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Abstract
This article deals with the mathematical analysis of the inverse coefficient problem of
identifying the unknown coefficient k(x) in the linear time-fractional parabolic
equation Dα

t u(x, t) = (k(x)ux)x + qux(x, t) + p(t)u(x, t), 0 < α ≤ 1, with mixed boundary
conditions k(0)ux(0, t) =ψ0(t), u(1, t) =ψ1(t). By defining the input-output mappings
�[·] :K → C[0, T ] and �[·] :K → C1[0, T ] the inverse problem is reduced to the
problem of their invertibility. Hence the main purpose of this study is to investigate
the distinguishability of the input-output mappings �[·] and �[·]. This work shows
that the input-output mappings �[·] and �[·] have distinguishability property.
Moreover, the value k(1) of the unknown diffusion coefficient k(x) at x = 1 can be
determined explicitly by making use of measured output data (boundary
observation) k(1)ux(1, t) = h(t), which brings about a greater restriction on the set of
admissible coefficients. It is also shown that the measured output data f (t) and h(t)
can be determined analytically by a series representation. Hence the input-output
mappings �[·] :K → C[0, T ] and �[·] :K → C1[0, T ] can be described explicitly,
where �[k] = u(x, t; k)|x=0 and �[k] = k(x)ux(x, t; k)|x=1.

1 Introduction
The inverse problem of determining unknown coefficient in a linear parabolic equation
by using over-measured data has generated increasing interest from engineers and scien-
tists during the last few decades. This kind of problem plays a crucial role in engineering,
physics, and applied mathematics. The problem of recovering unknown coefficient(s) in
the mathematical model of a physical phenomenon is frequently encountered. Intensive
study has been carried out on this kind of problem, and various numerical methods were
developed in order to overcome the problem of determining unknown coefficients [–].
The inverse problem of an unknown coefficient in a quasi-linear parabolic equation has
been studied by Demir and Ozbilge [, ]. Moreover, the existence and uniqueness of solu-
tions for fractional differential equations with nonlocal and integral boundary conditions
have been studied by Ashyralyev and Sharifov. Also, finite difference methods for frac-
tional parabolic and hyperbolic differential equations with various conditions have been
studied by Ashyralyev et al. [–]. Second order implicit finite difference schemes have
been applied to the right-hand side of the identification problem by Erdogan and Ashyra-
lyev [].

Fractional differential equations are generalizations of ordinary and partial differential
equations to an arbitrary fractional order. By linear time-fractional parabolic equation,
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we mean certain parabolic-like partial differential equation governed by master equations
containing fractional derivatives in time [, ]. The research areas of fractional differ-
ential equations range from theoretical to applied aspects. The main goal of this study
is to investigate the inverse problem of determining unknown coefficient k(x) in a one-
dimensional time fractional parabolic equation. We first obtain the unique solution of
this problem using Fourier method of separation of variables with respect to the eigen-
functions of a corresponding Sturm-Liouville eigenvalue problem under certain condi-
tions []. As the next step, the noisy free measured output data are used to introduce the
input-output mappings �[·] : K → C[, T] and �[·] : K → C[, T]. Finally we investigate
the distinguishability of the unknown coefficient via the above input-output mappings �[·]
and �[·].

Consider now the following initial boundary value problem:

⎧
⎪⎨

⎪⎩

Dα
t u(x, t) = (k(x)ux(x, t))x + qux(x, t) + p(t)u(x, t),  < α ≤ , (x, t) ∈ �T ,

u(x, ) = g(x),  < x < ,
k()ux(, t) = ψ(t), u(, t) = ψ(t),  < t < T ,

()

where �T = {(x, t) ∈ R
 :  < x < ,  < t ≤ T} and the fractional derivative Dα

t u(x, t) is de-
fined in the Caputo-Dzherbashyan sense, that is, Dα

t u(x, t) = (I–αu′)(t),  < α ≤ , Iα being
the Riemann-Liouville fractional integral,

(
Iαf

)
(t) =

{


�(α)
∫ t

 (t – τ )α–f (τ ) dτ ,  < α ≤ ,
f (t), α = .

The left and right boundary value functions ψ(t) and ψ(t) belong to C[, T]. The func-
tions  < c ≤ k(x) < c and g(x) satisfy the following conditions:

(C) k(x) ∈ C[, ].
(C) g(x) ∈ C[, ], g ′() = ψ()

k() , g() = ψ().
(C) p(t) ∈ C[, ].

Under these conditions, initial boundary value problem () has the unique solution u(x, t)
defined in the domain �T = {(x, t) ∈ R

 :  ≤ x ≤ ,  ≤ t ≤ T} which belongs to the
space C(�T ) ∩ W 

t (, T] ∩ C
x (, ). Moreover, it satisfies the equation, initial and bound-

ary conditions. Note that the space W 
t (, T] contains the functions f ∈ C(, T] such that

f ′(x) ∈ L(, T).
Consider the inverse problem of determining the unknown coefficient k(x) from the

Dirichlet type measured output data at the boundary x = ,

u(, t) = f (t), t ∈ (, T],

and the Neumann type measured output data at the boundary x = ,

k()ux(, t) = h(t), t ∈ (, T].

Here u = u(x, t) is the solution of parabolic problem (). The functions f (t) and h(t) are
assumed to be noisy free measured output data. In this context, parabolic problem () will
be referred to as a direct (forward) problem, with the inputs g(x), k(x), q, and p(t). It is
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assumed that the functions f (t), g(t) belong to C[, T], C[, T], respectively, and satisfy
the consistency conditions f () = g() and k()g ′() = h().

Let us denote K := {k(x) ∈ C[, ] : c > k(x) ≥ c > , x ∈ [, ]} ⊂ C[, ], the set of
admissible coefficients k(x). Also, let us introduce the input-output mappings �[·] : K →
C[, T] and �[·] : K → C[, T] where

�[k] = u(x, t; k)|x=, k ∈K.

and

�[k] = k(x)ux(x, t; k)|x=, k ∈K.

Then the inverse problem with the measured output data f (t) and h(t) can be formulated
as follows:

�[k] = f , f ∈ C(, T],

�[k] = h, h ∈ C(, T].

Hence, the inverse problem of determining unknown coefficient k(x) is reduced to the
problem of invertibility of the input-output mappings �[·] and �[·]. This leads us to in-
vestigate the distinguishability of the unknown coefficient via the above input-output map-
pings.

We say that the mappings �[·] : K → C[, T] and �[·] : K → C[, T] have the distin-
guishability property if �[k] 	= �[k] implies k(x) 	= k(x) and the same holds for �[·].
This, in particular, means injectivity of the inverse mappings �– and �–. In this paper,
measured output data of Neumann type at the boundary x =  are used in the identification
of the unknown coefficient. In addition, in the determination of the unknown parameter,
analytical results are obtained.

The paper is organized as follows: In Section , an analysis of the inverse problem with
the single measured output data f (t) at the boundary x =  is given. An analysis of the
inverse problem with the single measured output data h(t) at the boundary x =  is con-
sidered in Section . Finally, some concluding remarks are given in the last section.

2 An analysis of the inverse problem with given measured data f (t)
Consider now the inverse problem with one measured output data f (t) at x = . In order
to formulate the solution of parabolic problem () by using the Fourier method of the
separation of variables, let us first introduce an auxiliary function v(x, t) as follows:

v(x, t) = u(x, t) – ψ(t) + ( – x)
ψ(t)
k()

, x ∈ [, ],

by which we transform problem () into a problem with homogeneous boundary condi-
tions. Hence initial boundary value problem () can be rewritten in terms of v(x, t) in the
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following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα
t v(x, t) – vxx(x, t) = ((k(x) – )vx(x, t))x + k′(x) ψ(t)

k() + p(t)v(x, t) + p(t)ψ(t)
– p(t)( – x) ψ(t)

k() + qvx(x, t) + q ψ(t)
k() – Dα

t ψ(t)
+ Dα

t
ψ(t)
k() – xDα

t
ψ(t)
k() , (x, t) ∈ �T ,

v(x, ) = g(x) – ψ() + ( – x) ψ()
k() ,  < x < ,

k()vx(, t) = , v(, t) = ,  < t < T .

()

The unique solution of the initial boundary value problem can be represented in the
following form []:

v(x, t) =
∞∑

n=

〈
ζ (θ ),φn(θ )

〉
Eα,

(
–λntα

)
φn(x)

+
∞∑

n=

(∫ t


sα–Eα,α

(
–λnsα

)〈
ξ (θ , t – s),φn(θ )

〉
ds

)

φn(x),

where

ζ (x) = g(x) – ψ() + ( – x)
ψ()
k()

,

ξ (x, t) =
((

k(x) – 
)
vx(x, t)

)

x + k′(x)
ψ(t)
k()

+ p(t)v(x, t) + p(t)ψ(t) – p(t)( – x)
ψ(t)
k()

+ qvx(x, t) + q
ψ(t)
k()

– Dα
t ψ(t) + Dα

t
ψ(t)
k()

– xDα
t
ψ(t)
k()

.

Moreover, 〈ζ (θ ),φn(θ )〉 =
∫ 

 φn(θ )ζ (θ ) dθ , Eα,β being the generalized Mittag-Leffler
function defined by

Eα,β (z) =
∞∑

n=

zn

�(βn + α)
.

Assume that φn(x) is the solution of the following Sturm-Liouville problem:

{
–φxx(x) = λφ(x),  < x < ,
φx() = , φ() = .

The Dirichlet type of measured output data at the boundary x =  can be written in terms
of v(x, t) in the following form:

v(, t) + ψ(t) –
ψ(t)
k()

= f (t), t ∈ (, T].

In order to arrange the above solution, let us define the following:

zn(t) =
〈
ζ (θ ),φn(θ )

〉
Eα,

(
–λntα

)
,

wn(t) =
∫ t


sα–Eα,α

(
–λnsα

)〈
ξ (θ , t – s),φn(θ )

〉
ds.

()
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The solution in terms of zn(t) and wn(t) can then be rewritten in the following form:

v(x, t) =
∞∑

n=

zn(t)φn(x) +
∞∑

n=

wn(t)φn(x).

Substituting x =  yields

v(, t) =
∞∑

n=

zn(t)φn() +
∞∑

n=

wn(t)φn().

Taking into account the over-measured data v(, t) + ψ(t) – ψ(t)
k() = f (t),

f (t) = ψ(t) –
ψ(t)
k()

+
∞∑

n=

zn(t)φn() +
∞∑

n=

wn(t)φn() ()

is obtained. Therefore, f (t) can be determined analytically by a series representation.
The set of admissible coefficients can be defined as follows:

K :=
{

k(x) ∈ C[, ] : c > k(x) ≥ c > , x ∈ [, ]
}

.

The right-hand side of identity () defines the input-output mapping �[k] on the set of
admissible source functions K:

�[k](t) := ψ(t) –
ψ(t)
k()

+
∞∑

n=

zn(t)φn() +
∞∑

n=

wn(t)φn(), ∀t ∈ [, T]. ()

The following lemma implies the relation between the parameters k(x), k(x) ∈K at x = 
and the corresponding outputs fj(t) := u(, t; kj), j = , .

Lemma  Let υ(x, t) = υ(x, t; k) and υ(x, t) = υ(x, t; k) be the solutions of direct prob-
lem (), corresponding to the admissible parameters k(x), k(x) ∈ K. If the condition
k() = k() = k(), then the outputs fj(t), j = , , satisfy the following integral identity:

�f (t) =
∞∑

n=

�wn(t)φn(),

for each t ∈ (, T] where �f (t) = f(t) – f(t), �wn(t) = w
n(t) – w

n(t).

Proof By using identity (), the measured output data fj(t) := v(, t) + ψ(t) – ψ(t)
k() , j = , ,

can be written as follows:

f(t) = ψ(t) –
ψ(t)
k()

+
∞∑

n=

z
n(t)φn() +

∞∑

n=

w
n(t)φn(),

f(t) = ψ(t) –
ψ(t)
k()

+
∞∑

n=

z
n(t)φn() +

∞∑

n=

w
n(t)φn(),
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respectively. Note that the definition of zn(t) implies that z
n(t) = z

n(t). Hence, the differ-
ence of these formulas implies the desired result. �

The lemma and the definitions of wn(t) and zn(t) given above enable us to reach the
following conclusion:

Corollary  Let the conditions of Lemma  hold. If, in addition,

〈
ξ (x, t) – ξ (x, t),φn(x)

〉
= , ∀t ∈ (, T],∀n = , , . . .

holds, then f(t) = f(t), ∀t ∈ [, T].

Note that 〈ξ (x, t) – ξ (x, t),φn(x)〉 	=  for some n ∈ N implies that k(x) 	= k(x). Hence
by Lemma  we conclude that k(x) 	= k(x). Moreover, it leads us to the following impor-
tant consequence that the input-output mapping �[k] is distinguishable, i.e. k(x) 	= k(x)
implies �[k] 	= �[k].

Theorem  Let conditions (C), (C) and (C) hold. Assume that �[·] : K → C[, T] is
the input-output mapping defined by () and corresponding to the measured output f (t) :=
u(, t). In this case the mapping �[k] has the distinguishability property in the class of
admissible parameters K, i.e.,

�[k] 	= �[k], ∀k, k ∈K, k(x) 	= k(x).

3 An analysis of the inverse problem with given measured data h(t)
Consider now the inverse problem with one measured output data h(t) at x = . Taking
into account the over-measured data k()(vx(x, t) + ψ(t)

k() ) = h(t),

h(t) = k()

(
ψ(t)
k()

+
∞∑

n=

zn(t)φ′
n() +

∞∑

n=

wn(t)φ′
n()

)

()

is obtained. Therefore, h(t) can be determined analytically. Substituting t =  into this
yields

h() = k()

(
ψ()
k()

+
∞∑

n=

zn()φ′
n()

)

. ()

Hence we obtain the following explicit formula for the value k() of the unknown coeffi-
cient k(x):

k() =
h()

ψ()
k() +

∑∞
n= zn()φ′

n()
.

Under the determined value k() the set of admissible coefficients can be defined as fol-
lows:

K :=
{

k(x) ∈ C[, ] : c > k(x) ≥ c > , x ∈ [, ], k() =
h()

ψ()
k() +

∑∞
n= zn()φ′

n()

}

.
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The right-hand side of identity () defines the input-output mapping �[k] on the set of
admissible parameters K:

�[k](t) := k()

(
ψ(t)
k()

+
∞∑

n=

zn(t)φ′
n() +

∞∑

n=

wn(t)φ′
n()

)

, ∀t ∈ [, T]. ()

The following lemma implies the relation between the parameters k(x), k(x) ∈K at x = 
and the corresponding outputs hj(t) := k()ux(, t; kj), j = , .

Lemma  Let υ(x, t) = υ(x, t; k) and υ(x, t) = υ(x, t; k) be the solutions of direct prob-
lem (), corresponding to the admissible parameters k(x), k(x) ∈ K. The outputs hj(t),
j = , , satisfy the following integral identity:

�h(t) = k()
∞∑

n=

�wn(t)φ′
n(),

for each t ∈ (, T] where �h(t) = h(t) – h(t), �wn(t) = w
n(t) – w

n(t).

Proof By using identity (), the measured output data hj(t) := k()(vx(, t) + ψ(t)
k() ), j = , ,

can be written as follows:

h(t) = k()

(
ψ(t)
k()

+
∞∑

n=

z
n(t)φ′

n() +
∞∑

n=

w
n(t)φ′

n()

)

,

h(t) = k()

(
ψ(t)
k()

+
∞∑

n=

z
n(t)φ′

n() +
∞∑

n=

w
n(t)φ′

n()

)

,

respectively. Note that the definition of zn(t) implies that z
n(t) = z

n(t). Hence, the differ-
ence of these formulas implies the desired result. �

The lemma and the definitions given above enable us to reach the following conclusion:

Corollary  Let the conditions of Lemma  hold. If, in addition,

〈
ξ (x, t) – ξ (x, t),φn(x)

〉
= , ∀t ∈ (, T],∀n = , , . . .

holds, then h(t) = h(t), ∀t ∈ [, T].

Note that 〈ξ (x, t) – ξ (x, t),φn(x)〉 	=  for some n ∈ N implies k(x) 	= k(x). Hence by
Lemma  we conclude that k(x) 	= k(x). Moreover, it leads us to the important conse-
quence that the input-output mapping �[k] is distinguishable i.e. kl(x) 	= k(x) implies
�[k] 	= �[k].

Theorem  Let conditions (C), (C), and (C) hold. Assume that �[·] : K → C[, T] is
the input-output mapping defined by () and corresponding to the measured output h(t) :=
k()ux(, t). In this case the mapping �[k] has the distinguishability property in the class of
admissible parameters K, i.e.,

�[k] 	= �[k], ∀k, k ∈K, k(x) 	= k(x).
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4 Conclusion
The aim of this study was to investigate the distinguishability properties of the input-
output mappings �[·] : K → C[, T] and �[·] : K → C[, T], which are determined by
the measured output data at x =  and x = , respectively. In this study, we conclude that
the distinguishability of the input-output mappings �[·] and �[·] hold which implies the
injectivity of the inverse mappings �– and �–. This provides the insight that compared
to the Dirichlet type, the Neumann type of measured output data is more effective for the
inverse problems of determining unknown coefficients. Moreover, the measured output
data f (t) and h(t) are obtained analytically by a series representation, which leads to the ex-
plicit form of the input-output mappings �[·] and �[·]. We also show that the value of the
unknown coefficient k(x) at x =  is determined by using the Neumann type of measured
output data at x =  which brings about more restrictions on the set of admissible coeffi-
cients. However, k() is not obtained by Dirichlet type of measured output data at x = .
This provides the insight that Neumann type of measured output data is more effective
than Dirichlet type for the inverse problem of determining an unknown coefficient. This
work advances our understanding of the use of the Fourier method of separation of vari-
ables and the input-output mapping in the investigation of inverse problems for fractional
parabolic equations. The authors plan to consider various fractional inverse problems in
future studies, since the method discussed has a wide range of applications.
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