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Abstract
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1 Introduction

The concept of complete convergence of a sequence of random variables was introduced
by Hsu and Robbins [1] as follows. A sequence {U,,, n > 1} of random variables converges
completely to the constant 0 if

o]

ZP(lLI,, -0|>¢g)<oo foralle>0.

n=1

Moreover, they proved that the sequence of arithmetic means of independent and iden-
tically distributed (i.i.d.) random variables converges completely to the expected value if
the variance of the summands is finite. This result has been generalized and extended in
several directions, one can refer to [2—13] and so forth.

When {X,,n > 1} is a sequence of i.i.d. random variables with mean zero, Chow [14]
first investigated the complete moment convergence, which is more exact than complete
convergence. He obtained the following result.

Theorem A Let {X,,n > 1} be a sequence of i.i.d. random variables with EX; = 0. For
1<p<2andr>1,if E{|X1|"? + |Xa|log(1 + |Xi])} < o0, then

o0
Z nr—Z—l/pE{

n=1

>

k=1

—811””} <oo foralle >0,
+

where (as in the following) x, = max{0,x}.

Theorem A has been generalized and extended in several directions. One can refer to
Wang and Su [15] and Chen [16] for random elements taking values in a Banach space,
Wang and Zhao [17] for NA random variables, Chen et al. [5], Li and Zhang [18] for
moving-average processes based on NA random variables, Chen and Wang [19] for ¢-
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mixing random variables, Qiu and Chen [20] for weighted sums of arrays of rowwise NA
random variables.

The aim of this paper is to extend and improve Theorem A to negatively orthant depen-
dent (NOD) random variables. The sufficient and necessary conditions are obtained. In
fact, the paper is the continued work of Qiu et al. [11] in which the complete convergence
is obtained for NOD sequence. It is worth to point that Sung [21] has discussed the com-
plete moment convergence for NOD, but the main result in our paper is more exact and
the method is completely different.

The concepts of negatively associated (NA) and negatively orthant dependent (NOD)
were introduced by Joag-Dev and Proschan [22] in the following way.

Definition 1.1 A finite family of random variables {X;,1 < i < u} is said to be negatively
associated (NA) if for every pair of disjoint nonempty subset A;, A, of {1,2,...,n},

Cov(h(Xii € A1), fo(Xj,j € Ar)) <0,

where f; and f; are coordinatewise nondecreasing such that the covariance exists. An in-
finite sequence of {X,,,n > 1} is NA if every finite subfamily is NA.

Definition 1.2 A finite family of random variables {X;,1 <i < n} is said to be

(a) negatively upper orthant dependent (NUOD) if
n
PX;>x,i=1,2,...,n) < [ [ P(X: > %)
i=1

VX1,%,...,%, €R,
(b) negatively lower orthant dependent (NLOD) if

n
P(X,'Sx,-,izl,Z,...,n) Sl_[P(Xl le)
i=1

Vx1,%2,...,%;, €ER,
(c) negatively orthant dependent (NOD) if they are both NUOD and NLOD.
A sequence of random variables {X,,, n > 1} is said to be NOD if for each n, X7, X5, ..., X,
are NOD.

Obviously, every sequence of independent random variables is NOD. Joag-Dev and
Proschan [22] pointed out NA implies NOD, neither NUOD nor NLOD implies being NA.
They gave an example which possesses NOD, but does not possess NA. So we can see that
NOD is strictly wider than NA. For more convergence properties about NOD random
variables, one can refer to [2, 11, 20, 23-26], and so forth.

In order to prove our main result, we need the following lemmas.

Lemma 1.1 (Bozorgnia et al. [23]) Let X1, X5, ...,X, be NOD random variables.
(i) IfAi.for--- . fu are Borel functions all of which are monotone increasing (or all
monotone decreasing), then fi(X1),2(X2), . .., fu(X,) are NOD random variables.
(i) ETTL (X)s <1 E(X)+, Vi = 2.
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Lemma 1.2 (Asadian et al. [27]) For any v > 2, there is a positive constant C(v) depending
only on v such that if {X,,,n > 1} is a sequence of NOD random variables with EX, = 0 for
everyn > 1, then foralln > 1,

v n n v/2
< C(v){ZElXA" + (ZEX}) }
i=1 i=1

We reason by Lemma 1.2 and a similar argument to Theorem 2.3.1 of Stout [28].

Lemma 1.3 For any v > 2, there is a positive constant C(v) depending only on v such that
if {X,;, n > 1} is a sequence of NOD random variables with EX,, = 0 for every n > 1, then for

alln>1,
v n v/2
Emax|) X;| <Cw)(log(4n E|X;|Y + EX? ,
qu (v)(log(4m)) [Z| i (Zl ) }

where logx = max{1,Inx}, and Inx denotes the natural logarithm of x.

Lemma 1.4 (Kuczmaszewska [8]) Let B be positive constant, {X,,n > 1} be a sequence of

random variables and X be a random variable. Suppose that

n
Y P(|Xi| >x) < DnP(|X|>x), V¥x>0,Yn>1, 1.1)
i=1

holds for some D > 0, then there exists a constant C > 0 depending only on D and  such
that
i) IfE|X|? < oo, then %Z;’ZIHXJ»VS < CE|X|?;
(i) 5 3% EIXGIPI(X] < x) < CLEIXIPI(X] < x) + 2P P(X] > %)}
(iii) Z, LEIXGIPI(X;| > x) < CEIXIPI(1X] > x).

Throughout this paper, C will represent positive constants; their value may change from
one place to another.

2 Main results and proofs

Theorem2.1 Lety >0,a>1/2,p>0,ap > 1. Let {X,,, n > 1} be a sequence of NOD random
variables and X be a random variables possibly defined on a different space satisfying the
condition (1.1). Moreover, assume that EX,, = 0 for all n > 1 in the case « < 1. Suppose that

E|XP < 00, Y <p,
E|XIPlog(1+|X[) <00, y=p, (2.1)
EIX]Y <00, y>p.

Then the following statements hold.:

oo

v
E n"‘(”"’)‘zE{ max |Sg| — ena} <oo, Ve>0, (2.2)
o 1<k<n +
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o0

Zn"‘(""’)‘zE{ max |S®| - en } <00, Ve>0, (2.3)
1<k<n

o0

a(p-y)-2 «l”

Zn E{ max |Xi|—¢en <00, Ve>0, (2.4)
1<k<n +

Zn"’” 215{supk 1S —e] <00, Ve>0, 2.5)

n=1 k=n

Zn"‘” 215[supk “lel—a} <00, V&0, 2.6)

n=1 k=n

where S, =Y 1, X, SW s, — X, k=1,2,...,n

Proof Firstly, we prove (2.2). Note that for all e > 0
a(p-y)-2 4
E n*Pr E{max |Sk| — en® }
k=< +

o 00
= Z n"‘(p‘y)‘zf P(max |Sk| — en® > tl/y> dt
n=1 0

1<k<n
0 e
= Zn"‘(p‘y)‘zf P(max |Sk| — en® > t””) dt
0 1<k<n
n=1
S )
+ Zn"‘("_y)’Z/ P( max |Sk| —en® > tl/y) dt
ya 1<k<n
n=1 n
< Zn‘”’ 2P(max |Sk| > en )
n=1
oo 00
+ Z n"‘(”_y)’Z/ P( max |Sy| > tl/y) dt.
P nya 1<k<n

Hence by Theorem 2.1 of Qiu et al. [11], in order to prove (2.2), it is enough to show that

o 00
Z n w2 / P( max |Si| > tW) dt < co.
ol nve 1<k<n

Choose g such that 1/(ap) < g<1.Vj>1,£> 0, let

X\ =~V I(X; < —£77) + XI(1X] < £77) + 1V I(X; > 117,
X&) = (X = )97 < X; < 097 4 8) 4 (X > 177 4 607,

= (X -t — ) I(X > 17 + 27,

XY = (X + ) I(~477 =67 < X; < —77) =tV 1(X; < =177 1),

X5 = (X + 97 4 V(X < 17— £17),
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5 (6
then X; =3/, X;"". Note that
x 00
Z n"‘(”_y)_zf P( max |Sg| > tl/y> dt
P nye 1<k<n

0 o)
< Z peP-v)-2 P| max
‘el nre 1<k<n

k

2 X

j=1

>V V/5> dt

3 o o0 n
P23 [ (Y s

1=2 n=1 nr j=1

5 o0 o0 n
P33 [ (-3 o)

=4 n=1 nre j=1

Therefore to prove (2.2), it suffices to show that I; < oo for /=1, 2,3, 4,5.

For I;, we first prove that

sup 7 max -0, n— oo. (2.7)

t>nve 1<k<n

sup Y7 max
t>nv® 1<k<n

n
< sup Y CE(IXGI(1X] > £97) + 77 1(1X5] > 147}

o
t>n?" j=1

n
<2 sup 7 Y EIXGII(1X] > ¢17)

o
t>nY' j=1

< Cn sup t’I/VE|X|I(|X| > t‘m’)

t>nv
< Cn"™EIX|I(IX] > n*9)

< Cnl""pq""(l’q)E|X|p -0, n— oo

When o >1and p > 1.

sup ¢ V7 max
t>nve 1<k<n

n
< sup 7> "E|X;| < Cn sup tVEIX| < Cn™ >0, n— oo.

t>nve . t>nve
= j=1 =
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Whenao >landp<1,

sup t™V7 max
t>nve 1<k=n

< sup rWZE XGI(1X] < ¢47) + e T(1X5) > ¢17) }

t>nY% ] 1

< sup £ th(l—p /VE|X I < Cn sup 40PV g xP

t>nr® -1 t>nr®

< Cutrere-U-ae 0y 5 o0,

Therefore (2.7) holds. By (2.7), in order to prove ; < 00, it is enough to show that

00 00 k
*,_ a(p-y)-2 ft,l)_ (f;l)
e 3 [ 3 )

> tl/y/10> dt < 0o.

Fixanyv> 2 and v > max{p/(1-¢q),y/1-¢q),2y/[2- (2 -p)q], 2(ep-1)/[2a(1—-q) + (apqg —
1)], (ep - 1)/(a — 1/2)}, by Markov’s inequality, Lemma 1.1, Lemma 1.3, and C,-inequality,
we have

o]
I < CZVI"‘(”_}’)‘Z

n=1
v/2
x/ t“’/” (log(4n)) {ZE|X“| +(Z ( 1))2> }dt
< CZn"‘(” v)- ?(log(4n))"

00 n
x / e S UEXPI(X] <) + 67 P(1X] > 7 ) ) de
nre j=1

+ CZV[“‘(‘” 772 (log(4n))"

14
n 2

o _, 1 2 7
“ t7{Z(EX,?I(IX/Ist7)+t7P('Xf'>t7)) “
nve

j-1

def
= 111 + 112.

Note that

o]

(o]

n=1 nre

o0
<C Z n*P=*1=0"1(log(4n))" < 0o

n=1
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If max{p, y} < 2, by Lemma 1.4, we have

v

o0 0, n 2
Ly < CY_ n*®2(log(4n))” / tT{t(ZP)q/VZE|X,~|P} dt

n=1 nr j=1

- a(p—y)—2+v/2 v [ Zl2=Q-palv v
<CY n P (log(dm)” | £ (EIXP) dt
n=1 nre

o0
< CZ no‘p’z’["‘(l’q“(“pq’l)/z]"(log(4n))v < 00.

n=1
If max{p, y} > 2, note that E|X|? < oo, by Lemma 1.4, we have

o]

Ly < C Y n 22 (Jog(4m))" / £ dt

n=1 nre

< CZ n*P= 212 (109(4n))" < 0.

n=1

Therefore, I} < 00, so I} < 00.
For I, we first prove

t>nY®

n
sup {t‘”” ZEXIQ’Z)} — 0, n— oo. (2.8)
j=1

When p > 1, we have by Lemma 1.4 that

n
[ o]

o
t>n? =1

n

< sup Wy Z{EX,I(X, > tq/y) + tl/”P(Xj >ty tl/y)}
t>nY

j=1

n

< sup ey Z{EX,I(X] > tq/y) +E)(/I()(j > 'Y +t1/y)}

t>nYe

j=1

< Cn sup t"EIX|I(IX] > t77) < Cn'E|X|I(1X] > n®®)

t>nYe

< Cntr-DE| X 5 0, n— oo.

When 0 < p <1, we have by Lemma 1.4

n
sup {t‘” v ZEXIV’% }
j=1

t>nYe

n

< sup 7 Y HEIXGI(1X <2677) + £ P(1X] > 2647 )}

t>n¥® j-1

< Cn sup t{EIXII(IX] < 2¢677) + 26/ P(1X] > 26'7) + £ P(1X] > 2¢77) }

t>nYe
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< Cn sup {tPVEIX)P + t PV E|XP}

t>nYe

<Cn"1 0, n— oo.

Therefore (2.8) holds. By (2.8), in order to prove I, < 00, it is enough to show that
00 00 n
L= Z n"‘(”“’)_Z/ P(Z(X},(t'z) —EX}.“’Z)) > t””/lO) dt < co.
n=1 nre

Jj=1

Fix any v > 2 (to be specified later), by Markov’s inequality, Lemma 1.1, Lemma 1.2, C,-

inequality, Jensen’s inequality, and Lemma 1.4, we have

> o) n n v/2
I; < CZVI“(”*V“ /V t"/V{ZE|Xj“'2)|V + (ZE(XJ,(’@)Z) dt}
e j=1 j=1

n=1
o] o) n

= O [ S B <20 PO )
n=1 " j=1

50 o n v/2
+ CZV["‘(‘”‘V)‘2/ e {ZE(X/ZI(|X,| <26") + 2 p(X; > t”y))] dt
n=1

nve j=1

IA

o 00
Cy nre / . £ EIXII(1X] < 2677 dt
n=1

00
nre

oo
+czn“<1”-y>—1/ P(IX| > £7) dt
n=1

o]

I EIXPI(1X] < 2677) ) dt

0
+C Z not(p—y)—2+v/2 /

n=1 n¥
o [=S)
+ Czna(p—y)—2+v/2/ (P(|X| > tl/y))V/2 dt
nvre

n=1

def
= 121 + 122 + 123 + 124,.

We get by the mean-value theorem and a standard computation

0 0 (j+1)7¥
Iy = czn"@-WZ/y P(1X|> £/ dt
n=1 j=n jre

< CY n Y retP(X] > )
n=1

j=n
o J
= CY (x| > ) Y n
j=1 n=1
CY 5P POX > ), vy <p

IA

C Y% /P ogiP(X| > /), ¥ =p,
Y5 PO > ), y>p
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CE|X?, V<P
< { CEIXPlog+ IXI), v =p,

CEX|, y>p
< 00.

When max{p,y} < 2,let v=2. We have I4 = I, < 00 and

Ly =Ls=C)Y p*rr- / VEIXPI(1X] < 267 ) dt
n=1 j=n e
o0 oo
< CY p AN R X2 (1X] < 2( +1)%)
n=1 j=n
00 j
= CY JOTEXPI(IX] <26 +1)%) Y n* e
j=1 n=1
CY 5 P2 EIXPI(X| < 2(/+ 1)), Y <P
< | CX5 P2 ogEIXPIIX| <2(+ 1)), v =p,
CY 5 P EIXPI(X] <26+ 1)%), y>p
CE|XP?, Y <p
<1 CEIX|Plog(1+|X]), y=p
CE\X7, y>p
< 00. (2.9)

When max{p,y} > 2, let v> max{y, (ap — 1)/(oc — 1/2)}. Note that E|X|? < oo

9] 00 00
123 < Czna(p—y)—2+v/2/ t—v/y dt = Cznap—Z—(ot—l/Z)v <00,

nve

n=1 n=1

and by the Markov inequality, we have

o 00

o
n=1 n¥

The proof of I5; < oo is similar to that (2.9), so it is omitted. Therefore, I} < 00, so I; < 00.
For I3, we get

Yo i-1

3] 00 n
<) nte? / P{ (x> 0) } dt
n=1 n j

n

o 9]
= Zn"(P‘W‘2/ > PG> £ w117 dt
n=1 ne

Jj=1

9]
nre

oo
< CZn"‘(p"y)‘I/ P(IX| > ) dt = Cl, < 0.
n=1
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By similar proofs to I < oo and I3 < 0o, we have I, < 0o and I5 < 0o, respectively. Therefore,
(2.2) holds.

Equation (2.2) = (2.3). Note that |S¥| = S, — Xk| < S| + |1Xk| = ISl + ISk — Skl <
[Sul + ISkl + |Sk-1| < 3maxi<j<, |Sj|, V1 < k < n, hence

ad y
Z n"‘(”‘y)‘zE{ max |quk) | —en® }
N
n=1

1<k<n

o o)
=) n"‘(p‘”‘Z/ P( max |S©| - en® > t””) dt
el 0 1<k<n

S 00
< Zn“(”‘y)‘zf P(max 1S, > en®/3 + t””/B) dt
n=1 0

1<k<n

1<k<n

< [}
=37 Zn"‘“’"’)‘z / P( max |S,| > en®/3 + t”}’> dt
n=1 0

o0
Y
-3 Zna@-y>-2E[ max |S,| - 81’1"‘/3] < 0. (2.10)
P 1<k

=Kk=n

Equation (2.3) holds.

Equation (2.3) = (2.4). Since 1[S,| < Z11S,| = |1 30 SW| < maxikzn IS, V1 > 2,
and | Xy| = IS, — S(,,k)| <|S,| + |S£,k)| < 3max;<x<y, |S£,k)|, we have (2.4) by a similar argument
to (2.10).

Equation (2.2) = (2.5). The proof of (2.2) = (2.5) is similar to that (1.6) = (1.7) of Chen
and Wang [19], so it is omitted.

Equation (2.5) = (2.6). Since k™ | Xi| = k™ |Sk — S| < kK7 (ISk| + [Sk-11) < supjopj™ %
(1] + 1Sj1l) <2 supj-x_1/ *1Sjl, Vk > 2, we have (2.6) by the similar argument of (2.10). [J

Theorem 2.2 Lety >0,a >1/2,p>0, ap > 1. Let {X,,,n > 1} be a sequence of NOD ran-
dom variables and X be a random variables possibly defined on a different space. Moreover,
assume that EX,, = 0 for all n > 1 when a < 1. If there exist constants D, > 0 and D, > 0

such that
D 2n-1 D 2n-1
71 > P(1Xi] > %) < P(IX] > %) < 72 > P(1Xil>x), Vx>0,m=>1.
i=n i=n

Then (2.1)-(2.6) are equivalent.

Proof By Theorem 2.1, in order to prove Theorem 2.2, it is enough to show that
(2.4) = (2.1) and (2.6) = (2.1). We only prove (2.4) = (2.1), the proof of (2.6) = (2.1)
is similar and omitted. Note that

00
a(p-y)-2 al”
00 > n E{ max |Xy| —en
7 1<k<n +
n=

& 00
= Z n"‘(‘”‘y)‘Z/ P(max | Xk| — en® > t”y) dt
) 0 1<k=<n
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00 &
> Z n*w-r)-2 P(max | Xe| > en® + t”y> dt
el 0 1<k<n

1<k<n

o0
>y Z n”‘”‘ZP(max | Xk| > 28;1“)
n=1

by Theorem 2.2 of Qiu et al. [11], the proof of (2.4) = (2.1) is completed. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

'School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou, 510320, PR. China.
2Department of Statistics, Jinan University, Guangzhou, 510630, PR. China. >Department of Mathematics, Jinan University,
Guangzhou, 510630, PR. China.

Acknowledgements

The authors would like to thank the referees and the editors for the helpful comments and suggestions. The work of Qiu
was supported by the National Natural Science Foundation of China (Grant No. 61300204), the work of Liu was supported
by the National Natural Science Foundation of China (Grant No. 71471075), the work of Chen was supported by the
National Natural Science Foundation of China (Grant No. 11271161).

Received: 3 September 2014 Accepted: 26 January 2015 Published online: 19 February 2015

References
1. Hsu, P, Robbins, H: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33, 25-31 (1947)
2. Baek, J, Park, ST: Convergence of weighted sums for arrays of negatively dependent random variables and its
applications. J. Stat. Plan. Inference 140, 2461-2469 (2010)
3. Bai, ZD, Su, C: The complete convergence for partial sums of i.i.d. random variables. Sci. China Ser. A 5,399-412 (1985)
4. Baum, IE, Katz, M: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108-123 (1965)
5. Chen, P, Hu, TC, Volodin, A: Limiting behavior of moving average processes under negative association. Teor. Imovir.
Mat. Stat. 77, 154-166 (2007)
6. Chen, P, Wang, D: Convergence rates for probabilities of moderate deviations for moving average processes. Acta
Math. Sin. Engl. Ser. 24, 611-622 (2008)
7. Gut, A: Complete convergence for arrays. Period. Math. Hung. 25, 51-75 (1992)
8. Kuczmaszewska, A: On complete convergence in Marcinkiewica-Zygmund type SLLN for negatively associated
random variables. Acta Math. Hung. 128(1-2), 116-130 (2010)
9. Liang, H, Wang, L: Convergence rates in the law of large numbers for B-valued random elements. Acta Math. Sci. 21B,
229-236 (2001)
10. Peligrad, M, Gut, A: Almost-sure results for a class of dependent random variables. J. Theor. Probab. 12, 87-104 (1999)
11. Qiu, D, Wu, Q Chen, P: Complete convergence for negatively orthant dependent random variables. J. Inequal. Appl.
2014, 145 (2014)
12. Sung, SH: Complete convergence for weighted sums of random variables. Stat. Probab. Lett. 77,303-311 (2007)
13. Zhang, L, Wang, J: A note on complete convergence of pairwise NQD random sequences. Appl. Math. J. Chin. Univ.
Ser. A 19, 203-208 (2004) (in Chinese)
14. Chow, YS: On the rate of moment complete convergence of samples sums and extremes. Bull. Inst. Math. Acad. Sin.
16,177-201 (1988)
15. Wang, D, Su, C: Moment complete convergence for B-valued i.i.d. random elements sequence. Acta Math. Appl. Sin.
27,440-448 (2004) (in Chinese)
16. Chen, P: Complete moment convergence for sequences of independent random elements in Banach spaces. Stoch.
Anal. Appl. 24, 999-1010 (2006)
17. Wang, D, Zhao, W: Moment complete convergence for sums of a sequence of NA random variables. Appl. Math. J.
Chin. Univ. Ser. A 21, 445-450 (2006) (in Chinese)
18. Li, Y, Zhang, L: Complete moment convergence of moving average processes under dependence assumptions. Stat.
Probab. Lett. 70, 191-197 (2004)
19. Chen, P, Wang, D: Complete moment convergence for sequence of identically distributed ¢-mixing random
variables. Acta Math. Sin. Engl. Ser. 26, 679-690 (2010)
20. Qiu, D, Chen, P: Complete moment convergence for weighted sums of arrays of rowwise NA random variables. J.
Math. Res. Appl. 32, 723-734 (2012)
21. Sung, SH: Complete gth moment convergence for arrays of random variables. J. Inequal. Appl. 2013, 24 (2013).
doi:10.1186/1029-242X-2013-24
22. Joag-Dev, K, Proschan, F: Negative association of random variables with applications. Ann. Stat. 11, 286-295 (1983)
23. Bozorgnia, A, Patterson, RF, Taylor, RL: Limit theorems for dependent random variables. In: Proc. of the First World
Congress of Nonlinear Analysts 92(11), pp. 1639-1650. de Gruyter, Berlin (1965)


http://dx.doi.org/10.1186/1029-242X-2013-24

Qiu et al. Journal of Inequalities and Applications (2015) 2015:58 Page 12 of 12

24.

25.

26.

27.

28.

Ko, MH, Han, KH, Kim, TS: Strong laws of large numbers for weighted sums of negatively dependent random
variables. J. Korean Math. Soc. 43, 1325-1338 (2006)

Ko, MH, Kim, TS: Almost sure convergence for weighted sums of negatively dependent random variables. J. Korean
Math. Soc. 42, 949-957 (2005)

Taylor, RL, Patterson, R, Bozorgnia, A: A strong law of large numbers for arrays of rowwise negatively dependent
random variables. Stoch. Anal. Appl. 20, 643-656 (2002)

Asadian, N, Fakoor, V, Bozorgnia, A: Rosenthal’s type inequalities for negatively orthant dependent random variables.
J.Iran. Stat. Soc. 5(1-2), 69-75 (2006)

Stout, WF: Almost Sure Convergence. Academic Press, New York (1974)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Complete moment convergence for maximal partial sums under NOD setup
	Abstract
	MSC
	Keywords

	Introduction
	Main results and proofs
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


