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Abstract
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1 Introduction and preliminaries
Let U , V be two nonempty sets in two Hausdorff topological vector spaces, respectively,
W be a Hausdorff topological vector space, D ⊂ W a closed convex and pointed cone with
apex at the origin and int D �= ∅. Let D� = {g ∈ W � : g(c) ≥  for all c ∈ D}, where W � is the
set of all continuous linear functional on W . The scalar hierarchical minimax theorems are
introduced and discussed by Lin [] as follows: given three mappings A, B, C : U × V ⇒R,
under suitable conditions the following relation holds:

min
⋃

u∈U

max
⋃

v∈V

A(u, v) ≤ max
⋃

v∈V

min
⋃

u∈U

C(u, v). (sH)

In [], the three versions (H)-(H) of minimax theorems with hierarchical structures
are also discussed: given three mappings A, B, C : U × V ⇒ W , under suitable conditions
the following relation holds:

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) ⊂ Min

(
co

⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

+ D, (H)

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) ⊂ Min
⋃

u∈U

Maxw
⋃

v∈V

A(u, v) + D, (H)

Min
⋃

u∈U

Maxw
⋃

v∈V

A(u, v) ⊂ Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) + W \ (
D \ {}). (H)

In [], given three mappings A, B, C : U ×U ⇒ W , Lin et al. investigated the following two
versions of minimax inequalities, the so-called hierarchical minimax inequalities:

Max
⋃

u∈U

C(u, u) ⊂ Min

(
co

(⋃

u∈U

Maxw
⋃

v∈U

A(u, v)
))

+ D, (Hi)

Max
⋃

u∈U

C(u, u) ⊂ Min
⋃

u∈U

Maxw
⋃

v∈U

A(u, v) + D. (Hi)
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In this paper, we propose new hierarchical structures relative to several non-continuous
set-valued mappings which obey one of the following relations: (sH), (H), (H), (H), (Hi),
and (Hi). As applications, the existence of saddle points for set-valued mappings is also
discussed.

The fundamental concepts of maximal (minimal) point and weakly maximal (weakly
minimal) point will be used in the sequel.

Definition  [, ] Let L be a nonempty subset of W . A point w ∈ L is called a
(a) minimal point of L if L ∩ (w – D) = {w}; Min L denotes the set of all minimal points

of L;
(b) maximal point of L if L ∩ (w + D) = {w}; Max L denotes the set of all maximal points

of L;
(c) weakly minimal point of L if L ∩ (w – int D) = ∅; Minw L denotes the set of all weakly

minimal points of L;
(d) weakly maximal point of L if L ∩ (w + int D) = ∅; Maxw L denotes the set of all

weakly maximal points of L.

Both Max and Maxw are denoted by max (both Min and Minw by min) in R since both
Max and Maxw (both Min and Minw) are the same in R. We note that for a nonempty
compact set L, both sets Max L and Min L are nonempty. Furthermore, Min L ⊂ Minw L,
Max L ⊂ Maxw L, L ⊂ Min L + D, and L ⊂ Max L – D.

Definition  [, ] Let U, V be two Hausdorff topological spaces. A set-valued mapping
F : U⇒V with nonempty values is said to be

(a) upper semicontinuous on U if for any x ∈ U and for every open set N containing
F(x), there exists a neighborhood M of x such that F(M) ⊂ N ;

(b) lower semicontinuous on U if for any x ∈ U and any sequence {xn} ⊂ U such that
xn → x and any y ∈ F(x), there exists a sequence yn ∈ F(xn) such that yn → y;

(c) continuous on U if F is both upper semicontinuous and lower semicontinuous at any
x ∈ U.

Definition  [, ] The Gerstewitz function ϕkw : W →R is defined by

ϕkw(u) = min{t ∈R : u ∈ w + tk – D},

where k ∈ int D and w ∈ W .

Some properties of the scalarization function are as follows:

Proposition  [, ] The Gerstewitz function ϕkw : W → R has the following properties:
(a) ϕkw(w) > r ⇔ w /∈ w + rk – D;
(b) ϕkw(w) ≥ r ⇔ w /∈ w + rk – int D;
(c) ϕkw(·) is a convex function;
(d) ϕkw(·) is an increasing function, that is, w – w ∈ int D ⇒ ϕkw(w) < ϕkw(w);
(e) ϕkw(·) is a continuous function.

We also need the following cone-convexities for set-valued mappings.
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Definition  [] Let U be a nonempty convex subset of a topological vector space. A set-
valued mapping F : U ⇒ W is said to be

(a) above-D-convex (respectively, above-D-concave) on W if for all u, u ∈ U and all
α ∈ [, ],

F
(
αu + ( – α)u

) ⊂ αF(u) + ( – α)F(u) – D
(
respectively, αF(u) + ( – α)F(u) ⊂ F

(
αu + ( – α)u

)
– D

)
;

(b) above-naturally D-quasi-convex on W if for all u, u ∈ U and all α ∈ [, ],

F
(
αu + ( – α)u

) ⊂ co
{

F(u) ∪ F(u)
}

– D,

where co A denotes the convex hull of a set A; and
(c) above-D-quasi-convex on W if for each w ∈ W , the set {u ∈ U : F(u) ⊂ w – D} is a

convex subset of U .

By definition, the above-D-convex mapping is also an above-naturally D-quasi-convex
on U . The following whole intersection theorem is a variant form of Ha [].

Lemma  Let U be a nonempty convex subset of a real Hausdorff topological space, V
be a nonempty compact convex subset of a real Hausdorff topological space. Let the three
mappings L, M, N : U ⇒ V with L(u) ⊂ M(u) ⊂ N(u) for all u ∈ U satisfy

(a) L(u), N(u) are open in V for each u ∈ U , L–(v), N–(v) are convex in U for each
v ∈ V ; and

(b) V \ M(u) is convex for each u ∈ U , and M–(v) is open in U for each v ∈ V .
Then either there is an v ∈ V such that L–(v) is a empty set, or the whole intersection
⋂

v∈V N–(v) is nonempty.

In the sequel we also need the following proposition.

Proposition  Let U be a nonempty set, k ∈ int D and w ∈ W . Suppose that the set-
valued mappings F , G : U ⇒ W come with nonempty compact values and, for some u ∈ U ,
Maxw F(u) ⊂ Maxw G(u) – D. We have the following two results:

(a) for any ϕ ∈ D�, the inequality

maxϕF(u) ≤ maxϕG(u)

holds;
(b) for the Gerstewitz function ϕkw : W →R, the inequality

maxϕkwF(u) ≤ maxϕkwG(u)

holds.

Proof For the proof of (a), we refer to Proposition . []. We omit the proof of (b) since
it is quite similar to the proof of (a). �
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2 Scalar hierarchical minimax theorems
We first establish the following scalar hierarchical minimax theorem.

Theorem  Let U be a nonempty convex subset of a real Hausdorff topological space, V
be a nonempty compact convex subset of a real Hausdorff topological space. Suppose that
the set-valued mappings A, B, C : U × V ⇒ R with nonempty compact values satisfy the
following conditions:

(i) the mappings u 
→ A(u, v) and u 
→ C(u, v) are above-R+-quasi-convex on U for
each v ∈ V , and the mappings v 
→ A(u, v) and v 
→ C(u, v) are upper
semicontinuous on V for each u ∈ U ;

(ii) the mapping u 
→ B(u, v) is upper semicontinuous on U for each v ∈ V , and the
mapping v 
→ B(u, v) is above-R+-concave for each u ∈ U ; and

(iii) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v).
Then, for each t ∈R, either there is v ∈ V such that

C(u, v) ∩ (t + R+) �= ∅

for all u ∈ U , or there is u ∈ U such that

A(u, v) ⊂ t – intR+

for all v ∈ V .

Proof Give any t ∈R. Define three mappings L, M, N : U ⇒ V by

L(u) =
{

v ∈ V : ∀h ∈ C(u, v), h < t
}

,

M(u) =
{

v ∈ V : ∀g ∈ B(u, v), g < t
}

,

and

N(u) =
{

v ∈ V : ∀f ∈ A(u, v), f < t
}

for all u ∈ U . By (iii), L(u) ⊂ M(u) ⊂ N(u) for all u ∈ U .
Since the mapping u 
→ C(u, v) is above-R+-quasi-convex on U for each v ∈ V , the set

L–(v) is convex for each v ∈ V . Similarly, the set N–(v) is convex for each v ∈ V . Next,
we claim that the set L(u) is open in V , or the set V \ L(u) = {v ∈ V : ∃h ∈ C(u, v), h ≥ t} is
closed for each u ∈ U . For any net {vν} ⊂ V \ L(u) that converges to some point v ∈ V ,
there exists hν ∈ C(u, vν) such that hν ≥ t. By the upper semicontinuity of H at v, C(u, v) is
compact. By Lemma . [], there exist h ∈ C(u, v) and a subnet {hνα } that converges to
h. Since hνα ≥ t, we have h ≥ t, and hence v ∈ V \ L(u). This proves that the set V \ L(u)
is closed, and the set L(u) is open for each u ∈ U . Similarly, by the upper semicontinuity
of A and B, the sets M–(v) and N(u) are open for each u ∈ U and v ∈ V .

Next, we claim that the set V \ M(u) is convex in V for each u ∈ U . For each u ∈ U , for
any v, v ∈ V \M(u) and any τ ∈ [, ]. There exist g ∈ B(u, v) with g ≥ t and g ∈ B(u, v)
with g ≥ t, τg + ( – τ )g ≥ t. By the above-R+-concavity of B,

τg + ( – τ )g ⊂ B
(
u, τv + ( – τ )v

)
– R+.
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Thus, there is a gτ ∈ B(x, τv +(–τ )v) such that τg +(–τ )g ≤ gτ . Hence, τv +(–τ )v ∈
V \ M(u) and the set V \ M(u) is convex in V for each u ∈ U .

Since all conditions of Lemma  hold, by Lemma , either there is an v ∈ V such that
L–(v) is an empty set, or the whole intersection

⋂
v∈V D–(v) is nonempty. That is, for

each t ∈R, either there is v ∈ V such that

C(u, v) ∩ (t + R+) �= ∅

for all u ∈ U , or there is u ∈ U such that

A(u, v) ⊂ t – intR+

for all v ∈ V . �

Theorem  We work under the framework of Theorem , in addition, U is compact, for
each (u, v) ∈ U × V , the union

⋃
u∈U C(u, v) is compact, and the mappings u 
→ A(u, v) and

v 
→ C(u, v) are lower semicontinuous on U and V , respectively. If the following condition
holds: for each v ∈ V , there is an uv ∈ U such that

max C(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

C(u, v), (L)

then (sH) is valid.

Proof For any t > max
⋃

v∈V min
⋃

u∈U C(u, v). From (L), we see that, for each v ∈ V there
is an uv ∈ U such that

C(uv, v) ∩ (t + R+) = ∅.

Hence, by Theorem , there is u ∈ U such that

A(u, v) ⊂ t – intR+

for all v ∈ V . This will suffice to show that (sH) holds. �

We note that Theorems  and  include some special cases as follows.

Corollary  If we replace (iii) of Theorem  by any one of the following conditions:
(i) for all (u, v) ∈ U × V , A(u, v) = B(u, v) = C(u, v);

(ii) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) = C(u, v);
(iii) for all (u, v) ∈ U × V , A(u, v) = B(u, v) ⊂ C(u, v);
(iv) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) ⊂ C(u, v);
(v) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v), but

A(u, v) �= B(u, v) �= C(u, v);
(vi) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v), but

A(u, v) ⊂ B(u, v) �= C(u, v);
(vii) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v), but

A(u, v) �= B(u, v) ⊂ C(u, v),
then (sH) is valid.
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We state the first one of Corollary  as follows.

Corollary  Let U , V be two nonempty compact convex subset of real Hausdorff topolog-
ical spaces, respectively. Suppose that the set-valued mappings A : U × V ⇒ R come with
nonempty compact values and satisfy the following conditions:

(i) the mapping u 
→ A(u, v) is above-R+-quasi-convex on U for each v ∈ V , and the
mapping v 
→ A(u, v) is continuous on V for each u ∈ U ;

(ii) the mapping u 
→ A(u, v) is continuous on U for each v ∈ V , and the mapping
v 
→ A(u, v) is above-R+-concave for each u ∈ U .

If the following condition holds: for each v ∈ V , there is an uv ∈ U such that

max A(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

A(u, v),

then (sH) with A = B = C is valid.

From Proposition . [], every above-naturally R+-quasi-convex is an above-R+-
quasi-convex. We can see that Corollary  slightly generalizes Theorem . [].

3 Hierarchical minimax theorems
In this section, we will discuss three versions of hierarchical minimax theorems. The first
one is as follows.

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topological
spaces, respectively, W be a complete locally convex Hausdorff topological vector space.
Suppose that the set-valued mappings A, B, C : U × V ⇒ W come with nonempty compact
values and satisfy the following conditions:

(i) (u, v) 
→ A(u, v) is upper semicontinuous on U × V , and u 
→ A(u, v) is
above-naturally D-quasi-convex and lower semicontinuous on U for each v ∈ V ;

(ii) u 
→ B(u, v) is upper semicontinuous on U for each v ∈ V , and v 
→ B(u, v) is
above-D-concave on V for each u ∈ U ;

(iii) (u, v) 
→ C(u, v) is upper semicontinuous on U × V , u 
→ C(u, v) is above-naturally
D-quasi-convex on U for each v ∈ V , and v 
→ C(u, v) is continuous on V for each
u ∈ U ;

(iv) for any ϕ ∈ C� and for each v ∈ V , there is an uv ∈ U such that

maxϕC(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕC(u, v);

(v) for each v ∈ V ,

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) ⊂ Minw
⋃

u∈U

C(u, v) + D; and

(vi) for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D.

Then (H) is valid.
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Proof We omit some parts of the proof since the techniques of the proof are similar to
Theorem . []. Suppose that v /∈ co(

⋃
u∈U Maxw

⋃
v∈V A(u, v)) + D. There is a nonzero

continuous linear functional ϕ : Z 
→R such that

ϕ(v) < min
⋃

u∈U

max
⋃

v∈V

ϕA(u, v).

Since u 
→ A(u, v) and u 
→ C(u, v) are above-naturally D-quasi-convex for each v ∈ V , by
Proposition . [], u 
→ ϕA(u, v) and u 
→ ϕC(u, v) are above-naturally R+-quasi-convex
for each v ∈ V and ϕ ∈ C�. Since v 
→ B(u, v) is above-D-concave on V for each u ∈ U ,
by Proposition . [], v 
→ ϕB(u, v) is above-R+-concave on V for each u ∈ U and ϕ ∈
C�. Since every ϕ ∈ C� is continuous, all continuities of Theorem  are satisfied for the
mappings ϕA, ϕB, ϕC. By Proposition  and (vi), ϕA(u, v) ≤ ϕB(u, v) ≤ ϕC(u, v) for all
(u, v) ∈ U × V . Thus, all conditions of Theorem  hold for ϕA, ϕB, ϕC. Hence,

ϕ(v) < max
⋃

v∈V

min
⋃

u∈U

ϕC(u, v).

Since V is compact, there is a v′ ∈ V such that

ϕ(v) < min
⋃

u∈U

ϕC
(
u, v′).

Thus,

v /∈
⋃

u∈U

C
(
u, v′) + D,

and hence,

v /∈ Minw
⋃

u∈U

C
(
u, v′) + D. ()

If v ∈ Max
⋃

v∈V Minw
⋃

u∈U C(u, v), then, by (v),

v ∈ Minw
⋃

u∈U

C
(
u, v′) + D,

which contradicts (). Hence, for every v ∈ Max
⋃

v∈V Minw
⋃

u∈U C(u, v),

v ∈ co

(⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

+ D.

That is, (H) is valid. �

Corollary  If we replace (vi) of Theorem  by any one of the following conditions:
(i) for all (u, v) ∈ U × V , A(u, v) = B(u, v) = C(u, v);

(ii) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) = C(u, v);
(iii) for all (u, v) ∈ U × V , A(u, v) = B(u, v) ⊂ C(u, v);
(iv) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) ⊂ C(u, v);
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(v) for all (u, v) ∈ U × V , for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D, but A(u, v) �⊂ B(u, v) �⊂ C(u, v);

(vi) for all (u, v) ∈ U × V , for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D, but A(u, v) ⊂ B(u, v) �⊂ C(u, v);

(vii) for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D, but A(u, v) �⊂ B(u, v) ⊂ C(u, v),

then (H) is valid.

The following example illustrates that Theorem  is true.

Example  Let U = V = [, ], D = R

+, and f : U ⇒R be defined by

f (v) =

⎧
⎨

⎩
[–, ], v = ,

{}, v �= .

Define A, B, C : U × V ⇒R
 by

A(u, v) =
{

 – cos(uπ/)
} × f (v),

B(u, v) =
{

 + cos(uπ/)
} × [v – , ],

C(u, v) =
{

 + u} × [
v + , 

]
,

for all (u, v) ∈ U × V .
We can easily see that the mappings A, B, C satisfy (vi) and all continuities in Theorem .

For each v ∈ V , the mapping u 
→ A(u, v) is above-naturally D-quasi-convex on U for each
v ∈ V since, for any α ∈ [, ] and u, u ∈ U ,

A
(
αu + ( – α)u, v

)

=
{

 – cos
((

αu + ( – α)u
)
π/

)} × f (v)

⊂ α
{

 – cos(uπ/)
} × f (v) + ( – α)

{
 – cos(uπ/)

} × f (v) – D

= co
{

A(u, v) ∪ A(u, v)
}

– D.

We see that the mapping v 
→ B(u, v) is above-D-concave on V for each u ∈ U since, for
any α ∈ [, ] and v, v ∈ V ,

αB(u, v) + ( – α)B(v)

= α
{

 + cos(uπ/)
} × [v – , ] + ( – α)

{
 + cos(uπ/)

} × [v – , ]

=
{

 + cos(uπ/)
} × [

αv + ( – α)v – , 
]

⊂ B(u,αv) + ( – α)v – D.

We note that the mapping u 
→ C(u, v) is above-D-convex on U for each v ∈ V . Hence,
by definition, u 
→ C(u, v) is above-naturally D-quasi-convex on U for each v ∈ V . Thus,
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conditions (i)-(iii) of Theorem  are valid. Now we claim that condition (iv) holds. Indeed,
for each v ∈ V and ϕ = (ϕ,ϕ) ∈ D�, we need to find an uv ∈ U such that

maxϕC(uv, v) = max
{
ϕ

(
 + u) + ϕt : v +  ≤ t ≤ 

}

= ϕ
(
 + u) + ϕ

≤ ϕ + ϕ

= max
⋃

v∈V

min
⋃

u∈U

ϕC(u, v).

Hence, we choose uv by the following rule:

uv =

⎧
⎨

⎩
any point in [, ], ϕ = ,

, ϕ �= ,

then (iv) of Theorem  holds. Next, we claim (v) of Theorem  is valid. Indeed, by a simple
calculation, we get

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v)

=
{

(, )
}

⊂ ({} × [
y + , 

])⋃(
[, ] × {

y + 
})

+ D

= Minw
⋃

u∈U

C(u, v) + D

for each v ∈ V . Thus, condition (v) of Theorem  holds. By Theorem , (H) is valid. In-
deed,

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v)

=
{

(, )
}

⊂ {
(, –)

}
+ D

= Min

(
co

⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

+ D,

and hence the conclusion of Theorem  is valid.

In the following result, we apply the Gerstewitz function ϕkw : W 
→R to introduce the
second version of the hierarchical minimax theorems, where k ∈ int D and w ∈ W .

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topological
spaces, respectively, W be a real Hausdorff topological vector space. We work under the
framework of Theorem  except (iv) and the concavity of B. If, in addition, the mapping
v 
→ ϕkwB(u, v) is above-R+-concave on V for each u ∈ U , and for any Gerstewitz function
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ϕkw and for each v ∈ V , there is an uv ∈ U such that

(iv)′ maxϕkwC(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕkwC(u, v);

then (H) is valid.

Proof Using the same steps as in the proof of Theorem , we see that the set
⋃

u∈U Maxw ×
⋃

v∈V A(u, v) is nonempty and compact. Suppose that v /∈ ⋃
u∈U Maxw

⋃
v∈V A(u, v)+D. For

any k ∈ int D, there is a Gerstewitz function ϕkw : W 
→R such that

ϕkw(u) >  ()

for all u ∈ ⋃
u∈U Maxw

⋃
v∈V A(u, v). Then, for each u ∈ U , there is v�

u ∈ Y and f (u, v�
u) ∈

F(u, v�
x) with f (u, v�

u) ∈ Maxw
⋃

v∈V A(u, v) such that

ϕkw
(
f
(
u, v�

u
))

= max
⋃

v∈V

ϕkwA(u, v).

Choosing u = f (u, v�
u) in (),

max
⋃

v∈V

ϕkwA(u, v) > 

for all u ∈ U . Therefore,

min
⋃

u∈U

max
⋃

v∈V

ϕkwA(u, v) > .

By conditions (i)-(iii) and (iv′), we see that all conditions of Theorem  hold for the
mappings ϕkwA, ϕkwB, ϕkwC, and hence, by (sH),

max
⋃

v∈V

min
⋃

u∈U

ϕkwC(u, v) > .

Since V is compact, there is a y′ ∈ Y such that

min
⋃

u∈U

ϕkwC
(
u, v′) > .

Thus,

v /∈
⋃

u∈U

C
(
u, v′) + D,

and hence

v /∈ Minw
⋃

u∈U

C
(
u, v′) + D. ()
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If v ∈ Max
⋃

v∈V Minw
⋃

u∈U A(u, v), then, by (v),

v ∈ Minw
⋃

u∈U

C
(
u, v′) + D,

which contradicts (). From this, we can deduce (H). �

The third version of hierarchical minimax theorems is as follows. We remove condition
(v) in Theorem  to deduce (H).

Theorem  We work under the framework of Theorem  except condition (v). Equation
(H) is valid.

Proof Following the proof of Theorem . Fix any v ∈ Min
⋃

u∈U Maxw
⋃

v∈V A(u, v). Then

(⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

\ {v} ∩ (v – D) = ∅.

For any k ∈ int D, there is a Gerstewitz function ϕkw : W 
→R such that

ϕkw(u) > 

for all u ∈ ⋃
u∈U Maxw

⋃
v∈V A(u, v) \ {v}. For each u ∈ U ,

max
⋃

v∈V

ϕkwA(u, v) ≥ ,

or

min
⋃

u∈U

max
⋃

v∈V

ϕkwA(u, v) ≥ .

Hence, by Theorem  for the mappings ϕkwA, ϕkwB, ϕkwC,

max
⋃

v∈V

min
⋃

u∈U

ϕkwC(u, v) ≥ .

Since U and V are compact, there are u ∈ U , v ∈ V , and h ∈ C(u, v) such that

ϕkw(h) = min
⋃

u∈U

ϕkwC(u, v) ≥ .

Applying Proposition . [], h ∈ Minw
⋃

u∈U C(u, v). If h = v, v /∈ h + (D \ {}). If
h �= v, ϕkw(h) > , and hence h /∈ v – D. Therefore, v /∈ h + (D \ {}). Thus, in any case,
v ∈ h + W \ (D \ {}). This implies (H). �

4 Hierarchical minimax inequalities
As an application of scalar hierarchical minimax theorems, we discuss minimax inequal-
ities which were investigated by Lin et al. []. The following result as regards (Hi) is dif-
ferent from [] and holds under very different conditions.
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Theorem  Let U be a nonempty compact convex subset of a real Hausdorff topological
vector space, W be a complete locally convex Hausdorff topological vector space. Let the set-
valued mappings A, B, C : U ×U ⇒ W come with nonempty compact values and satisfy the
following conditions:

(i) the mappings u 
→ A(u, v) and u 
→ C(u, v) are above-naturally D-quasi-convex on
U for each v ∈ U , the mappings (u, v) 
→ A(u, v) and (u, v) 
→ C(u, v) are upper
semicontinuous on U for each u ∈ U , and the mappings u 
→ A(u, v) and
v 
→ C(u, v) are lower semicontinuous on U ;

(ii) u 
→ B(u, v) is upper semicontinuous on U for each v ∈ U , and the mapping
v 
→ B(u, v) is above-D-concave on U for each u ∈ U ;

(iii) for each v ∈ U , for each ϕ ∈ D�, there is an uv ∈ U such that

maxϕC(uv, u) ≤ max
⋃

v∈U

min
⋃

u∈U

ϕC(u, v);

(iv) for each v ∈ U ,

Max
⋃

u∈U

C(u, u) ⊂ Minw
⋃

u∈U

C(u, v) + D; and

(v) for all (u, v) ∈ U × U ,

Maxw A(u, v) ⊂ Maxw B(u, v) – D

and

Maxw B(u, v) ⊂ Maxw C(u, v) – D.

Then (Hi) is valid.

Proof Suppose that v /∈ co(
⋃

u∈U Maxw
⋃

v∈U A(u, v)) + D. With the help of technique in
the proof of Theorems  and  for the mappings ϕA, ϕB, ϕC, we can see that

ϕ(v) < max
⋃

y∈U

min
⋃

u∈U

ϕC(u, v).

In a similar way to Theorem , there is a v′ ∈ V such that

ϕ(v) < min
⋃

u∈U

ϕC
(
u, v′).

Hence, v /∈ Minw
⋃

u∈U C(u, v′) + D. By condition (iv), we see that

v /∈ Max
⋃

u∈U

C(u, u).

Therefore, (Hi) is valid. �

In the following example we modify Example , which serves to illustrate Theorem .
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Example  Let X = [, ], D = R

+ and f : U ⇒R be defined by

f (v) =

⎧
⎨

⎩
[–, ], y = ,

{}, y �= .

Define A, B, C : U × U ⇒R
 by

A(u, v) =
{

 – cos(uπ/)
} × f (v),

B(u, v) =
{

 + cos(uπ/)
} × [v – , ],

C(u, v) =
{

 + u} × [
v + , 

]
,

for all (u, v) ∈ U × V .
We can easily see that the mappings A, B, C satisfy (v) and all continuities in Theorem .

From the illustrations in Example , we see that the mapping u 
→ A(u, v) is above-naturally
D-quasi-convex on U for each v ∈ V , the mapping v 
→ B(u, v) is above-D-concave on V
for each u ∈ U , the mapping u 
→ C(u, v) is above-naturally D-quasi-convex on U for each
v ∈ V . Furthermore, for each v ∈ V and ϕ = (ϕ,ϕ) ∈ D�, by using the same choice of uv as
in Example , (iii) of Theorem  holds. Next, we claim (iv) of Theorem  is valid. Indeed,
by a simple calculation, we get

Max
⋃

u∈U

C(u, u)

= Max
⋃

u∈U

{
 + u} × [

u + , 
]

=
{

(, )
}

⊂ ({} × [
v + , 

]) ∪ (
[, ] × {

v + 
})

+ D

= Minw
⋃

u∈U

C(u, v) + D

for each v ∈ V . Thus, condition (iv) of Theorem  holds. By Theorem , (Hi) is valid.
Indeed,

Max
⋃

u∈U

C(u, u)

=
{

(, )
}

⊂ {
(, –)

}
+ D

= Min

(
co

⋃

u∈U

Maxw
⋃

v∈U

A(u, v)
)

+ D,

and hence the conclusion of Theorem  is valid.

Theorem  Let U be a nonempty compact convex subset of real Hausdorff topological vec-
tor space, W be a real Hausdorff topological vector space. We work under the framework of
Theorem  except (iii) and the convexities of B. If, in addition, the mapping v 
→ ϕkwB(u, v)
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is above-R+-concave on U for each u ∈ U , and for each v ∈ U , there is an xv ∈ U such that
for any Gerstewitz function ϕkw,

(iii)′ maxϕkwC(uv, v) ≤ max
⋃

v∈U

min
⋃

u∈U

ϕkwC(u, v),

then (Hi) is valid.

Proof Suppose that v /∈ ⋃
u∈U Maxw

⋃
v∈U A(u, v) + D. Using a similar technique to the

proofs of Theorems  and  for the mappings ϕkwA, ϕkwB, ϕkwC, we can see that

max
⋃

v∈U

min
⋃

u∈U

ϕkwC(u, v) > .

By the same technique as in Theorem  and condition (iv), we see that

v /∈ Max
⋃

u∈U

C(u, u).

Hence, (Hi) is valid. �

5 Saddle points
In this section, we list the existence of saddle points for set-valued mappings as applica-
tions of scalar hierarchical minimax theorems. The proofs of the following results can be
deduced directly from Corollary , so we omit them. We refer the reader to [, ] for more
details. Nevertheless, the conditions used in Theorems - are quite different from the
ones used in the literature [, ].

Theorem  Under the framework of Corollary ., we have

max
⋃

v∈V

A(ū, v) = min
⋃

u∈U

A(x, v̄) = A(ū, v̄),

which means: A has R+-saddle point (ū, v̄).

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topologi-
cal spaces, respectively. W is a complete locally convex Hausdorff topological vector space.
Suppose that the set-valued mappings F : U × V ⇒ W have nonempty compact values and
satisfy the following conditions:

(i) (u, v) 
→ A(u, v) is upper semicontinuous on U × V , and u 
→ A(u, v) is
above-naturally D-quasi-convex and lower semicontinuous on U for each v ∈ V ;

(ii) v 
→ A(u, v) is above-D-concave on V for each u ∈ U ;
(iii) v 
→ A(u, v) is continuous on V for each u ∈ U ; and
(iv) for any ϕ ∈ D� and for each v ∈ V , there is an uv ∈ U such that

maxϕA(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕA(u, v).
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Then

A(ū, v̄) ∩
(

Maxw
⋃

v∈V

A(ū, v)
)

∩
(

Minw
⋃

u∈U

A(x, v̄)
)

�= ∅,

which means: A has a weakly D-saddle point (ū, v̄).

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topological
spaces, respectively. W is a real Hausdorff topological vector space. We work under the
framework of Theorem  except (iv) and the convexities of A. If, in addition, the mapping
v 
→ ϕkwA(u, v) is above-R+-concave on V for each u ∈ U , and for any Gerstewitz function
ϕkw and for each v ∈ V , there is an uv ∈ U such that

(iv′) maxϕkwA(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕkwA(u, v);

then A has a weakly D-saddle point (ū, v̄).

Competing interests
The author declares that they have no competing interests.

Acknowledgements
This work was supported by grant MOST103-2115-M-039-001 of the Ministry of Science and Technology of Taiwan
(Republic of China).

Received: 4 October 2014 Accepted: 26 January 2015

References
1. Lin, YC: The hierarchical minimax theorems. Taiwan. J. Math. 18, 451-462 (2014)
2. Lin, YC, Pang, C-T: The hierarchical minimax inequalities for set-valued mappings. Abstr. Appl. Anal. 2014, Article ID

190821 (2014). doi:10.1155/2014/190821
3. Lin, YC, Ansari, QH, Lai, HC: Minimax theorems for set-valued mappings under cone-convexities. Abstr. Appl. Anal.

2012, Article ID 310818 (2012). doi:10.1155/2012/310818
4. Li, SJ, Chen, GY, Teo, KL, Yang, XQ: Generalized minimax inequalities for set-valued mappings. J. Math. Anal. Appl. 281,

707-723 (2003)
5. Berge, C: Topological Spaces. Macmillan, New York (1963)
6. Aubin, JP, Cellina, A: Differential Inclusions. Springer, Berlin (1984)
7. Gerth, C, Weidner, P: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory

Appl. 67, 297-320 (1990)
8. Ha, CW: A minimax theorem. Acta Math. Hung. 101, 149-154 (2003)
9. Lin, YC: Bilevel minimax theorems for non-continuous set-valued mappings. J. Inequal. Appl. 2014, 182 (2014)

doi:10.1186/1029-242X-2014-182
10. Ferro, F: Optimization and stability results through cone lower semi-continuity. Set-Valued Anal. 5, 365-375 (1997)

http://dx.doi.org/10.1155/2014/190821
http://dx.doi.org/10.1155/2012/310818
http://dx.doi.org/10.1186/1029-242X-2014-182

	Minimax problems under hierarchical structures
	Abstract
	Keywords

	Introduction and preliminaries
	Scalar hierarchical minimax theorems
	Hierarchical minimax theorems
	Hierarchical minimax inequalities
	Saddle points
	Competing interests
	Acknowledgements
	References


