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1 Introduction
Let X and Y be real locally convex Hausdorff topological vector spaces, whose dual spaces,
X∗ and Y ∗, are endowed with the weak∗-topologies w∗(X∗, X) and w∗(Y ∗, Y ), respectively.
Let f : X → R := R∪ {+∞}, g : Y → R be proper convex functions, and let A : X → Y be a
linear operator such that A(dom f ) ∩ dom g �= ∅. The classical form of convex optimization
problem in the absence of data uncertainty is (see, for example, [–])

(P) inf
x∈X

{
f (x) + g(Ax)

}
(.)

and its Fenchel dual problem is

(D) sup
y∗∈Y∗

{
–f ∗(–A∗y∗) – g∗(y∗)}, (.)

where f ∗ and g∗ are the Fenchel conjugates of f and g , respectively, and A∗ : Y ∗ → X∗ is
the adjoint operator of A.

It is well known that the optimal values of these problems, v(P) and v(D), respectively,
satisfy the so-called weak duality (i.e., v(P) ≥ v(D)), but a duality gap may occur (i.e., we
may have v(P) > v(D)). A challenge in convex analysis has been to give sufficient conditions
which guarantee the strong duality, that is, v(P) = v(D) and (D) has at least an optimal
solution, and guarantee the converse strong duality, which corresponds to the situation
in which v(P) = v(D) and (P) has at least an optimal solution (see, for instance, [, , ]).
Several interiority-type conditions and epigraph type conditions have been given in order
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to establish the strong duality and the converse strong duality for the problem (P) and
problem (D) in the literature (cf. [, , –] and the references therein). Especially, Li et al.
established in [] the strong duality and the converse strong duality in the most general
setting, that is, f and g are not necessary lower semicontinuous (lsc) and A is not necessary
continuous.

Recently, the mathematical programming problems under uncertainty have received
much attention (cf. [–] and the references therein). The reason is the study of convex
programming problems that are affected by data uncertainty is becoming increasingly im-
portant in optimization in many real-word optimization problems (cf. []). In particular,
Li et al. considered the following uncertain convex programming problem (cf. []):

(P̃) inf
x∈X

sup
(u,u)∈U×U

{
fu (x) + gu (Ax)

}
. (.)

Under some additional assumptions, they established the strong duality between (P̃) and
its dual problem.

Inspired by the works mentioned above, we continue to study the uncertain convex op-
timization problem (P̃) and the problem

(P) sup
(u,u)∈U×U

inf
x∈X

{
fu (x) + gu (Ax)

}
. (.)

Unlike in [], we assume in this paper that fu : X → R, u ∈ U and gu : Y → R, u ∈ U

are proper convex functions (not necessarily lsc), A : X → Y is a linear operator, and U,
U are subsets of a locally convex space Z. Following [], we define the dual problem by

(D) sup
(u,u)∈U×U

sup
y∗∈Y∗

{
–g∗

u

(
y∗) – f ∗

u

(
–A∗y∗)}. (.)

In particular, in the case when U and U are singletons, problems (P̃) and (P) coincide
with the problem (P).

Let v(P), v(P̃) and v(D) denote the optimal values of problems (P), (P̃) and (D), respec-
tively. Obviously, v(D) ≤ v(P) ≤ v(P̃), that is, the weak dualities hold between (P) and (D)
and between (P̃) and (D). Our main aim in the present paper is to give some new regularity
conditions which completely characterize the strong dualities and the stable strong duali-
ties between (P) and (D) and between (P̃) and (D), and provide sufficient and/or necessary
conditions for the total duality, the converse dualities between (P) and (D). Most results
obtained in this paper seem new and are proper extensions of the known results in [, ];
in particular, our Theorem . extends and improves the result in [], Theorem ., and,
even in the special case when U and U are singletons, our Corollary . improves the
corresponding result in [], Theorem ..

This paper is organized as follows. The next section contains some necessary notations
and preliminary results. In Section , we give some new regularity conditions which com-
pletely characterize the strong dualities and the stable strong dualities between (P) and (D)
and between (P̃) and (D). Some sufficient and/or necessary conditions for the total duality
and the converse duality between (P) and (D) are given in Sections  and , respectively.
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2 Notations and preliminary results
The notations used in the present paper are standard (cf. []). In particular, we assume
throughout the whole paper that X and Y are real locally convex Hausdorff topological
vector spaces, and let X∗ denote the dual space of X, endowed with the weak∗-topology
w∗(X∗, X). By 〈x∗, x〉, we shall denote the value of the functional x∗ ∈ X∗ at x ∈ X; i.e.,
〈x∗, x〉 = x∗(x). Let Z ⊂ X, the interior, closure, convex hull, and the convex conical hull of
Z are denoted by int Z, cl Z, co Z, and cone Z, respectively. If W ⊆ X∗, then cl W denotes
the weak∗-closure of W . For the whole paper, we endow X∗ ×R with the product topology
of w∗(X∗, X) and the usual Euclidean topology.

The indicator function δZ : X →R of the nonempty set Z is defined by

δZ(x) :=

⎧
⎨

⎩
, x ∈ Z,

+∞, otherwise.

Let f : X → R be a proper convex function. The effective domain, the epigraph and the
conjugate function of f are defined, respectively, by

dom f :=
{

x ∈ X : f (x) < +∞}
,

epi f :=
{

(x, r) ∈ X ×R : f (x) ≤ r
}

and

f ∗(x∗) := sup
{〈

x∗, x
〉
– f (x) : x ∈ X

}
for each x∗ ∈ X∗.

By definition, the Young-Fenchel inequality holds:

f (x) + f ∗(x∗) ≥ 〈
x, x∗〉 for each pair

(
x, x∗) ∈ X × X∗. (.)

The lsc hull and the lsc convex hull of f , denoted respectively by cl f and cl(co f ), are de-
fined by

epi(cl f ) = cl(epi f ) and epi
(
cl(co f )

)
= cl

[
co(epi f )

]
.

If cl f is proper, then the following equality holds (cf. []):

f ∗∗ = cl f .

If g , h are proper, then

epi g∗ + epi h∗ ⊆ epi(g + h)∗

and

g ≤ h ⇒ g∗ ≥ h∗ ⇔ epi g∗ ⊆ epi h∗.
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In particular, let p ∈ X∗. Define a function on X that p(x) := 〈p, x〉 for each x ∈ X. Then, for
any a ∈ R and any function h : X →R,

(h + p + a)∗
(
x∗) = h∗(x∗ – p

)
– a for each x∗ ∈ X∗;

epi(h + p + a)∗ = epi h∗ + (p, –a). (.)

Let x ∈ dom f . The subdifferential of f at x is the convex set defined by

∂f (x) :=
{

x∗ ∈ X∗ : f (x) +
〈
x∗, y – x

〉 ≤ f (y) for all y ∈ X
}

.

Then, by definitions,

 ∈ ∂f (x) ⇔ x is a minimizer of f (.)

and

(
x∗,

〈
x∗, x

〉
– f (x)

) ∈ epif ∗ for all x∗ ∈ ∂f (x).

Moreover, by [], Theorem ..(iii), the Young equality holds

f (x) + f ∗(x∗) =
〈
x∗, x

〉 ⇔ x∗ ∈ ∂f (x). (.)

For functions g, h : X → R, we define the infimal convolution of g and h as the function
g �h : X →R∪ {±∞} given by

(g �h)(a) := inf
x∈X

{
g(x) + h(a – x)

}
.

If g and h are lsc and dom g ∩ dom h �= ∅, then by [] we have that

(g �h)∗ = g∗ + h∗, (g + h)∗ = cl
(
g∗ �h∗)

and

epi g∗ + epi h∗ ⊆ epi
(
g∗ �h∗) ⊆ cl

(
epi g∗ + epi h∗).

3 Robust stable Fenchel duality
Let X, Y and Z be real locally convex Hausdorff topological vector spaces, U and U be
subsets of Z. Let fu : X → R, u ∈ U, and gu : Y → R, u ∈ U be proper convex func-
tions, A : X → Y be a linear operator such that

⋂
(u,u)∈U×U

[A(dom fu ) ∩ (dom gu )] �= ∅.
For simplicity, we denote

u := (u, u) and U := U × U.

We shall consider the identity map idR on R, and the image set (A∗ × idR)(epi g∗
u ) of epi g∗

u

through the map A∗ × idR : Y ∗ ×R → X∗ ×R, that is,

(
x∗, r

) ∈ (
A∗ × idR

)(
epi g∗

u

) ⇔
⎧
⎨

⎩
∃y∗ ∈ Y ∗ such that (y∗, r) ∈ epi g∗

u

and A∗y∗ = x∗.
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Given p ∈ X∗, consider the following robust optimization problems with a linear pertur-
bation:

(Pp) sup
u∈U

inf
x∈X

{
fu (x) + gu (Ax) – 〈p, x〉} (.)

and

(P̃p) inf
x∈X

sup
u∈U

{
fu (x) + gu (Ax) – 〈p, x〉}.

We define the corresponding Fenchel dual problem by

(Dp) sup
u∈U

sup
y∗∈Y∗

{
–g∗

u

(
y∗) – f ∗

u

(
p – A∗y∗)}. (.)

As usual, we use v(Pp), v(P̃p) and v(Dp) to stand for the optimal values of the problems
(Pp), (P̃p) and (Dp), respectively, that is,

v(Pp) := sup
u∈U

inf
x∈X

{
fu (x) + gu (Ax) – 〈p, x〉},

v(P̃p) := inf
x∈X

sup
u∈U

{
fu (x) + gu (Ax) – 〈p, x〉},

and

v(Dp) := sup
u∈U

sup
y∗∈Y∗

{
–g∗

u

(
y∗) – f ∗

u

(
p – A∗y∗)}.

By definitions, it is easy to check that the following inequalities hold:

v(Dp) ≤ v(Pp) ≤ v(P̃p) for each p ∈ X∗. (.)

Moreover, by definitions, we can get that

v(Pp) = sup
u∈U

[
–(fu + gu ◦ A)∗(p)

]
= – inf

u∈U
(fu + gu ◦ A)∗(p) (.)

and

v(Dp) = sup
u∈U

[
–
(
f ∗
u �A∗g∗

u

)
(p)

]
= – inf

u∈U

(
f ∗
u �A∗g∗

u

)
(p). (.)

In particular, in the case when p = , problems (Pp), (P̃p) and (Dp) are just problems (P),
(P̃) and (D), which are defined by (.), (.) and (.), respectively. Furthermore, by (.)
and (.), the following equalities hold:

v(P) = – inf
u∈U

(fu + gu ◦ A)∗(), (.)

and

v(D) = – inf
u∈U

(
f ∗
u �A∗g∗

u

)
().
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This section is devoted to the study of the strong dualities and stable strong dualities
between (P) and (D) and between (P̃) and (D), which are defined as follows.

Definition . It is said that
(i) the strong duality holds between (P) and (D) (resp., between (P̃) and (D)) if

v(P) = v(D) (resp., v(P̃) = v(D)) and (D) has an optimal solution;
(ii) the stable strong duality holds between (P) and (D) (resp., between (P̃) and (D)) if

for each p ∈ X∗, the strong duality holds between (Pp) and (Dp) (resp., between (P̃p)
and (Dp)).

Remark . Clearly, if the strong duality holds between (P̃p) and (Dp), by (.), then the
strong duality holds between (Pp) and (Dp). However, the converse is not true in general.

Definition . The family (fu , gu ; A; U) is said to satisfy
(a) the strong further regularity condition (SFRC) if

cl

[
co

⋃

u∈U

epi(fu + gu ◦ A)∗
]

∩ ({} ×R
)

⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

)) ∩ ({} ×R
)
; (.)

(b) the asymptotic further regularity condition (AFRC) if

cl

[⋃

u∈U

epi(fu + gu ◦ A)∗
]

∩ ({} ×R
)

⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

)) ∩ ({} ×R
)
; (.)

(c) the further regularity condition (FRC) if

⋃

u∈U

epi(fu + gu ◦ A)∗ ∩ ({} ×R
)

⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

)) ∩ ({} ×R
)
; (.)

(d) the strong closure condition (SCC) if

cl

[
co

⋃

u∈U

epi(fu + gu ◦ A)∗
]

⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

))
; (.)

(e) the asymptotic closure condition (ACC) if

cl

[⋃

u∈U

epi(fu + gu ◦ A)∗
]

⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

))
; (.)

(f ) the closure condition (CC) if

⋃

u∈U

epi(fu + gu ◦ A)∗ ⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

))
. (.)
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Remark . (i) Note from [], Lemma ., that

epi f ∗
u +

(
A∗ × idR

)(
epi g∗

u

) ⊆ epi(fu + gu ◦ A)∗ for each u ∈ U .

It follows that

⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

)) ⊆
⋃

u∈U

epi(fu + gu ◦ A)∗

⊆ cl

[⋃

u∈U

epi(fu + gu ◦ A)∗
]

⊆ cl

[
co

⋃

u∈U

epi(fu + gu ◦ A)∗
]

. (.)

Thus, the inclusions in (.)-(.) can be replaced by equalities. Moreover, by (.), we
see that

(SFRC) ⇒ (AFRC) ⇒ (FRC)

and

(SCC) ⇒ (ACC) ⇒ (CC).

(ii) Recall from [], Definition ., that the triple (f , g; A) satisfies the (CC)A if

epi(f + g ◦ A)∗ = epi f ∗ +
(
A∗ × idR

)(
epi g∗),

and from [], Definition ., that the triple (f , g; A) satisfies the (FRC)A if

(f + g ◦ A)∗() ≥ (
f ∗ �A∗g∗)(),

and there exists x∗ ∈ X∗ such that (f ∗ �A∗g∗)() = f ∗(–x∗) + (A∗g∗)(x∗) and the infimum
in the definition of (A∗g∗)(x∗) is attained, where f ∗ �A∗g∗ denotes the infimal convolution
of f ∗ and A∗g∗. By [], Proposition ., the (FRC)A for the triple (f , g; A) is equivalent to

epi(f + g ◦ A)∗ ∩ ({} ×R
) ⊆ (

epi f ∗ +
(
A∗ × idR

)(
epi g∗)) ∩ ({} ×R

)
.

Thus, in the case when U and U are singletons, (SFRC), (AFRC) and (FRC) are same
and turned into (FRC)A for the triple (f , g; A); meanwhile, (SCC), (ACC) and (CC) for the
triple (fu , gu ; A; U) are same as (CC)A for the triple (f , g; A).

The following proposition describes the relationship between the (SCC) (resp., the
(ACC), the (CC)) and the (SFRC) (resp., the (AFRC), the (FRC)).

Proposition . The family (fu , gu ; A; U) satisfies the (SCC) (resp., the (ACC), the (CC))
if and only if for each p ∈ X∗, (fu – p, gu ; A; U) satisfies the (SFRC) (resp., the (AFRC), the
(FRC)).
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Proof Let p ∈ X∗ and let K(p), K(p) be defined by

K(p) :=
⋃

u∈U

epi(fu – p + gu ◦ A)∗

and

K(p) :=
⋃

u∈U

(
epi(fu – p)∗ +

(
A∗ × idR

)(
epi g∗

u

))
,

respectively. Then, by (.), the following equalities are clear:

K(p) = K() + (–p, ) and K(p) = K() + (–p, ).

Hence, we have that

K(p) ∩ ({} ×R
)

= K() ∩ ({p} ×R
)

+ (–p, )

and

K(p) ∩ ({} ×R
)

= K() ∩ ({p} ×R
)

+ (–p, ).

Thus, the conclusion holds by definitions, and the proof is complete. �

Lemma . Let r ∈R. Then the following assertions hold:
(i) (p, r) ∈ ⋃

u∈U (epi f ∗
u + (A∗ × idR)(epi g∗

u )) if and only if there exist ū = (ū, ū) ∈ U
and y∗ ∈ Y ∗ satisfying

f ∗
ū

(
p – A∗y∗) + g∗

ū

(
y∗) ≤ r.

(ii) Suppose that

fu : X →R, u ∈ U, gu : Y →R, u ∈ U

are lsc and A is continuous.
(.)

Then (p, r) ∈ cl[co
⋃

u∈U epi(fu + gu ◦ A)∗] if and only if v(P̃p) ≥ –r.

Proof Without loss of generality, we assume that p = .
(i) Let (, r) ∈ ⋃

u∈U (epi f ∗
u + (A∗ × idR)(epi g∗

u )). Then there exists ū = (ū, ū) ∈ U such
that (, r) ∈ (epi f ∗

ū
+ (A∗ × idR)(epi g∗

ū
)). Thus, there exist (x∗

 , r) ∈ epi f ∗
ū

and (x∗
, r) ∈

(A∗ × idR)(epi g∗
ū

) such that

x∗
 + x∗

 =  and r + r = r. (.)

Moreover, there exists ȳ∗ ∈ Y ∗ such that A∗ȳ∗ = x∗
 and (ȳ∗, r) ∈ epi g∗

ū
. Consequently,

f ∗
ū

(x∗
 ) ≤ r and g∗

ū
(ȳ∗) ≤ r. This together with (.) implies that

f ∗
ū

(
–A∗y∗) + g∗

ū

(
y∗) = f ∗

ū

(
x∗


)

+ g∗
ū

(
ȳ∗) ≤ r + r = r.
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Conversely, suppose that there exist ū = (ū, ū) ∈ U and y∗ ∈ Y ∗ satisfying

f ∗
ū

(
–A∗y∗) + g∗

ū

(
y∗) ≤ r. (.)

Let x∗
 := –A∗y∗, x∗

 := A∗y∗, r := f ∗
ū

(–A∗y∗) and r := r – r. Then (x∗
 , r) ∈ epi f ∗

ū
, (ȳ∗, r) ∈

epi g∗
ū

and (x∗
, r) ∈ (A∗ × idR)(epi g∗

ū
). Thus,

(, r) =
(
x∗

 , r
)

+
(
x∗

, r
)

∈ epi f ∗
ū +

(
A∗ × idR

)(
epi g∗

ū

)

∈
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

))
.

(ii) Define the function h : X → R by

h(x) := sup
u∈U

{
fu (x) + gu (Ax)

}
for each x ∈ X.

Then, by definition,

h∗() = sup
x∈X

{
– sup

u∈U

{
fu (x) + gu (Ax)

}}
= – inf

x∈X
sup
u∈U

{
fu (x) + gu (Ax)

}
= –v(P̃).

This means

v(P̃) ≥ –r ⇔ h∗() ≤ r ⇔ (, r) ∈ epi h∗. (.)

Note by [], Proposition ., that

epi h∗ = cl

[
co

⋃

u∈U

epi(fu + gu ◦ A)∗
]

.

It follows from (.) that

v(P̃) ≥ –r ⇔ (, r) ∈ cl

[
co

⋃

u∈U

epi(fu + gu ◦ A)∗
]

.

The proof is complete. �

The following theorem provides a characterization for the strong duality between (P)
and (D) in terms of the (AFRC) and the (FRC).

Theorem . Consider the following statements:
(i) The family (fu , gu ; A; U) satisfies the (AFRC).

(ii) The strong duality holds between (P) and (D).
(iii) The family (fu , gu ; A; U) satisfies the (FRC).

Then (i) ⇒ (ii) ⇒ (iii). Furthermore, (i) ⇔ (ii) ⇔ (iii) if and only if

⋃

u∈U

epi(fu + gu ◦ A)∗ ∩ ({} ×R
)

is w∗-closed. (.)
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Proof (i) ⇒ (ii) Suppose that the family (fu , gu ; A; U) satisfies the (AFRC). If v(P) = –∞,
then, by the weak duality, v(D) = –∞. Hence, the conclusion follows automatically. Below
we assume that –r := v(P) ∈ R. Then, by (.), r = infu∈U (fu + gu ◦ A)∗(). Thus, for each
ε > , there exists ū = (ū, ū) ∈ U such that

(fū + gū ◦ A)∗() ≤ r + ε.

This implies that

(, r + ε) ∈ epi(fū + gū ◦ A)∗ ⊆
⋃

u∈U

epi(fu + gu ◦ A)∗.

Letting ε → . We get that

(, r) ∈ cl

[⋃

u∈U

epi(fu + gu ◦ A)∗
]

⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

))
,

where the last conclusion holds by the (AFRC). Then, by Lemma .(i), there exist ū =
(ū, ū) ∈ U and y∗ ∈ Y ∗ such that (.) holds. Thus, by definition of v(D),

v(D) ≥ –g∗
ū

(
y∗) – f ∗

ū

(
–A∗y∗) ≥ –r = v(P).

Therefore, by the weak duality, we see that v(P) = v(D) and ū = (ū, ū) ∈ U and y∗ ∈ Y ∗

are the optimal solution of (D).
(ii) ⇒ (iii) Suppose that the strong duality holds between (P) and (D). Let (, r) ∈

⋃
u∈U epi(fu + gu ◦ A)∗. Then there exists û = (û, û) ∈ U such that (, r) ∈ epi(fû + gû ◦

A)∗. Thus,

–r ≤ –(fû + gû ◦ A)∗() ≤ – inf
u∈U

(fu + gu ◦ A)∗() = v(P),

where the last equality holds by (.). Hence, by (ii), we see that there exist ū = (ū, ū) ∈ U
and y∗ ∈ Y ∗ such that (.) holds. This together with Lemma .(i) implies that (, r) ∈
⋃

u∈U (epi f ∗
u + (A∗ × idR)(epi g∗

u )). Therefore, (.) is seen to hold and the implication (ii)
⇒ (iii) is proved.

Suppose that (.) holds. Then the (FRC) is equivalent to the (AFRC). Thus, (i) ⇔ (ii)
⇔ (iii) and the proof is complete. �

By Theorem . and Proposition ., we get the following theorem straightforwardly.

Theorem . Consider the following statements.
(i) The family (fu , gu ; A; U) satisfies the (ACC).

(ii) The stable strong duality holds between (P) and (D).
(iii) The family (fu , gu ; A; U) satisfies the (CC).

Then (i) ⇒ (ii) ⇒ (iii). Furthermore, (i) ⇔ (ii) ⇔ (iii) if and only if

⋃

u∈U

epi(fu + gu ◦ A)∗ is w∗-closed.
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The following theorem provides a characterization for the strong duality and the stable
strong duality to hold.

Theorem . Suppose that (.) holds. Then the following assertions hold.
(i) The strong duality holds between (P̃) and (D) if and only if the family (fu , gu ; A; U)

satisfies the (SFRC);
(ii) The stable strong duality holds between (P̃) and (D) if and only if the family

(fu , gu ; A) satisfies the (SCC).

Proof Assertion (ii) is a global version of assertion (i). Hence, by Proposition ., we only
need to prove (i). To do this, suppose that the strong duality holds between (P̃) and (D).
Let (, r) ∈ cl[co

⋃
u∈U epi(fu + gu ◦ A)∗]. Then, by Lemma .(ii), we have that v(P̃) ≥ –r.

Since the strong duality holds between (P̃) and (D), it follows that v(D) ≥ –r and there
exist ū = (ū, ū) ∈ U and y∗ ∈ Y ∗ such that (.) holds. This together with Lemma .(i)
implies that (, r) ∈ ⋃

u∈U (epi f ∗
u + (A∗ × idR)(epi g∗

u )). Therefore, (.) holds.
Conversely, suppose that the family (fu , gu ; A; U) satisfies the (SFRC). If v(P̃) = –∞,

then, by the weak duality, v(D) = –∞. Hence, the conclusion follows automatically. Be-
low we assume that –r := v(P̃) ∈R. Then, by Lemma .(ii),

(, r) ∈ cl

[
co

⋃

u∈U

epi(fu + gu ◦ A)∗
]

⊆
⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

))
,

where the last conclusion holds because of the (SFRC). This together with Lemma .(i)
implies that there exist ū = (ū, ū) ∈ U and y∗ ∈ Y ∗ such that (.) holds. It follows that

v(D) ≥ –g∗
ū

(
y∗) – f ∗

ū

(
–A∗y∗) ≥ –r = v(P̃).

Thus, by the weak duality, we see that v(P̃) = v(D) and ū ∈ U , y∗ ∈ Y ∗ are the optimal
solution of (D). Therefore, the strong duality holds between (P̃) and (D) and the proof is
complete. �

Remark . Let X, Y , Z be Banach spaces and let U, U be subsets of Z. Li et al. estab-
lished in [], Theorem ., the strong duality between (P̃) and (D) under the assumptions
that (.) holds and

⋃

u∈U

(
epi f ∗

u +
(
A∗ × idR

)(
epi g∗

u

))
is w∗-closed and convex. (.)

In this case, it is easy to see that (.) is equivalent to the (SFRC). Thus, [], Theorem .,
follows from Theorem . directly.

The corollary follows directly from Theorem ., Theorem . and Definition .. It
provides the friendships between the strong duality of (P̃) and (D) and the strong duality
of (P) and (D).

Corollary . Suppose that (.) holds. Then the following statements are equivalent.
(i) The strong duality holds between (P̃) and (D).
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(ii) The strong duality holds between (P) and (D), and
⋃

u∈U epi(fu + gu ◦ A)∗ ∩ ({} ×R) is w∗-closed and convex.

Combining Corollary . and Proposition ., we have the following corollary.

Corollary . Suppose that (.) holds. Then the following statements are equivalent.
(i) The stable strong duality holds between (P̃) and (D).

(ii) The stable strong duality holds between (P) and (D), and
⋃

u∈U epi(fu + gu ◦ A)∗ is
w∗-closed and convex.

4 Total duality
Recall that the problem (Pp) and the corresponding dual problem (Dp) are defined by (.)
and (.), respectively. Let p ∈ X∗ and u = (u, u) ∈ U , we define the subproblem of the
problem (Pp) by

(
Pu

p
)

inf
x∈X

{
fu (x) + gu (Ax) – 〈p, x〉},

and use v(Pu
p) to denote the optimal value of the problem (Pu

p ). Let (u, u) ∈ U and let
x ∈ ⋂

u∈U [(dom fu ) ∩ A–(dom gu )]. We say the Moreau-Rockafellar formula holds at
(u, u; x) if

∂(fu + gu ◦ A)(x) = ∂fu (x) + A∗∂gu (Ax). (.)

This section is devoted to the study of characterizing the total dualities. For this purpose,
let p ∈ X∗ and S(Pp) denote the optimal solution set of (Pp), that is,

(ū, ū; x) ∈ S(Pp) ⇔ fū (x) + gū (Ax) – 〈p, x〉 = v(Pp),

and for each u = (u, u) ∈ U , let S(Pu
p) denote the optimal solution set of (Pu

p ), that is,

x ∈ S
(
Pu

p
) ⇔ fu (x) + gu (Ax) – 〈p, x〉 = v

(
Pu

p
)
.

Theorem . Let x ∈ ⋂
u∈U [(dom fu )∩A–(dom gu )] and ū = (ū, ū) ∈ U . If the Moreau-

Rockafellar formula holds at (ū, ū; x), then, for each p ∈ X∗ satisfying (ū, ū; x) ∈ S(Pp),

v(Pp) = max
y∗∈Y∗

{
–f ∗

ū

(
p – A∗y∗) – g∗

ū

(
y∗)} = v(Dp). (.)

Conversely, if (.) holds for each p ∈ X∗ satisfying x ∈ S(Pū
p), then the Moreau-Rockafellar

formula holds at (ū, ū; x).

Proof Suppose that the Moreau-Rockafellar formula holds at (ū, ū; x). Let p ∈ X∗ be
such that (ū, ū; x) ∈ S(Pp), that is,

fū (x) + gū (Ax) – 〈p, x〉 = v(Pp). (.)
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Then, by (.), we see that  ∈ ∂(fū – p + gū ◦A)(x), which is equivalent to p ∈ ∂(fū + gū ◦
A)(x). This together with (.) implies that p ∈ ∂fū (x) + A∗∂gū (Ax). Therefore, there
exist p ∈ ∂fū (x) and p ∈ ∂gū (Ax) such that

p = p + A∗p. (.)

Applying the Young equality (.), one has

f ∗
ū (p) + fū (x) = 〈p, x〉 and g∗

ū (p) + gū (Ax) = 〈p, Ax〉.

Noting that 〈p, Ax〉 = 〈A∗p, x〉 and using (.),

f ∗
ū (p) + g∗

ū (p) + fū (x) + gū (Ax) = 〈p, x〉 + 〈p, Ax〉 = 〈p, x〉.

Hence,

–f ∗
ū (p) – g∗

ū (p) = fū (x) + gū (Ax) – 〈p, x〉 = v(Pp);

while, by the definition of v(Dp) and noting p ∈ Y ∗, one has that

v(Dp) ≥ –f ∗
ū

(
p – A∗p

)
– g∗

ū (p) = –f ∗
ū (p) – g∗

ū (p) = v(Pp). (.)

Combining this with the weak duality, we see that

v(Dp) = –f ∗
ū

(
p – A∗p

)
– g∗

ū (p) = v(Pp).

Thus (.) holds.
Conversely, let p ∈ ∂(fū + gū ◦ A)(x). Then  ∈ ∂(fū + gū ◦ A – p)(x) and by (.),

fū (x) + gū (Ax) – 〈p, x〉 ≤ fū (x) + gū (Ax) – 〈p, x〉 for each x ∈ X.

This means x ∈ S(Pū
p). Thus, by (.), we have that

fū (x) + gū (Ax) – 〈p, x〉 ≤ max
y∗∈Y∗

{
–f ∗

ū

(
p – A∗y∗) – g∗

ū

(
y∗)}.

This implies that there exists q ∈ Y ∗ such that

fū (x) + gū (Ax) – 〈p, x〉 ≤ –f ∗
ū

(
p – A∗q

)
– g∗

ū (q).

Noting the above inequality and using the definition of the conjugate function, we see that

 ≤ g∗
ū (q) + gū (Ax) – 〈q, Ax〉 ≤ 〈

p – A∗q, x
〉
– fū (x) – f ∗

ū

(
p – A∗q

) ≤ .

It follows that

g∗
ū (q) + gū (Ax) – 〈q, Ax〉 =  and

〈
p – A∗q, x

〉
– fū (x) – f ∗

ū

(
p – A∗q

)
= .
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Combing this with (.), we have that q ∈ ∂gū (x) and p – A∗q ∈ ∂fū (x). Consequently,

p = p – A∗q + A∗q ∈ ∂fū (x) + A∗∂gū (x)

and the set on the left-hand side of the Moreau-Rockafellar formula is contained in the
set on the right-hand side. This completes the proof because the converse inclusion holds
automatically. �

Remark .
(i) In the case when U and U are singletons, the Moreau-Rockafellar formula (.)

reduces to the Moreau-Rockafellar formula in [], p., which was also introduced
in [] to establish the stable total Fenchel duality for (P) and (D) (see (.) and (.)).

(ii) By Theorem . and Theorem ., it is easy to see that if (ACC) holds, then the
Moreau-Rockafellar formula (.) holds at each
(u, u; x) ∈ U × U × ⋂

u∈U [(dom fu ) ∩ A–(dom gu )].

5 Converse duality
For each p ∈ X and q ∈ Y , we consider the following perturbed robust optimization prob-
lem:

(CP(p,q)) sup
u∈U

inf
x∈X

{
fu (x – p) + gu (Ax + q)

}

and the corresponding dual problem

(CD(p,q)) sup
u∈U

sup
y∗∈Y∗

{〈
Ap + q, y∗〉 – g∗

u

(
y∗) – f ∗

u

(
–A∗y∗)}.

Let u = (u, u) ∈ U . We define the subproblem of (CP(p,q)) by

(
CPu

(p,q)
)

= inf
x∈X

{
fu (x – p) + gu (Ax + q)

}
.

As before, we use v(CP(p,q)), v(CD(p,q)) and v(CPu
(p,q)) to stand for the optimal values of the

problems (CP(p,q)), (CD(p,q)) and (CPu
(p,q)), respectively. Clearly, the weak duality holds, that

is,

v(CD(p,q)) ≤ v(CP(p,q)) for each p ∈ X and q ∈ Y . (.)

Moreover, by definitions, we have the following equalities:

v
(
CPu

(p,q)
)

=
(
gu � (–A)fu

)
(Ap + q), (.)

v(CP(p,q)) = sup
u∈U

(
gu � (–A)fu

)
(Ap + q), (.)

and

v(CD(p,q)) = sup
u∈U

(
g∗

u + f ∗
u ◦ (

–A∗))∗(Ap + q). (.)
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In fact, (.) comes from the definitions, (.) follows from (.), and (.) holds because

(
gu � (–A)fu

)
(Ap + q) = inf

y∈Y

{
gu (q – y) + (–A)fu (Ap + y)

}

= inf
y∈Y

{
gu (q – y) + inf

{
fu (x – p) : –A(x – p) = Ap + y, x ∈ X

}}

= inf
x∈X

{
gu (q + Ax) + fu (x – p)

}

= v
(
CPu

(p,q)
)
.

In particular, in the case when p = q = , problems (CP(p,q)) and (CD(p,q)) are just as the
problem (P) and problem (D), respectively. Thus, by (.), (.) and (.), we see that

v
(
Pu) =

(
gu � (–A)fu

)
(),

v(P) = sup
u∈U

(
gu � (–A)fu

)
(), (.)

and

v(D) = sup
u∈U

(
g∗

u + f ∗
u ◦ (

–A∗))∗(). (.)

Definition . It is said that
(i) the converse duality holds between (P) and (D) if v(P) = v(D) and for each u ∈ U

satisfying v(Pu) = v(P), the problem (Pu) has an optimal solution;
(ii) the stable converse duality holds between (P) and (D) if the converse duality holds

between (CP(p,q)) and (CD(p,q)) for each p ∈ X and q ∈ Y .

To study the converse duality and the stable converse duality between (P) and (D), we
introduce the following regularity conditions.

Definition . The family (fu , gu ; A; U) is said to satisfy
(i) the converse further regularity condition (CFRC) if

⋂

u∈U

epi
(
g∗

u + f ∗
u ◦ (

–A∗))∗ ∩ ({} ×R
)

⊆
⋂

u∈U

[
(epi gu +

(
(–A) × idR

)
(epi fu )

] ∩ ({} ×R
)
; (.)

(ii) the converse closure condition (CCC) if

⋂

u∈U

epi
(
g∗

u + f ∗
u ◦ (

–A∗))∗ ⊆
⋂

u∈U

[
(epi gu +

(
(–A) × idR

)
(epi fu )

]
. (.)

Remark . Recall from [], Definition ., that the triple (f , g; A) satisfies the converse
(FRC)A if

(
g∗ + f ∗ ◦ (

–A∗))∗() ≥ (
g � (–A)f

)
(),
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and there exists y ∈ Y such that (g � (–A)f )() = g(–y) + (–A)f (y) and the infimum in the
definition of (–A)f (y) is attained, where g � (–A)f denotes the infimal convolution of g and
(–A)f , and from [], Definition ., that the triple (f , g; A) satisfies the converse (CC)A if

epi
(
g∗ + f ∗ ◦ (

–A∗))∗ = epi g +
(
(–A) × idR

)
(epi f ).

By [], Proposition ., the converse (FRC)A for the triple (f , g; A) is equivalent to

epi
(
g∗ + f ∗ ◦ (

–A∗))∗ ∩ ({} ×R
) ⊆ (

epi g +
(
(–A) × idR

)
(epi f )

) ∩ ({} ×R
)
.

Thus, in the case when U and U are singletons, the (CFRC) and (CCC) for the family
(fu , gu ; A; U) are reduced into the converse (FRC)A and the converse (CC)A, respectively,
for the triple (f , g; A).

Theorem .
(i) The family (fu , gu ; A; U) satisfies the (CFRC) if and only if the converse duality holds

between (P) and (D).
(ii) The family (fu , gu ; A; U) satisfies the (CCC) if and only if the stable converse duality

holds between (P) and (D).

Proof The proof of (i) is similar to that of (ii). Hence, we only need to prove (ii). To do
it, suppose that the family (fu , gu ; A; U) satisfies the (CCC). Let p ∈ X and q ∈ Y and let
r := v(CD(p,q)). Then, by (.), r = supu∈U (g∗

u + f ∗
u ◦ (–A∗))∗(Ap + q). Thus, for each u ∈ U ,

r ≥ (
g∗

u + f ∗
u ◦ (

–A∗))∗(Ap + q).

This implies that (Ap + q, r) ∈ epi(g∗
u + f ∗

u ◦ (–A∗))∗, and by the arbitrariness of u ∈ U ,

(Ap + q, r) ∈
⋂

u∈U

epi
(
g∗

u + f ∗
u ◦ (

–A∗))∗ ⊆
⋂

u∈U

[
(epi gu +

(
(–A) × idR

)
(epi fu )

]
,

thanks to the (CCC). Let u ∈ U be arbitrary. Then

(Ap + q, r) ∈ epi gu +
(
(–A) × idR

)
(epi fu ).

Thus, there exist (y, r) ∈ epi gu and (y, r) ∈ ((–A) × idR)(epi fu ) such that

y + y = Ap + q and r + r = r.

Moreover, there exists x̂ ∈ X such that –Ax̂ = y and (x̂, r) ∈ epi fu . Consequently, fu (x̂) ≤
r and gu (y) ≤ r. Therefore,

(
gu � (–A)fu

)
(Ap + q) ≤ gu (Ap + q + Ax̂) + fu (x̂) = gu (y) + fu (x̂) ≤ r + r = r.

Note that u is arbitrary, it follows that

sup
u∈U

(
gu � (–A)fu

)
(Ap + q) ≤ r.
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This together with (.) implies that v(CP(p,q)) ≤ r. Therefore, by the weak duality,
v(CP(p,q)) = v(CD(p,q)) and x̂+p is the optimal solution of (CPu

(p,q)) which satisfies v(CPu
(p,q)) =

v(CP(p,q)).
Conversely, suppose that the stable converse duality holds between (P) and (D). Let p ∈

X, q ∈ Y and let ū = (ū, ū) ∈ Ū be such that v(CP(p,q)) = v(CPū
(p,q)). Then there exists x ∈ X

such that

v
(
CPū

(p,q)
)

= fū (x – p) + gū (Ax + q) = v(CP(p,q)). (.)

Let (Ap + q, r) ∈ ⋂
u∈U epi(g∗

u + f ∗
u ◦ (–A∗))∗. Then, for each u ∈ U ,

r ≥ (
g∗

u + f ∗
u ◦ (

–A∗))∗(Ap + q).

This together with (.) implies that

r ≥ sup
u∈U

(
g∗

u + f ∗
u ◦ (

–A∗))∗(Ap + q) = v(CD(p,q)) = v(CP(p,q)),

and

r ≥ fū (x – p) + gū (Ax + q) = sup
u∈U

{
fu (x – p) + gu (Ax + q)

}
,

by (.) and the definitions of (CP(p,q)) and (CD(p,q)). Thus,

r ≥ fu (x – p) + gu (Ax + q) for each u ∈ U .

This means, for each u = (u, u) ∈ U ,

(
–Ax + Ap, r – gu (Ax + q)

) ∈ (
(–A) × idR

)
(epi fu ).

Note that (Ax + q, gu (Ax + q)) ∈ epi gu holds for each u ∈ U. Then, for each u ∈ U ,

(Ap + q, r) = (Ax + q, gu (Ax + q)) + (–Ax + Ap, r – gu (Ax + q))
∈ (epi gu + ((–A) × idR)(epi fu )

and hence

(Ap + q, r) ∈
⋂

u∈U

[
(epi gu +

(
(–A) × idR

)
(epi fu )

]
.

Therefore, by the arbitrariness of p ∈ X and q ∈ Y , the (CCC) holds. The proof is com-
plete. �

In the remainder of this section, we assume that fu : X → R, u ∈ U and gu : Y →
R, u ∈ U are proper lsc convex functions. We now present a necessary and sufficient
condition for the total converse duality to hold. To do this, we first introduce two converse
Moreau-Rockafellar formulae.
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Definition . Let y∗
 ∈ ⋂

u∈U [(dom g∗
u ) ∩ (–A)∗(dom f ∗

u )] and ū = (ū, ū) ∈ U . It is said
that

(i) the strong converse Moreau-Rockafellar formula (SCMR) holds at (ū, ū; y∗
) if

∂
(
f ∗
ū ◦ (

–A∗) + g∗
ū

)(
y∗


) ⊆

⋂

u∈U

[
(–A)∂f ∗

u

(
–A∗y∗


)

+ ∂g∗
u

(
y∗


)]

; (.)

(ii) the converse Moreau-Rockafellar formula (CMR) holds at (ū, ū; y∗
) if

∂
(
f ∗
ū ◦ (

–A∗) + g∗
ū

)(
y∗


) ⊆

⋃

u∈U

[
(–A)∂f ∗

u

(
–A∗y∗


)

+ ∂g∗
u

(
y∗


)]

. (.)

Remark . In the case when U and U are singletons, (.) and (.) are reduced to
the converse Moreau-Rockafellar formula at y∗

 ∈ Y ∗ ∩ (dom g∗) ∩ (–A)∗(dom f ∗) (see [],
Definition .), that is,

∂
(
f ∗ ◦ (

–A∗) + g∗)(y∗

)

= (–A)∂f ∗(–A∗y∗

)

+ ∂g∗(y∗

)
. (.)

Let u = (u, u) ∈ U , we define the subproblem of the problem (CD(p,q)) by

(
CDu

(p,q)
)

= sup
y∈Y∗

{〈
Ap + q, y∗〉 – g∗

u

(
y∗) – f ∗

u

(
–A∗y∗)}

and use v(CDū
(p,q)) to denote the optimal value of the problem (CDū

(p,q)). For each p ∈ X and
q ∈ Y , let S(p, q) denote the solution set of the problem (CD(p,q)), that is,

(
ū, ū; y∗


) ∈ S(p, q) ⇔ 〈

Ap + q, y∗

〉
– g∗

ū

(
y∗


)

– f ∗
ū

(
–A∗y∗


)

= v(CD(p,q)),

and let S(p, q, u) denote the solution set of the problem (CDu
(p,q)), that is,

y∗
 ∈ S(p, q, u) ⇔ 〈

Ap + q, y∗

〉
– g∗

u

(
y∗


)

– f ∗
u

(
–A∗y∗


)

= v
(
CDu

(p,q)
)
. (.)

Theorem . Let y∗
 ∈ ⋂

u∈U [(dom g∗
u ) ∩ (–A)∗(dom f ∗

u )] and ū = (ū, ū) ∈ U .
(i) If the (SCMR) holds at (ū, ū; y∗

), then for each p ∈ X and q ∈ Y satisfying
(ū, ū; y∗

) ∈ S(p, q), v(CD(p,q)) = v(CP(p,q)) = v(CPū
(p,q)), and the problem (CPū

(p,q)) has
an optimal solution.

(ii) If for each p ∈ X and q ∈ Y satisfying y∗
 ∈ S(p, q; ū), v(CDū

(p,q)) = v(CPū
(p,q)), and the

problem (CPū
(p,q)) has an optimal solution, then the (CMR) holds at (ū, ū; y∗

).

Proof (i) Suppose that the (SCMR) holds at (ū, ū; y∗
). Then (.) holds. Let p ∈ X, q ∈ Y

be such that (ū, ū; y∗
) ∈ S(p, q). Then

v(CD(p,q)) =
〈
Ap + q, y∗


〉
– f ∗

ū

(
–A∗y∗


)

– g∗
ū

(
y∗


)
. (.)

By (.), we see that  ∈ ∂(f ∗
ū

◦ (–A∗) + g∗
ū

– (Ap + q))(y∗
), which is equivalent to Ap + q ∈

∂(f ∗
ū

◦ (–A∗) + g∗
ū

)(y∗
). This together with (.) implies that

(Ap + q) ∈
⋂

u∈U

[
(–A)∂f ∗

u

(
–A∗y∗


)

+ ∂g∗
u

(
y∗


)]

.
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Let u = (u, u) ∈ U . Then there exist p ∈ ∂f ∗
u (–A∗y∗

) and p ∈ ∂g∗
u (y∗

) such that

(–A)p + p = Ap + q. (.)

Applying the Young equality (.), one has

f ∗∗
u (p) + f ∗

u

(
–A∗y∗


)

=
〈
p, A∗y∗


〉

and g∗∗
u (p) + g∗

u

(
y∗


)

=
〈
p, y∗


〉
.

Noting that 〈p, A∗y∗
〉 = 〈Ap, y∗

〉, it follows that

fu (p) + gu (p) = f ∗∗
u (p) + g∗∗

u (p) =
〈
Ap + q, y∗


〉
– f ∗

u

(
–A∗y∗


)

– g∗
u

(
y∗


)
, (.)

where the first equality holds because fu and gu are lsc functions. Then, by the arbitrari-
ness of u ∈ U , we have that

sup
u∈U

{
fu (p) + gu (p)

}
= sup

u∈U

{〈
Ap + q, y∗


〉
– f ∗

u

(
–A∗y∗


)

– g∗
u

(
y∗


)}

= v(CD(p,q)).

Moreover, by (.) and (.),

fū (p) + gū (p) =
〈
Ap + q, y∗


〉
– f ∗

ū

(
–A∗y∗


)

– g∗
ū

(
y∗


)

= v(CD(p,q)). (.)

Thus,

sup
u∈U

{
fu (p) + gu (p)

}
= fū (p) + gū (p) = v(CD(p,q)); (.)

while, by the definition of (CP(p,q)) and (.), we have that

v(CP(p,q)) = sup
u∈U

inf
x∈X

{
fu (x – p) + gu (Ax + q)

} ≤ sup
u∈U

{
fu (p) + gu (p)

}
.

Combing this with (.) and (.), one can see that

v(CP(p,q)) ≤ fū (p) + gū (p) = v(CD(p,q)).

This together with the weak duality implies that v(CD(p,q)) = v(CP(p,q)) = v(CPū
(p,q)) and p +

p is the optimal solution of the problem (CPū
(p,q)).

(ii) Suppose that for each p ∈ X, q ∈ Y and ū = (ū, ū) ∈ U satisfying y∗
 ∈ S(p, q; ū),

v(CDū
(p,q)) = v(CPū

(p,q)), and the problem (CPū
(p,q)) has an optimal solution. Let p ∈ X and

q ∈ Y be such that Ap + q ∈ ∂(f ∗
ū

◦ (–A∗) + g∗
ū

)(y∗
). Then

〈
Ap + q, y∗〉 – f ∗

ū

(
–A∗y∗) – g∗

ū

(
y∗) ≤ 〈

Ap + q, y∗

〉
– f ∗

ū

(
–A∗y∗


)

– g∗
ū

(
y∗


)

for each y∗ ∈ Y ∗,

which implies that y∗
 ∈ S(p, q, ū). Thus, by assumptions, there exists x ∈ X such that

v
(
CDū

(p,q)
)

= v
(
CPū

(p,q)
)

= fū (x – p) + gū (Ax + q).
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This together with (.) implies that

fū (x – p) + gū (Ax + q) =
〈
Ap + q, y∗


〉
– f ∗

ū

(
–A∗y∗


)

– g∗
ū

(
y∗


)
. (.)

Noting the above inequality and using the definition of the conjugate function, we see that

 ≤ fū (x – p) + f ∗
ū

(
–A∗y∗


)

+
〈
Ax – Ap, y∗


〉

and

gū (Ax + q) – g∗
ū

(
y∗


)

+
〈
Ax + q, y∗


〉 ≤ .

It follows from (.) that

fū (x – p) + f ∗
ū

(
–A∗y∗


)

+
〈
Ax – Ap, y∗


〉

=  and

gū (Ax + q) – g∗
ū

(
y∗


)

+
〈
Ax + q, y∗


〉

= .

Then, by the Young equality (.), we have that x –p ∈ ∂fū (–A∗y∗
) and Ax +q ∈ ∂gū (y∗

).
Thus,

Ap + q = (–A)(x – p) + (Ax + q) ∈ (–A)∂fū

(
–A∗y∗


)

+ ∂gū

(
y∗


)
,

and hence Ap + q ∈ ⋃
u∈U [(–A)∂fu (–A∗y∗

) + ∂gu (y∗
)]. Therefore, by the arbitrariness of

p and q, the (CMR) holds at (ū, ū; y∗
). The proof is complete. �

By Theorem ., we have the following corollary directly, which extends and improves
the corresponding result in [], Theorem ..

Corollary . Suppose that f , g are proper lsc convex functions and A is a linear operator.
Let y∗

 ∈ (dom g∗) ∩ (–A)∗(dom f ∗). Then (.) holds at y∗
 if and only if, for each p ∈ X and

q ∈ Y satisfying y∗
 ∈ S(p, q), there exists x ∈ X such that

f (x – p) + g(Ax + q) = 〈Ap + q〉 – f ∗(–A∗y∗

)

– g∗(y∗

)
.
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