Erratum: On σ-type zero of Sheffer polynomials

Ajay K Shukla*, Shrinivas J Rapeli and Pratik V Shah

"Correspondence:
ajayshukla2@rediffmail.com Department of Mathematics, S.V. National Institute of Technology, Surat, 395 007, India

After publication of our work [1], we realized that there are some mathematical errors in Theorem 2 and Theorem 4. Our aim is to correct and modify Theorems 2 and 4.
Brown [2] discussed that $\left\{B_{n}(x)\right\}$ is a polynomial sequence which is simple and of degree precisely n. $\left\{B_{n}(x)\right\}$ is a binomial sequence if

$$
B_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k}(x) B_{k}(y), \quad n=0,1,2, \ldots,
$$

and a simple polynomial sequence $\left\{P_{n}(x)\right\}$ is a Sheffer sequence if there is a binomial sequence $\left\{B_{n}(x)\right\}$ such that

$$
P_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k}(x) P_{k}(y), \quad n=0,1,2, \ldots
$$

The correct theorem is given as follows.

Theorem $2 A$ necessary and sufficient condition that $p_{n}(x)$ be of σ-type zero and there exists a sequence h_{k} independent of x and n such that

$$
\begin{equation*}
\sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\varepsilon_{i}^{k+1} h_{k}\right) p_{n-k-1}(x)=\sigma p_{n}(x), \tag{3}
\end{equation*}
$$

where $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}$ are roots of unity and r is a fixed positive integer.

Proof If $p_{n}(x)$ is of σ-type zero, then it follows from Theorem 1 (see [1]) that

$$
\sum_{n=0}^{\infty} p_{n}(x) t^{n}=\sum_{i=1}^{r} A_{i}(t)_{0} F_{q}\left(-; b_{1}, b_{2}, \ldots, b_{q} ; x H\left(\varepsilon_{i} t\right)\right) .
$$

This can be written as

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sigma p_{n}(x) t^{n} & =\sum_{i=1}^{r} A_{i}(t) \sigma_{0} F_{q}\left(-; b_{1}, b_{2}, \ldots, b_{q} ; x H\left(\varepsilon_{i} t\right)\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{i=1}^{r}\left(\varepsilon_{i}^{k+1} h_{k}\right) p_{n-k}(x) t^{n+1}=\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\varepsilon_{i}^{k+1} h_{k}\right) p_{n-k-1}(x) t^{n} .
\end{aligned}
$$

© 2015 Shukla et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Thus

$$
\sigma p_{n}(x)=\sum_{k=0}^{n-1} \sum_{i=1}^{r}\left(\varepsilon_{i}^{k+1} h_{k}\right) p_{n-k-1}(x) .
$$

This gives the proof of the statement.

The correct theorem is given as follows.

Theorem 4 A necessary and sufficient condition that $p_{n}(x, y)$ be symmetric, a class of polynomials in two variables and σ-type zero, there exists a sequence g_{k} and h_{k}, independent of x, y and n such that

$$
\begin{equation*}
\sigma p_{n}(x, y)=\sum_{k=0}^{n-1} \sum_{i=1}^{r} \varepsilon_{i}^{k+1}\left(g_{k}+h_{k}\right) p_{n-k-1}(x, y) \tag{6}
\end{equation*}
$$

where $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}$ are roots of unity and r is a fixed positive integer.

Proof If $p_{n}(x, y)$ is of σ-type zero, then it follows from Theorem 3 (see [1]) that

$$
\sum_{n=0}^{\infty} p_{n}(x, y) t^{n}=\sum_{i=1}^{r} A_{i}(t)_{0} F_{p}\left(-; b_{1}, b_{2}, \ldots, b_{p} ; x G\left(\varepsilon_{i} t\right)\right)_{0} F_{q}\left(-; c_{1}, c_{2}, \ldots, c_{q} ; y H\left(\varepsilon_{i} t\right)\right)
$$

This can be written as

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sigma p_{n}(x, y) t^{n} & =\sum_{i=1}^{r} A_{i}(t) \sigma_{0} F_{p}\left(-; b_{1}, b_{2}, \ldots, b_{p} ; x G\left(\varepsilon_{i} t\right)\right){ }_{0} F_{q}\left(-; c_{1}, c_{2}, \ldots, c_{q} ; y H\left(\varepsilon_{i} t\right)\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{i=1}^{r} \varepsilon_{i}^{k+1}\left(g_{k}+h_{k}\right) p_{n-k}(x, y) t^{n+1} \\
& =\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \sum_{i=1}^{r} \varepsilon_{i}^{k+1}\left(g_{k}+h_{k}\right) p_{n-k-1}(x, y) t^{n} .
\end{aligned}
$$

Thus

$$
\sigma p_{n}(x, y)=\sum_{k=0}^{n-1} \sum_{i=1}^{r} \varepsilon_{i}^{k+1}\left(g_{k}+h_{k}\right) p_{n-k-1}(x, y)
$$

This is the proof of Theorem 4.

Acknowledgements

Authors are grateful to Prof. MEH Ismail for his comments and suggestions. The second author is thankful to SVNIT, Surat, India for awarding JRF and SRF.

Received: 3 February 2015 Accepted: 3 February 2015 Published online: 06 March 2015

References

1. Shukla, AK, Rapeli, SJ, Shah, PV: On σ-type zero of Sheffer polynomials. J. Inequal. Appl. 2013, 241 (2013). doi:10.1186/1029-242X-2013-241
2. Brown, JW: On multivariable Sheffer sequences. J. Math. Anal. Appl. 69, 398-410 (1979)
