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1 Introduction and preliminaries
In recent times, due to its possible application to almost all branches of numerical sci-
ences, the researchers’ interest about fixed point theory has raised very much. Especially
significant have been the fixed point results in partially ordered metric spaces (see [1, 2]),
in G-metric spaces (see [3—6]), among other abstract metric spaces (see [7, 8] in partial
metric spaces, [9-11] in fuzzy metric spaces, [12, 13] in intuitionistic fuzzy metric spaces,
[14, 15] in probabilistic metric spaces and [16, 17] in Menger spaces), even in the multi-
dimensional case (see [18—25]). In this paper we focus in the setting of G-metric spaces.
Some basic notions and results about G-metric spaces (metric structure, convergence,
completeness, efc.) can be found, for instance, in [5, 6, 26, 27].

In the sequel, let (X, G) be a G-metric space and let f,g: X — X be two self-mappings.

In [28], the author introduced the following notions and basic facts.

Definition 1 The self-mappings f and g are said to be compatible if

lim G(fgx,,gfx,,gfx,) =0 and (1)
nllngo G(gfxn, fgxn: fgxn) = 0 (2)

whenever {x,} is a sequence in X such that

lim fx, = lim gx, =t forsomet e X.
n—00 n—00
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Definition 2 The self-mappings f and g are said to be R-weakly commuting mappings of
type (A,) if there exists some positive real number R such that

G(gfx,fix, ffx) < RG(gx,fx,fx) forallx e X.
One of the main results in [28] is the following one.

Theorem 3 (Yang [28, Theorem 2.1]) Let (X, G) be a G-metric space and (f,g) be a pair
of non-compatible self-mappings with fX C gX (here fX denotes the closure of fX). Assume
the following conditions are satisfied:

G(fx, gx, gx) + G(fy, 2y, 8y)
2

’

G(fx, fy,fz) < @ max { G(gx, gy, g2),

G(fy,gy.8y) + G(fz,g2,82) G(fz gz,82) + G(fx, gx, gx)

’ ’

2 2
G(fx,gy,82) + G(gx. fr,g2) G(gx.fy,82) + G(gx, g, fz) } 3)
2 ’ 2

for all x,y,z € X. Here a € [0,1). If (f,g) are a pair of R-weakly commuting mappings of
type (A,), then f and g have a unique common fixed point (say t) and both f and g are not
G-continuous at t.

2 Main remarks

First of all, about the definition given by the author of compatible mappings, we must
clarify that conditions (1) and (2) are equivalent. In fact, in any G-metric space (X, G),
one of the most useful properties is the well known inequality G(x,x,y) < 2G(x,y,y) for all
x,y € X. As a result, the following statement is trivial.

Proposition 4 Let {x,} and {y,} be two sequences of a G-metric space (X, G). Then
lim G(x,,%,y,) =0 ifandonly if lim G(x,, Y4, yn) = 0.
n—00 n—0o0

On the other hand, the author assumed in Theorem 3 that f and g are not compatible.
In such a case, there exists a sequence {x,} C X, such that

lim fx, = lim gx, =t forsometeX
n— 00 n—00

but either
lim G(fgx,, gfxn,gfx,) or lim G(gfx,, fgx,,fex,) (4)
n— o0 n—0oQ

does or does not exist and if it does it is different from zero. Even avoiding condition (4),
this property was introduced by Aamri and El Moutawakil in [29] in the context of metric

spaces.

Definition 5 (Aamri and El Moutawakil [29]) Letf,g: X — X be two self-mappings of a
metric space (X, d). We say that f and g satisfy the (E.A.) property if there exist a sequence
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{x,} € X and a point ¢ € X such that

lim fx, = lim gx, =t.
n—00

n—00

In the framework of G-metric spaces, we have the following analog.

Definition 6 (Mustafa et al. [30]) Let f,g: X — X be two self-mappings of a G-metric
space (X, G). We say that f and g satisfy the (E.A.) property if there exist a sequence {x,} C
X and a point ¢ € X such that

lim fx, = lim gx, =t.
n— 00 n— 00

Also in Theorem 3, the author assumed that fX C gX. In such a case, the limit verifies

tefX CgX.

As a consequence, there exists # € X such that ¢ = gu. This idea yields the following notion,
called common limit in the range of g, which originally was introduced by Sintunaravat
and Kumam in [31] in the context of fuzzy metric spaces and, later, was particularized to
G-metric spaces by Aydi et al. in [32].

Definition 7 (Aydi et al. [32]) Letf,g:X — X be two self-mappings of a G-metric space
(X, G). We say that f and g satisfy the common limit in the range of g’ property (briefly,
(CLRg)-property) if there exist a sequence {x,} C X and a point # € X such that

lim fx, = lim gx, = gu € gX. (5)
n—0oQ n— 00
This conclusion also holds when gX is closed. Then we have the following properties.

Lemma 8
(1) (f,g) is not compatible = (f,g) satisfies the (E.A.)-property.
(2) (f,g) satisfies the (E.A.)-property and gX is closed = (f,g) satisfies the
(CLRg)-property.
(3) (f,g) satisfies the (E.A.)-property and fX C gX = (f,g) satisfies the (CLRg)-property.

The (CLRg)-property has two main advantages: (1) usually, it is not necessary to assume
the completeness of the G-metric space; and (2) usually, the common limit gu is a point
of coincidence of f and g, that is, fu = gu. We show it in the next section.

Before that, we must point out that the author did not appropriately take limit in the
inequalities throughout the paper. Let us show some examples. Following the lines of The-
orem 2.1in [28], as t € fX C gX, there exists u € X such that gu = . Applying the contrac-
tivity condition (3) to x = # and y = z = x,, the author wrote (see [28, p.4, lines 18-19]):

G(fu, fx,, fx,)

G(fu, gu, gu) + G(fx, g%u, g%n)
2

’

<« max{ G(gu, g%, g%n),
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G (% 8%ns %n) + G, 851, 8%n) G, 8% 8%) + G(fut, gui, gut)

2 2
G(fu, gxn, gxn) + G(gU, f, g%n) G(gU, fXn, @%) + G(gU, G, fXn) } ©)
2 ’ 2 ’

Letting n — oo, the author wrote (see [28, p.4, lines 21-22]):

G(fu, gu, gu) + G(gu, gu, gu)
5 )
G(fu, gu, gu) + G(fu, gu, gu) G(fu,gu,gu) + G(fu,gu, gu)
2 ’ 2 ’
G(fu, gu, gu) + G(gu, fu,gu) G(gu,fu,gu) + G(gu, gu, fu) }
2 ' 2 '

G(fu,gu,gu) <« max{ G(gu,gu, gu),

7)

Unfortunately, inequality (7) is false, because the author seems to apply that {x,} — u and
f and g are continuous. This is not the case, because we only know that

lim fx, = lim gx, =t = gu.

n—00

In such a case, letting n — oo in (6), we obtain

G ) ) G ) )
G(fu,gu,gu) < o maX{ G(gu, gu,gu), (v, 6,810 ; (g, gu gu),
G(gu, gu, gu) + G(gu, gu, gu) G(gu,gu,gu) + G(fu,gu, gu)
2 ’ 2 ’
G(fu, gu, gu) + G(gu, gu, gu) G(gu, gu,gu) + G(gu, gu, gu)
2 ’ 2
y max{O, G(fu,gu,gu) 0, G(fu,gu,gu), G(fu,gu, gu) ’ ()}
2 2 2
= %G(fu,gu,gu).

This correct inequality is better because we may assume that « € [0,2) to deduce that
fu = gu. In other words, as the reader can easily see, we can refine the arguments in [28]
to get sharper results. This is the main aim of the present manuscript.

3 Common fixed point theorems
In the following result, we improve Theorem 3 in two senses: (1) our contractivity condi-
tion is weaker; and (2) we do not assume that f and g are not compatible.

Theorem 9 Let (X, G) be a G-metric space and let f,g : X — X be two self-mappings sat-
isfying the (CLRg)-property. Suppose that there exists a € [0,1) such that

G(fx,fy,/y) < o max{G(gx, gy, gy), G(fx, gx, gx) + G(7, 2y, 29), 2G (1, £, &)»
G(fx,y,gy) + G(gx, [y, 29), 2G(gx. 17, 2y) } (8)

forall x,y,z € X. Then any point u € X as in (5) is a coincidence point of f and g, that is,
fu=gu.
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Proof As (f,g) satisfies the (CLRg)-property, there exist a sequence {x,} C X and a point
u € X such that

lim fx, = lim gx, = gu € gX. 9)
n—00 n—00

Let us apply the contractivity condition using x = # and y = x,,. Then, forall » € N, it follows
that

G(fit, fons fon) < o max{G(gu, g, g%n), G(fit, gtt, g11) + G(fX, §ns &) 2G (X §ns &)

G(fu, gx,, gx,) + G(gu, fx,, gxp,), 2G(gu,fx,,,gx,,)}. (10)

Taking into account (9) and the fact that G is jointly continuous on its three variables,
then, letting n — oo in (10), we deduce that

G(fu,gu,gu) <« max{G(gu,gu,gu), G(fu, gu, gu) + G(gu, gu, gu), 2G(gu, gu, gu),
G(fu, gu, gu) + G(gu, gu, gu), 2G(gu, gu, gu) }
= o G(fu,gu, gu).

As o €[0,1), then G(fu,gu,gu) = 0, so fu = gu. O
If the contractivity condition is slightly stronger, then it is easy to show a second part.

Theorem 10 Let (X, G) be a G-metric space and let f,g : X — X be two self-mappings
satisfying the (CLRg)-property. Suppose that there exists o € [0,1) such that

Gfx.fy.fy) <a maX{ G(gx, gy,87), G(fx, gx, gx) + G(fy, 29, g), 2G(f¥, 8%, &),

G(fx, gy,gy) + G(gx, 3, gy
2

),G@x,fy,gw} 1)

for all x,y € X. Then any point u € X as in (5) is a coincidence point of f and g, that is,
fu =gu.

Furthermore, if (f,g) is a pair of R-weakly commuting mappings of type (Ay), then f and
g have a unique common fixed point, which is w = fu = gu.

And if we additionally assume that f is G-continuous at w, then

lim G(fgx,,gfxn, gfx,) = lim G(gfx,, fox,,fex,) =0
n—0o0 n—0o0
whatever the sequence {x,} as in (5).

Proof Taking into account that

r+s

- <max{r,s} forallr,seR,

then condition (11) implies condition (8). As a consequence, Theorem 9 guarantees that
any point # € X as in (5) is a coincidence point of f and g, that is,

gu = fu. (12)
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Next, assume that (f, g) is a pair of R-weakly commuting mappings of type (4,). In such
a case,

G(gfu, ffu, flu) < RG(gu,fu,fu) = 0.
Therefore,
gfu=ffu. (13)
Let us apply the contractivity condition (11) to x = # and y = fu. Then we deduce
G(fu,ffu,ffu) <o max{ G(gu, gfu, gfu), G(fu, gu, gu) + G(ffu, gfu, gfu), 2G({fu, gfu, gfu),

G(fu, gfu, gfu) + G(gu, ffu, gfu)
2

, G(gu, ffu, gfu) }
By (12) and (13), it follows that

G(fu, ffu,ffu) < o max{ G(fu, ffu, ffu), G(fu, fu, fu) + G(ffu, ffu, ffu), 2G(ffu, ffu, ffu),

G(fu, ffu, ffu) + G(fu, ffu, ffu)
2

= aG(fu, ffu, ffu),

, G(fu, ffu, ffu) }

which means that
fu=fu.

If we take w = fu = gu, then
fu=flu=gfu = w=fo=go,

so w is a common fixed point of f and g.

Next we show that the common fixed point w is unique. Actually, suppose that z € X is
also a common fixed point of f and g. Then, by the contractivity condition (11) applied to
x = w and y = z, we derive that

G(w,z,2) = G(fw,fz,fz)
<a max{ G(gw, gz,g2), G(fw,gw,gw) + G(fz,gz,82), 2G(fz, gz, g2),

G(fw,gz,g2) + G(gw, [z, gz)
2

,G(gw, fz,gz) }
=aG(w,z2),

which means that v = z.
Finally, assume that f is G-continuous at w. Therefore, as {fx,} — gu = w and {gx,,} —
gu=o,

{ffxu} > fo=w and {fgx,} — fo=w.
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Moreover, as (f,g) is a pair of R-weakly commuting mappings of type (4,),

G(gfxn, ffxn, fxn) < RG(gx,, fxn, fxy)-

Hence, for all n € N, we have

G(fgxn, 8f%xn, &fxn) < GUgxn, ffoxn, [Fxn) + G({Fn, 8f%n, &f%n)
< G(fgxn, ffxn, ffxn) + 2G(gfx, f[fn, [fXn)
< G(fgxy, ffxn, ffx,) + 2RG(gx,, X, fX1)-

Taking the limit as k — oo we deduce that

lim G(fgx,, g%, gf%n) = 0,
n— o0

and, by Proposition 4, we conclude that

lim G(gfx,, fex,,fgx,) =0,
n—00
which means that f and g are compatible. d

Remark 11 In Theorem 3, the author assumed that f and g are not compatible, and it is
announced that f and g are not G-continuous at w. By the previous theorem, if f and g
are not compatible, then f cannot be G-continuous at w. However, the argument given
by the author to prove that g is not G-continuous at w is not correct: assuming that g is
continuous at w, it is proved that {{fx,} converges to w = fw, but this does not mean that f
is G-continuous at w (this property must be demonstrated for all sequence {y,} converging

to w).

Corollary 12 Theorem 3 (avoiding the unproved fact that g is not G-continuous at the
unique common fixed point) is an immediate consequence of Theorem 10.

Proof It follows from the fact that (3) implies (11) using y = z. O

In the sequel, we extend the previous results. Let
F = {q‘) :[0,00) = [0,00) : p(£) < t and lim ¢(s) < ¢ for all £ > O}.
s—>tt

It is clear that, given « € [0, 1), the mapping ¢, : [0, 00) — [0, 00) defined by ¢,(s) = as for
all s € [0, 00), belongs to F.

Theorem 13 Let (X, G) be a G-metric space and let f,g : X — X be two self-mappings
satisfying the (CLRg)-property. Suppose that there exists ¢ € F such that

G(fx.fy,/y) < ¢ (max{G(gx, gy, gy), G(fx, gx, gx) + G(fy, £y, €9), 2G(fY, 29, &Y)s
G(fx, gy.29), G(gx. /9. 2), Glgx, g9, /9)}) (14)

Page 7 of 14
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for all x,y € X. Then any point u € X as in (5) is a coincidence point of f and g, that is,
fu=gu.

Furthermore, if (f,g) is a pair of R-weakly commuting mappings of type (Ay), then f and
g have a unique common fixed point, which is o = fu = gu.

And if we additionally assume that f is G-continuous at w, then

lim G(fgx,, gfxn, gfxn) = lim G(gfx,, fgx,,fex,) =0
n—00 n—00
whatever the sequence {x,} as in (5), that is, f and g are compatible.

Proof For convenience, let us define, for all x,y € X,

M(x,y) = max{G(gx, gy, &), G(fx, gx, gx) + G(fy, 2y, &), 2G(f, €9, )»
G(fx, 9,2y, G(gx, 1. 2)), G(gx, gy, 17)}.

Hence, the contractivity condition (14) can be rewritten as
G(fx,fy.fy) < p(M(x,y)) forallx,y € X.

As (f, g) satisfies the (CLRg)-property, there exist a sequence {x,} € X and a point u € X

such that
lim fx, = lim gx, = gu € gX. (15)
n—00 n— 00

We prove that fu = gu by reductio ad absurdum, that is, we assume that fu # gu and we
will get a contradiction. In such a case,

G(fu,gu,gu) > 0.

Let us apply the contractivity condition (14) using x = # and y = x,,. Then, for all n € N, it
follows that

G(fu’fxmfxn) E ¢(M(urxn))! (16)

where

M(u,x,,) = max{G(gu, gxn, gxn), G(ft, git, g1) + G(fXys, @ &) 2G (X1 G &)
G (fit, g, %n), G (gt [, %), G(glhs o f5n) |
We can distinguish two cases.

+ Case 1. Assume that there exists a subsequence {x,} of {x,} such that
M(u, %u0) < G(fu,gu, gu) for all k € N. In such a case, as

G(fu, gu, gu) < G(fu, gu, gu) + G(fXn(k) 8Xn(i)» L¥n(i))
< M(u, %)) < G(fu, gu, gu),
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we deduce that M(u, x,)) = G(fu, gu, gu) for all k € N. Using (16), we have

G(furfxn(k)vfxn(k)) < ¢(M(”’xn(k))) = ¢(G(ﬂl:g%gu))

Taking the limit as k — oo, we deduce that

G(fu,gu,gu) = lim G(fu, fx,,fx,) < ¢(G(fu,gu,gu)).

Since ¢ € F and G(fu, gu, gu) > 0, it follows that

G(fu, gu, gu) < ¢(G(fu,gu,gu)) < G(fu, gu, gu),

which is a contradiction.
+ Case 2. Assume that there exists no € N such that M(u,x,) > G(fu, gu, gu) for all
n > ny. In such a case, we have

lim M(u,x,) = G(fu,gu,gu) and M(u,x,) > G(fu,gu,gu) for all n > ny.

n—00

Hence, as ¢ € F, it follows from (16) that

G(fu,gu,gu) = lim G(fu, fx,,fx,) < lim q)(M(u,x,,))
n— 00 n—0o0

= lim (s) < G(fu, gu, gu),
saG(fu,gu,gu)qub (f g8

which is also a contradiction.
In any case, we get a contradiction, so we must admit that fu = gu, that is, u is a coinci-
dence point of f and g.
Next, assume that (f, g) is a pair of R-weakly commuting mappings of type (4). In such

a case,

G(gfu, ffu, fflu) < RG(gu, fu,fu) = 0.

Therefore,

gfu =ffu.

Let us apply the contractivity condition (14) to x = # and y = fu. Then we deduce

G(fu, ffu, ffu) < §(M(u, fur)),

where

M(u,fu) = max{ G(gu, gfu, gfu), G(fu, gu, gu) + G(ffu, gfu, gfu), 2G({fu, gfu, gfu),
G(fu, gfu, gfu), G(gu, ffu, gfu), G(gu,gfu,ﬁu)}
= max{G(fu,ﬁu,ﬁu), G(fu, fu, fu) + G({fu, ffu, ffu), 2G(ffu, ffu, ffu),
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G(fu, ffu, ffu), G(fu, ffu, ffu), G(fu,ﬁu,ﬁu)}
= G(fu, ffu, ffu).

As a consequence,

G(fu, ffu, ffur) < d(M(u, fu)) = ¢(Gfu, fu, ffu)).
If fu # ffu, then

G(fu, ffu, ffur) < ¢ (G(fu, ffu, ffu)) < Gfu, fu, fu),
which is impossible. Then, necessarily,

ffu = fu.
If we take o = fit = gu, then

fu=flu=gfu = o=fo=go,

s0 w is a common fixed point of f and g.

Next we show that the common fixed point w is unique. Actually, suppose that z € X is
also a common fixed point of f and g. Then, by the contractivity condition (14) applied to
x = w and y = z, we derive that

G(w,z,2) = G(fw, fz,fz) < ¢(M(a), z)),

where

M(w,z) = max{G(ga), 22,92), G(fw, gw, gw) + G(fz, gz, g2), 2G(fz, gz, g2),
G(fw,g2,g2), G(gw, [z, g2), G(gw, gz, ) }

=G(w,z2).
The condition
G(w,2,2) < p(M(w,2)) = $(G(w, z,2))
implies that G(w, z,z) = 0, which means that o = z.
Finally, assume that f is G-continuous at w. Therefore, as {fx,} — gu = w and {gx,} —
gu=w,
{ffxs} > fo=w and {fgx,} - fo=w.

Moreover, as (f, g) is a pair of R-weakly commuting mappings of type (4,),

G(gfxn ffxXn [fxn) < RG(@Xp> X, fXn)-
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Hence, for all # € N, we have

G(fgxn: &f%n &f%n) < G, [Foon: [Fn) + G({F%n> &> &fkn)
< G(fgxn, [, ) + 2G(@ft, o, fFn)
< G(fgxn, fFotn, ffn) + 2RG(g%, fitn, fn)
< G(fgxn, @, ®) + G, T, [Fn) + 2RG (&, fXn, f3n)-

Taking the limit as k — oo we deduce that

hm G(fgxn,gfxnrgfxn) = 0’
n—0o0

and, by Proposition 4, we conclude that

lim G(gfx,, fgx,,fgx,) =0,
which means that f and g are compatible. O

Taking into account that

r+s
—~ <max{r,s} forallr,seR,
then Theorem 3 (avoiding the unproved fact that g is not G-continuous at the unique
common fixed point) is an immediate consequence of Theorem 13.

One of the conclusions of Theorem 3 is that f and g are not continuous at w. Such a
result is not applicable when f and g are continuous mappings, which is a very common

hypothesis in fixed point theory, as in the following example.

Example 14 Let X = [0, 00) be endowed with the complete G-metric G(x,y,z) = |[x — y| +
|x —z| + |y — 2| for all x, 7,z € X, and let us consider the mappings f,g : X — X defined by
fx =x and gx = 2x for all x € X. The sequence x, = 1/n for all n > 1 shows that f and g
satisfy the (CLRg)-property. Furthermore, for all x,y € X, we have

1
Gix, ) = Gx,y,9) =2|x —y| = §4lx -l
1 1
= EG(Zx, 2y,2y) = iG(gx,gy,gy).

Then Theorem 10 guarantees that f and g have a coincidence point (and so does Theo-
rem 13). In fact, as f is the identity mapping on X, trivially f and g are R-weakly commuting
mappings of type (4,) for R =1, so f and g have a unique common fixed point, which is
o = 0. In addition to this, as f is continuous, f and g are compatible. Nevertheless, as f
and g are compatible and continuous, Theorem 3 is not applicable.

In the following example we illustrate the applicability of Theorems 10 and 13, and we
also show that the contractivity conditions (11) and (14) are easier to prove than (3) because
they only involve two variables ({x, y} rather than {x, y,z}).
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Example 15 Let X = [0,5] be endowed with the complete G-metric G(x,y,2z) = |x — y| +
|x—z| + |y —z| for all x, y,z € X, and let us consider the mappings f,g : X — X defined, for
allx € X, by

. 0, ifx=0,
1, if0O<x<1, .
fx= ) =12, if0<x <1,
0, otherwise; el
ifl<x<5.

27

The sequence x, =1 + 1/n for all n > 1 shows that f and g satisfy the (CLRg)-property
because

lim fx, = lim gx, =0=_g0 € gX.
n— o0

n—00

We claim that the contractivity condition (11) is satisfied using « = 1/2. Indeed, on the one
hand, we have, for all x,y € X,

2, if[0<x<1landye{0}U(1,5]]
G(fx,fy,fy) = 2|fx - fy| = or[0<y<landxe{0}U(,5]],
0, otherwise.

We only have to discuss the cases in which G(fx, fy, fy) takes the value 2. We distinguish
the following possibilities.
« If0<x<1land y=0,then

1
Glgx,g7,2y) = G(2,0,0) =4 = 52 = aG(fx, fy,fy).

« If0<x<1landye(1,5], then

-1 _1 1
G(gx,fy,gy)=G(2,o,yT>=2+’2—y—2 My_z ‘

-1 -1 1
Yoo YTl 4 52 = a Gl fr.f9).

=242~
2 2

¢ If0<y<1landxe{0}U(L,5], then

1
2G(fy,gy,2y) =2G(1,2,2) =4 = 52 =aG(fx, fy,fy).

In any case, the contractivity condition (11) holds. Furthermore, as

0, ifx=0,
2, ifo0 <1,
G(gfx, ffx, ffx) = BUsr= and G(gr, fx,fx) = {2, if0<x <1,

0, otherwise; )
x—-1, ifl<x <5,

f and g are R-weakly commuting mappings of type (4,), where R = 1. As a consequence,
Theorem 10 guarantees that f and g have a unique common fixed point (and so does The-
orem 13).
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