we have

An(t)Bn(s) + ts
n–∑
k=

Ak(t)Bk(s) = Bn(s) + ts
n–∑
k=

Bk(s),

ts
 – ααts

L(t, s) + An(t)Bn(s) = Bn(s) +
ts( – Bn(s) + nᾱ)

 – αs
.

We also can get a symmetrical expression for the α >  and α =  cases.

The proof of Theorem 4.1
The proof processes proceed in a similar way to the ones presented by Glynn and Whitt.
Let ξ i = (Wi – π, Wi – π), i = , , . . . , and S′

n =
∑n

i= ξ i be the net bivariate aggregate
losses of n periods. Before the contexts of proof, we make the bivariate Legendre-Fenchel
transformation on bivariate r.v.’s {S′

i, i = , , . . .},

P̃n,r(A) =
∫

A
e〈r,S′

n〉–cn(r) dPn
(
S′

n ∈ A
)
,
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where A is a (measurable) compact subset of R; 〈·, ·〉 means the standard Euclidean scalar
product, and cn(r) = log E[e〈r,S′

n〉] is the c.g.f. of S′
n with the parameter vector r.

We here define the vector partial order for two vectors X = (X, X) and Y = (Y, Y) ∈ R,
X ≥ Y if and only if X ≥ Y and X ≥ Y, otherwise X ≥ Y does not hold.

Lemma A. Let μ̃ = ( dc(t,s)
dt , dc(t,s)

ds )|t=t∗ ,s=s∗ , where (t∗, s∗) is defined in Theorem .. We write
r∗ = (t∗, s∗), then, for each η > , there exist z ∈ [, ) and n such that

P̃n,r∗
(∣∣∣∣S′

n
n

– μ̃

∣∣∣∣ > η

)
≤ zn, ()

P̃n,r∗
(∣∣∣∣S′

n–k
n

– μ̃

∣∣∣∣ > η

)
≤ zn ()

for n ≥ n and any given k > .

Proof For (), since D = {S′
n; |S′

n/n – μ̃| > η} = D + D + D + D, where

D =
{

S′
n;

∣∣S′
n/n – μ̃

∣∣ > η, S′
n/n ≥ μ̃, S′

n/n ≥ μ̃
}

;

D =
{

S′
n;

∣∣S′
n/n – μ̃

∣∣ > η, S′
n/n ≤ μ̃, S′

n/n ≥ μ̃
}

;

D =
{

S′
n;

∣∣S′
n/n – μ̃

∣∣ > η, S′
n/n ≤ μ̃, S′

n/n ≤ μ̃
}

;

D =
{

S′
n;

∣∣S′
n/n – μ̃

∣∣ > η, S′
n/n ≥ μ̃, S′

n/n ≤ μ̃
}

;

we only prove the inequality in D, the result will be proved similarly in the other segments.
As for D, let ι = (ι, ι) > (, ) such that 〈ι, μ̃〉 > . We also can find a vector ω =

(ω,ω) ≥ (, ) such that S′
n/n – μ̃ ≥ ωη and Sn/n – μ̃ ≥ ωη.

Write v = min{ω,ω} and J = (, ), we have

P̃n,r∗ (D) =
∫

D

e〈r∗ ,S′
n〉–cn(r∗) dPn

(
S′

n ∈ D
)

≤
∫

D

e〈r∗ ,S′
n〉–cn(r∗)+〈ι,S′

n–nμ̃–nvηJ〉 dPn
(
S′

n ∈ D
)

= e–n〈ι,μ̃+vηJ〉
∫

D

e〈r∗+ι,S′
n〉–cn(r∗) dPn

(
S′

n ∈ D
)

≤ e–n〈ι,μ̃+vηJ〉
∫

R
e〈r∗+ι,S′

n〉–cn(r∗) dPn
(
S′

n ∈ R)
= e–n〈ι,μ̃+vηJ〉 × ecn(r∗+ι)–cn(r∗).

Hence by (a) and (b) of Lemma .,

lim sup
n→∞


n

log P̃n,r∗ (Sn/n > μ̃ + vηJ) ≤ c
(
ι + r∗) – c

(
r∗) – 〈ι, μ̃〉 – vη〈ι, J〉,

and by the Taylor expansion, the right-handed side is of order –vη〈ι, J〉+ o(|ι|), as ι ↓ (, ),
() is proved.

For S′
n–k , similarly we have D′ = {S′

n–k ; |S′
n–k/n – μ̃| > η} = D′

 + D′
 + D′

 + D′
, where

D′
 =

{
S′

n–k ;
∣∣S′

n–k/n – μ̃
∣∣ > η, S′

,n–k/n ≥ μ̃, S′
,n–k/n ≥ μ̃

}
;
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D′
 =

{
S′

n–k ;
∣∣S′

n–k/n – μ̃
∣∣ > η, S′

,n–k/n ≤ μ̃, S′
,n–k/n ≥ μ̃

}
;

D′
 =

{
S′

n–k ;
∣∣S′

n–k/n – μ̃
∣∣ > η, S′

,n–k/n ≤ μ̃, S′
,n–k/n ≤ μ̃

}
;

D′
 =

{
S′

n–k ;
∣∣S′

n–k/n – μ̃
∣∣ > η, S′

,n–k/n ≥ μ̃, S′
,n–k/n ≤ μ̃

}
;

we only prove the result in D′
, it can be proved true in the other segments similarly. The

variables ι, v, η, and J are still not changed for D′
. We have

P̃n,r∗
(
D′


) ≤ e–(n–k)〈ι,μ̃+vηJ〉

∫
D′



e〈r∗ ,S′
n〉–cn(r∗)e〈ι,S′

n〉–〈ι,ξn–k++···+ξn〉 dPn
(
S′

n–k ∈ D′

)

≤ e–(n–k)〈ι,μ̃+vηJ〉E
[
e〈ι+r∗ ,S′

n〉–〈ι,ξn–k++···+ξn〉–cn(r∗)]
≤ e–(n–k)〈ι,μ̃+vηJ〉–cn(r∗){E

[
ep〈ι+r∗ ,S′

n〉]}/p{E
[
e–q〈ι,ξn–k++···+ξn〉]}/q

≤ e–(n–k)〈ι,μ̃+vηJ〉–cn(r∗)ecn(p(ι+r∗))/p{E
[
e–q〈ι,ξn–k++···+ξn〉]}/q,

where we use Hölder’s inequality with /p+/q = . Making p ↑ , such that |p(ι+r∗)–r∗| ↓
 and |qι| ↓ . Since {E[e–q〈ι,ξn–k++···+ξn〉]}/q is bounded for large n due to S′

n is stationary,
we get

lim sup
n→∞


n

log P̃n,r∗
(
S′

n–k/n > μ̃ + vηJ
) ≤ –〈ι, μ̃ + vηJ〉 + c

(
p
(
ι + r∗))/p – c

(
r∗),

and by a Taylor expansion it is easy to see that the right-handed side can be chosen strictly
negative by taking p close enough to  and ι close enough to (, ). �

The proof of Theorem 4.1
Let u = (u, u), we first show that lim infu→∞,u→∞{log�max(u) + 〈r∗, u〉} ≥ . Let η > 
be given and let m = m(η) = max{�( + η) u

μ̃
�, �( + η) u

μ̃
�} +  such that {S′

m; S′
m ≥ u} ⊇

{S′
m; S′

m ≥ mμ̃
+η

}.
Then

�max(u) ≥ P
(
S′

m ≥ u
)

= Ẽm,r∗
[
e–〈r∗ ,S′

m〉+cm(r∗); S′
m ≥ u

]
≥ Ẽm,r∗

[
e–〈r∗ ,S′

m〉+cm(r∗); S′
m ≥ mμ̃

 + η

]

= Ẽm,r∗
[

e–〈r∗ ,S′
m〉+cm(r∗);

S′
m

m
– μ̃ ≥ –

ημ̃

 + η

]

≥ Ẽm,r∗
[

e–〈r∗ ,S′
m〉+cm(r∗);

∣∣∣∣S′
m

m
– μ̃

∣∣∣∣ ≤ η|μ̃|
 + η

]

≥ exp

{
–
〈
r∗, mμ̃

〉 + η

 + η
+ cm

(
r∗)}P̃m,r∗

(∣∣∣∣S′
m

m
– μ̃

∣∣∣∣ ≤ η|μ̃|
 + η

)
.

Here, P̃m,r∗ (·) goes to  by Lemma A., and since mμ̃ ≥ ( + η)u, we have

log�max(u) ≥ –( + η)
〈
r∗, u

〉
,

letting η ↓ , then lim infu→∞,u→∞{�max(u) + 〈r∗, u〉} ≥ .
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For lim supu→∞,u→∞{log�max(u) + 〈r∗, u〉} ≤ , we write

�max(u) =
∞∑

n=

P
(
Tmax(u) = n

)
= I + I + I + I,

where

I =
n(δ)∑
n=

P
(
Tmax(u) = n

)
,

I =
�(–δ)ν�∑
n=n(δ)+

P
(
Tmax(u) = n

)
,

I =
�(+δ)ν�∑

n=�(–δ)ν�+

P
(
Tmax(u) = n

)
,

I =
∞∑

n=�(+δ)ν�+

P
(
Tmax(u) = n

)
,

ν = max{u/μ̃, u/μ̃}, and n(δ) is chosen such that cn(r∗)/n < min{δ, (– log z)/} and

P̃n,r∗
(∣∣∣∣S′

n
n

– μ̃

∣∣∣∣ >
δ|μ̃|
 + δ

)
≤ zn, P̃n,r∗

(∣∣∣∣S′
n–k
n

– μ̃

∣∣∣∣ >
δ|μ̃|
 + δ

)
≤ zn

for some z < , all n > n(δ) and any given k > .
Since

P
(
Tmax(u) = n

)
= P

(
S′

n ≥ u
)

= Ẽn,r∗
[
e–〈r∗ ,S′

n〉+cn(r∗); S′
n ≥ u

]
≤ e–〈r∗ ,u〉+cn(r∗)P̃n,r∗

(
S′

n ≥ u
)
,

we have

I ≤ e–〈r∗ ,u〉
n(δ)∑
n=

ecn(r∗);

I ≤ e–〈r∗ ,u〉
�(–δ)ν�∑
n=n(δ)+

ecn(r∗)P̃n,r∗
(
S′

n ≥ u
)

≤ e–〈r∗ ,u〉
�(–δ)ν�∑
n=n(δ)+

e–n/ log zP̃n,r∗
(∣∣∣∣S′

n
n

– μ̃

∣∣∣∣ >
δ|μ̃|
 + δ

)

≤ e–〈r∗ ,u〉
�(–δ)ν�∑
n=n(δ)+

zn

zn/

≤ e–〈r∗ ,u〉
∞∑

n=

zn/ =
e–〈r∗ ,u〉

 – z/ ;

I ≤ e–〈r∗ ,u〉
�(+δ)ν�∑

�(–δ)ν�+

ecn(r∗)
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≤ e–〈r∗ ,u〉
�(+δ)ν�∑

�(–δ)ν�+

en(δ)

≤ e–〈r∗ ,u〉(�δν� + 
)
eδ(+δ)ν ;

and, finally, we can find k such that S′
n–k ≤ u, the last part is

I ≤
∞∑

�(+δ)ν�
P
(
S′

n–k ≤ u, S′
n ≥ u

)

=
∞∑

�(+δ)ν�
Ẽn,r∗

[
e–〈r∗ ,S′

n〉+cn(r∗); S′
n–k ≤ u, S′

n ≥ u
]

≤ e–〈r∗ ,u〉
∞∑

�(+δ)ν�
ecn(r∗)P̃n,r∗

(∣∣∣∣S′
n–k
n

– μ̃

∣∣∣∣ >
δ|μ̃|
 + δ

)

≤ e–〈r∗ ,u〉
∞∑

�(+δ)ν�

zn

zn/

≤ e–〈r∗ ,u〉

 – zn/ .

Thus, the upper bound for �max(u) is

e–〈r∗ ,u〉
{ n(δ)∑

n=

ecn(r∗) +


 – zn/ +
(
�δν� + 

)
eδ(+δ)ν

}
.

Then, using (b) of Lemma ., we get

lim sup
u→∞,u→∞

{
log�max(u) +

〈
r∗, u

〉
– δ( + δ)ν

} ≤ .

Letting δ ↓ , the result is proved.
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