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Abstract

In this article, we obtain two interesting families of partial finite sums of the
reciprocals of the Fibonacci numbers, which substantially improve two recent results
involving the reciprocal Fibonacci numbers. In addition, we present an alternative and
elementary proof of a result of Wu and Wang.
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1 Introduction
The Fibonacci sequence [1], Sequence A000045 is defined by the linear recurrence relation

F,=F,1+F,, forn>2,

where F,, is the nth Fibonacci number with Fy = 0 and F; = 1. There exists a simple and
non-obvious formula for the Fibonacci numbers,

5

The Fibonacci sequence plays an important role in the theory and applications of math-

ematics, and its various properties have been investigated by many authors; see [2-5].

In recent years, there has been an increasing interest in studying the reciprocal sums
of the Fibonacci numbers. For example, Elsner et al. [6-9] investigated the algebraic rela-
tions for reciprocal sums of the Fibonacci numbers. In [10], the partial infinite sums of the
reciprocal Fibonacci numbers were studied by Ohtsuka and Nakamura. They established
the following results, where | -] denotes the floor function.

Theorem 1.1 Foralln> 2,
oo -1 . .
Z i _ F, o, if nis even; 1)
pan F; - F,>-1, ifnisodd. '
Theorem 1.2 For each n>1,
oo -1 . .
Z i ) EuFua -1, if nis even; (1.2)
pa F} F,F,1, ifn is odd. '
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Further, Wu and Zhang [11, 12] generalized these identities to the Fibonacci polynomials
and Lucas polynomials and various properties of such polynomials were obtained.

Recently, Holliday and Komatsu [13] considered the generalized Fibonacci numbers
which are defined by

Gn+2 = ﬂGn+1 + Gnr n>0

with Gy = 0 and G; =1, and a is a positive integer. They showed that

oo 1
Z 1 ) G =G, if nis even and n > 2; (1.3)
— Gk " 1G,-G,1-1, ifnisoddandn>1 '
and
[o¢] 1 -1 . .
Z 1 _ aG,G,_1 -1, ifnisevenandn>2; (1.4)
p G; aG,G,_1, if nis odd and n > 1. '

More recently, Wu and Wang [14] studied the partial finite sum of the reciprocal Fi-
bonacci numbers and deduced that, for all # > 4,

L(Z %) J =Foa. (15)
k=n

Inspired by Wu and Wang’s work, we obtain two families of partial finite sums of the re-
ciprocal Fibonacci numbers in this paper, which significantly improve Ohtsuka and Naka-

mura’s results, Theorems 1.1 and 1.2. In addition, we present an alternative proof of (1.5).

2 Reciprocal sum of the Fibonacci numbers
We first present several well known results on Fibonacci numbers, which will be used
throughout the article. The detailed proofs can be found in [5].

Lemma 2.1 Let n > 1, we have

F} = Fy1Fp = (1) (2.1)
and

F,Fy + Fau1Fpi1 = Faspnn (2.2)
if a and b are positive integers.

As a consequence of (2.2), we have the following result.

Corollary 2.2 For all n > 1, we have

Fyy = Fy1Fy + FyFys, (23)
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F2n+1 = Fz + F;,ZHP (24)
F2n+l = F}’l—an+1 + FnFn+2- (25)

It is easy to derive the following lemma and we leave the proof as a simple exercise.

Lemma 2.3 For each n > 1, we have
Fn+1Fn+2 - Fn—an = F2n+l' (26)
We now establish two inequalities on Fibonacci numbers which will be used later.

Lemma 2.4 Ifn> 6, then
Fn—ZFn—l > Fn+1~ (27)
Proof 1t is easy to see that

Fn—ZFn—l - Fn+1 = Fn—ZFn—l - (Fn—l + FVI)
= n—ZFn—l - Fn—l - (Fn—Z + Fn—l)

= (Fy2 = 2)Fy — Fuoa.
Sincen>6,F, ,—2>1.S0
FyoF, 1 —Fua>F,1—F,5>0,
which completes the proof. d

Lemma 2.5 For each n > 3, we have
F3,1(Fy + Fy_3) > FyoFy 1 FF 1. (2.8)
Proof Applying (2.2), we get
F3y1=Fy1Fou 1 + FyFoy.
Thus
F31(Fy + Fy_3) > (FyrFay + EyFon)Fy > F2Fy, > F, 1 F,Fy,.
Employing (2.3), we have
Fyy > FyFy > FyaFpp,

which yields the desired equation (2.8). O
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The following are some inequalities on the sum of reciprocal Fibonacci numbers.

Proposition 2.6 For all n > 2, we have

2n
1 1
— . (2.9)
Fk Fn—Z +1
k=n
Proof Forall k > 2,
1 1 1 _ F.—Fi -1 1
Fio+l F Foa+l FFa+1) Feg+1
~ (Fea = D)(Fa +1) = FiFra — Fi
(Fr—z + 1) (Fr1 + DF
P, -FF-1-F
(Fiea + 1)(Fxr + DF
Invoking (2.1), we obtain F,f_l — FyFy_y = (-1). Therefore,
1 1 1 (D)-1-F
Fio+1 Fo Fi+1  (Fo+1)(Fe + DFC
Now we have
i 1 1 1 i (<11 41+ F,
_ = — +
— Fc Fia+l Fyua+l = (b + 1)(Ea + DE
2n
1 1 1
e ETTE)
Fpo+1l  Foya+1 4= (Fra+1)(F +1)
1 1 1
> + - .
Fn—Z +1 (Fn—2 + 1)(Fn—1 + 1) F2n—1 +1
Because of (2.5), we have
Foyi+1—=(Fyop + D(Fyo1 +1) = Fopot — FpoFy1 = Fyg — Fpg
= ,2,_2 +Fy 1B — F,
> 0.
Thus, we arrive at
2n 1 1
YL
Fk Fn_g +1
k=n
This completes the proof. O
Proposition 2.7 Assume that m > 2. Then, for all even integers n > 4, we have
mn
1 1
— < . (2.10)
Fk Fn—Z

k=n
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Proof By elementary manipulations and (2.1), we deduce that

1 1 1 (-1)k
_——— == k>3
Fro Fr Fo  FoFoaFr
Hence, for n > 3, we have

mn mn k-1
1 1 1 -1
111§
Fr Fuo Fua Fy_oFi_1Fy

k=n k=n

Since n is even,

mn (_1)k—1
— <0,
kXﬂ; Fy oFp 1 F

from which we conclude that

mn

1 1
— < .
ken Ek Fh—Z

The proof is complete.

Proposition 2.8 Ifn > 5 is odd, then

2n 1 1
PERI
}% EQ—Z

k=n

Proof 1t is straightforward to check that the statement is true when n = 5.

Now we assume that # > 7. Since # is odd, we have

2n (_l)k—l

F—F 7 <0.
oy D2 b1k

Applying (2.7) and (2.6) yields

1 1 1 1
FyoFuiFy  Foua ) FyFun  Fou
_ By - FFun
 FyFunFou
_ FuaFun
" FyFuiiFon
<0.

Employing (2.11) and the above two inequalities, (2.12) follows immediately.

Proposition 2.9 Let m > 3 be given. If n > 3 is odd, we have

mn

1 1
—_— > .
Fk Fn—Z

k=n

Page 5 of 13

(2.11)

(2.12)

(2.13)
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Proof It is easy to see that

3m

1 1
2R
k=3 k 1

thus (2.13) holds for # = 3. Now we assume that #n > 5.
Based on (2.11) and using the fact # is odd, we have

<1 1 1 1 1 < (=1
—_— = — + —_ —_ + - G
ken Fk Fn—2 Fn—ZFn—an Fn—IFnFnH an—l Py Fk—ZFk—IFk
It is clear that
mn
-1 k-1
Fi( ; 7 > 0.
P k=2Lk-1Lk
Since m > 3 and invoking (2.8), we obtain
an—l(Fn—3 + Fn) > FBn—l(Fn—S + Fn) > FVI—ZFVI—IF}’IFVI+1)
which implies
1 1 1 F,.—-F, > 1
Fn—ZFn—an Fn—anFn+l an—l Fn—ZFn—anFn+l an—l
_ Fn,g + Fn Fn,g + Fn
Fn—ZFn—anFrH-l an—l(Fn—S + Fn)
> 0.
Therefore, (2.13) also holds for n > 5. O

Now we state our main results on the sum of reciprocal Fibonacci numbers.

Theorem 2.10 For all n > 4, we have

2n 1 -1
{(Z ﬁ) J =F, . (2.14)
k=n

Proof Combining (2.9), (2.10), and (2.12), we conclude that, for all n > 4,

2n

1 1 1
< — < s
Fn—2+1 ng Fn—2

from which (2.14) follows immediately. O

Remark Identity (2.14) was first conjectured by Professor Ohtsuka, the first author of [10].
Based on the formula of F, and using analytic methods, Wu and Wang [14] presented a
proof of (2.14). In contrast to Wu and Wang’s work, the techniques we use here are more
elementary.
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Theorem 2.11 Ifm > 3 and n > 2, then
ZORN F, if n is even;

KZ _> J ) ! L fmisodd (2.15)
1o Fi F,2-1, ifnisodd.

Proof 1t is clear that

2m 1 -1
KZ ﬁ) J =F,. (2.16)
k=2

Combining (2.9) and (2.10), we find that, for all even integers n > 4,

mn

1 1 1
< — < .
Fn—2+1 en Fk Fn—2

(2.17)

Thus (2.16) and (2.17) show that, for all m > 3,

(E#) J-r-

provided that #n > 2 is even.
Next we aim to prove that, for m > 3 and all odd integers n > 3,

mn -1
{(Z %) J =F,,—-1. (2.18)
k=n

If n = 3, we can readily see that

thus (2.18) holds for # = 3. So in the rest of the proof we assume that n > 5.
It is not hard to derive that, for all k > 5,

1 1 1 (-1)*—1+F; 0
- = > V.
Froo—-1 Fo F—-1 F(Fro—1D(Fra—1)

Hence, we get

1 1 1 1
Y —< - < ) (2.19)
k=an Fn—2_1 an—l_1 Fn—Z_l
Finally, combining (2.19) with (2.13) yields (2.18). a

Remark As m — oo, (2.15) becomes (1.1). Hence our result, Theorem 2.11, substantially

improves Theorem 1.1.
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3 Reciprocal square sum of the Fibonacci numbers

We first give several preliminary results which will be used in our later proofs.

Lemma 3.1 Foralln>1,
FnFn+1 - Fn—an+2 = (_l)n_l' (31)
Proof It is easy to show that

FnFn+1 _Fn—an+2 = FnFn+1 _Fn—l(Fn + Fn+1)
=F,Fy—FFyq—FiaFua
= Fn(Fn+1 - Fn—l) - Fn—an+1

= FZ = Fy1Fpa.
Employing (2.1), the desired result follows. d

Proposition 3.2 Given an integer m > 2 and let n > 3 be odd, we have

mn 1 1
Y < ) (3.2)
£~ F} " FuiF,

Proof 1t is straightforward to check that, for each k > 2,

1 1 1 1

FiaFre FP  Fp, FraFre

B FiF}, \Fs2 = Fxo1F2  Frio — Foi FiFroo — Fro1 FeFron
Fy 1 FFFE, Froo

_ FkFia(FeaFroo — B Fr) — FraFroo(EZ,, + FY)
B FFPFL Freo

 (FxFra = Fx1Frs2)Foxn

 RBaFRFFro

(DM

- EFRF Frn’

where the last equality follows from (3.1).

Since # is odd, we have

1 1 1 1
Fn—an Fn Fn+1 Fn+an+2

If m is even, then

mn

1 1 1 1
Z -2 < - < .
Fk Fn—an ananH Fn—IFn

k=n
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If m is odd, then

- 1 1 1 1 1
=R - *m Sf -
Fk Fn—an an—lan F, Fn—IFn

mn

Thus, (3.2) always holds. O

Proposition 3.3 Let n be odd, then we have

2n

1 1
Yo os—— (3.3)
F27 F, F,+1

k=n

Proof Invoking (2.1), we can readily derive that

_ 2F 1 Fr+1 . . .
11 1) HEGRDERaD if k is odd;
FiaFe+1 F} FFraq+1 2Bl e s even.

FZ(Fx_1 Fx+1) (FiFpep +1)

Now we have

2n

1 1 2F, 1 Fy +1
Z - "\ e
k=n Fk Fn—IFn +1 Fn (Fn—an + 1)(FnFn+1 + 1)

n 2Fn+1Fn+2+1 roe
F3+1(F}’IFVI+1 + 1)(Fy1Fps2 + 1)

2F2nF2n+l +1 > 1
+ —
F22n(F2n—1F2n + 1)(F2nF2n+1 + 1) F2nF2n+1 +1
1 2F, 1 F, +1 1

> + - .
Fn—an+1 Fy%(Fn—an"'l)(FnFnH"'l) F2nF2n+l +1

It is obvious that 2F;_1 Fy > Fy_1Fy.1. From (2.1) and the fact that # is odd, we obtain

2Fyl_1Fn +1 - Fn—an+1 +1 _ Fﬁ
EE - F F

=1,

which implies that

2n

1 1 1 1
Z = > + - .
k=n Fk Fn—an +1 (Fn—an + 1)(FnFn+l + 1) FZnF2n+l +1

By (2.3) and (2.4), we have

FyuFonia +1> (FyaFy + FuFp) (Fi + Fly)

> (Fn—an + 1)(FnFn+l + 1):

from which we conclude that
2n 1 1
Skt
— F; F,aF,+1

The proof is complete. d
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Proposition 3.4 Suppose that m > 2 and n > 0 is even. Then

mn 1 1
L EELET
k=n Tk n-14n

Proof Applying (2.1), we can rewrite F}’ as
F} = Fi FiFa + (-1)F'FL
In addition,

(Fx-1Fx = 1)(FxFia1 = 1) = Fe1 FgFron — Fxaa Fr — FxFran +1

= Fk—lF/%FkH - 2Fk—le - F]? +1

Combining (3.5) and (3.6) yields

1 1 1 E} 1
FaF -1 1?,3 " FFea-1  (FaFe-D)(FeFra —1) I'Tf
2RO F -1+ F +(-1)"'F}
 (FaF—1)(FeFra - DE
- 2F 1 Fr -1
= (Fx-1Fi — 1)(FxFya1 - )F?
> 0.

Therefore,

A1 1 1 1
St S
Fk Fn—an_l anan+1_1 Fn—an_l

k=n

which completes the proof.

Proposition 3.5 Ifn > 0 is even, then
2n

1 1
PR
F2” F,F,

=n

Proof Employing (2.1), we can deduce that

1 1 1 (=1)k-1

FFe I'T,f " EFea F1F2Fi

Hence, since # is even, we have

i 11 & (A 1
—_— + —
p F}  Fu1F, pa FiaFfFea FaFaun

1 < 1 1 1 )
= + — _
Fn—an Fn—ngFrH-l FnF2 Fn+2 F2nF2n+l

n+l

2n-1
+
k=n+2

(-1)* 1
2 + 2 ‘
Fk—le Fk+1 FZn—lenFZnJrl

Page 10 of 13

(3.4)

(3.5)
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It is easy to see that

2n-1 (_1)k71

>0,
FraFiFra

k=n+2

thus

| 1 1 1
Z_2>F £, "\F,_P°F
Fk n-14n n-14 ;' n+l FF F

k=n n+l

We claim that

FZnF2n+1

Page 11 0of 13

)

1 1 1
5 > 0.
Fn_anFn+1 F Fn+1F F2nF2n+1
First, by (2.6), we have
1 1 L Fapn Fyun
Fy,1F2F, F,F. Fny FoFon F,yF2F2 Fny FpF2.,

It follows from (2.3), (2.4), and (2.5) that

F2n > Fn—an:
2
F2n+1 > F,,H_p

F2n+1 > FVIFVI+2)
which implies that

Fy,F2 .. > F,  F>F |F,.

n" n+l

Thus we obtain

1 1 1
Fy1F2F,  F,F2 Fny  FouFoun

n+l

>0,

which yields the desired (3.7).

O

Now we introduce our main result on the square sum of reciprocal Fibonacci numbers.

Theorem 3.6 Foralln>1and m > 2, we have

1
f: 1 _ ) FuFus ifnis odd;
F} | E.Ei -1, ifniseven.

k=n

(3.8)

Proof We first consider the case when # is odd. If n = 1, the result is clearly true. So we

assume that n > 3.
It follows from (3.3) that

Zp—Z

k=n

an +1

(3.9)
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Employing (3.2) and (3.9) yields
1 — 1 1
—< Z — <=
Fy,_an +1 on Fk Fn_an
which implies that, if # > 0 is odd, we have
mn 1 -1
> 7 =F,F,_..

k=n "k

We now consider the case where # > 0 is even. It follows from (3.7) that

mn 2n
1 1 1

E — > E — > . (3.10)

pa F? pa F? " Fu,F,

Combining (3.4) and (3.10), we arrive at

1 o1 1
S et
F,_1F, — F; F,.F, -1
from which we find that, if # > 0 is even,

-1
mn
1

> = =F,F1 -1
2 n+n
k=n Fk
This completes the proof. O

Remark Theorem 1.2 can be regarded as the limiting case as m — oo in (3.8).
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