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Abstract

We discuss the minimax problems for set-valued mappings with several hierarchical
structures, and scalar hierarchical minimax theorems, hierarchical minimax theorems,
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1 Introduction and preliminaries

Let U, V be two nonempty sets in two Hausdorff topological vector spaces, respectively,
W be a Hausdorff topological vector space, D C W a closed convex and pointed cone with
apex at the origin and intD # . Let D* = {g € W* : g(c) > 0 for all ¢ € D}, where W* is the
set of all continuous linear functional on W. The scalar hierarchical minimax theorems are
introduced and discussed by Lin [1] as follows: given three mappings A,B,C: U x V =2 R,
under suitable conditions the following relation holds:

min U max U A(u,v) < max U min U C(u,v). (sH)
uel veV veV ueld
In [1], the three versions (H;)-(H3) of minimax theorems with hierarchical structures
are also discussed: given three mappings A,B,C: U x V = W, under suitable conditions
the following relation holds:

Max U Min,, U C(u,v) C Min (CO U Max,, UA(u, v)) +D, (Hy)
veV uel uel veV

Max U Min,, U C(u,v) C Min U Max,, UA(u, v)+D, (H»)
veV uel uel veV

Min || Max,, |_J A(w,v) ¢ Max|_JMin, | ] C(u,v) + W\ (D\ {0}). (Ha)
uel veV veV uel

In [2], given three mappings A, B, C: U x U = W, Lin et al. investigated the following two
versions of minimax inequalities, the so-called hierarchical minimax inequalities:

Max U C(u,u) C Min <CO<U Max,, UA(u, v))) +D, (Hiyp)

uel uel vel
Max U C(u, u) C Min U Max,, UA(u, v) + D. (Hiy)
uel uel vel
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In this paper, we propose new hierarchical structures relative to several non-continuous
set-valued mappings which obey one of the following relations: (sH), (H;), (Hz), (Hs), (Hiy),
and (Hiy). As applications, the existence of saddle points for set-valued mappings is also
discussed.

The fundamental concepts of maximal (minimal) point and weakly maximal (weakly
minimal) point will be used in the sequel.

Definition 1 [3, 4] Let L be a nonempty subset of W. A point w € L is called a

(a) minimal point of L if LN (w — D) = {w}; Min L denotes the set of all minimal points
of L;

(b) maximal point of L if L N (w + D) = {w}; Max L denotes the set of all maximal points
of L;

(c) weakly minimal point of L if L N (w — int D) = @; Min,, L denotes the set of all weakly
minimal points of L;

(d) weakly maximal point of L if L N (w + int D) = J; Max,, L denotes the set of all
weakly maximal points of L.

Both Max and Max,, are denoted by max (both Min and Min,, by min) in R since both
Max and Max,, (both Min and Min,,) are the same in R. We note that for a nonempty
compact set L, both sets Max L and Min L are nonempty. Furthermore, Min L C Min,, L,
Max L C Max,, L, L CMinL + D, and L C Max L - D.

Definition 2 [5, 6] Let 4, U be two Hausdorff topological spaces. A set-valued mapping
F : 4 = *0 with nonempty values is said to be
(a) upper semicontinuous on W if for any x, € { and for every open set N containing
F(xo), there exists a neighborhood M of x( such that F(M) C N;
(b) lower semicontinuous on L if for any x, € { and any sequence {x,} C 4 such that
x, — xo and any yo € F(x), there exists a sequence y, € F(x,) such that y, — yo;
(c) continuous on L if F is both upper semicontinuous and lower semicontinuous at any
X0 € .

Definition 3 [4, 7] The Gerstewitz function ¢y, : W — R is defined by
Oiw(u) =min{t e R:u € w + tk — D},
where k eintDand we W.
Some properties of the scalarization function are as follows:

Proposition 1 [4, 7] The Gerstewitz function @i, : W — R has the following properties:
(@) pww)>r<wéw+rk-D;
w)>re wdé¢w+rk—intD;
(+) is a convex function;
©iw(+) is an increasing function, that is, wy — wy € int D = @p(W1) < @rw(W2);
)

is a continuous function.

We also need the following cone-convexities for set-valued mappings.
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Definition 4 [3] Let U be a nonempty convex subset of a topological vector space. A set-
valued mapping F : U = W is said to be
(a) above-D-convex (respectively, above-D-concave) on W if for all uy, u; € U and all
o €[0,1],

F(om1 +(1- Ol)btz) CaF(u) + 1 -a)F(uy)—D

(respectively, aF () + (1 —a)F(uy) C F(oml +(1- a)uz) - D);
(b) above-naturally D-quasi-convex on W if for all uy,u, € U and all « € [0,1],
F(au + (1 - a)u) C co{F(uy) UF(up)} - D,

where co A denotes the convex hull of a set A; and
(c) above-D-quasi-convex on W if for each w e W, theset {u e U: F(u) Cw—D}isa
convex subset of U.

By definition, the above-D-convex mapping is also an above-naturally D-quasi-convex
on U. The following whole intersection theorem is a variant form of Ha [8].

Lemma 1 Let U be a nonempty convex subset of a real Hausdorff topological space, V
be a nonempty compact convex subset of a real Hausdorff topological space. Let the three
mappings L, M,N : U = V with L(u) C M(u) C N(u) for all u € U satisfy
(@) L(u), N(u) are open in V for each u € U, L™(v), N™X(v) are convex in U for each
veV;and
(b) V' \ M(u) is convex for each u € U, and M~ (v) is open in U for eachve V.
Then either there is an vy € V such that L™\ (vy) is a empty set, or the whole intersection

Myey N7 (v) is nonempty.
In the sequel we also need the following proposition.

Proposition 2 Let U be a nonempty set, k € intD and w € W. Suppose that the set-
valued mappings F, G : U == W come with nonempty compact values and, for some u € U,
Max,, F(u) C Max,, G(u) — D. We have the following two results:

(a) for any ¢ € D*, the inequality

max ¢F (1) < max ¢G(u)

holds;
(b) for the Gerstewitz function @i : W — R, the inequality

max @, F (1) < max ¢, G(u)
holds.

Proof For the proof of (a), we refer to Proposition 1.2 [9]. We omit the proof of (b) since

it is quite similar to the proof of (a). d
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2 Scalar hierarchical minimax theorems
We first establish the following scalar hierarchical minimax theorem.

Theorem 1 Let U be a nonempty convex subset of a real Hausdorff topological space, V
be a nonempty compact convex subset of a real Hausdor(f topological space. Suppose that
the set-valued mappings A,B,C : U x V = R with nonempty compact values satisfy the
following conditions:

(i) the mappings u > A(u,v) and u> C(u,v) are above-R, -quasi-convex on U for
each v € V, and the mappings vi— A(u,v) and v~ C(u,v) are upper
semicontinuous on V for each u € U,

(ii) the mapping u v B(u,v) is upper semicontinuous on U for each v € V, and the
mapping v B(u,v) is above-R, -concave for each u € U; and
(iti) forall (u,v) e U x V, max A(u,v) < max B(u,v) < max C(u, v).
Then, for each t € R, either there is vy € V such that

Clu,vo)N(t+R,) #0
forallu e U, or there is ug € U such that
A(ug,v) Ct—intR,
forallveV.
Proof Give any ¢ € R. Define three mappings L,M,N : U = V by

L(u) = {Ve V:VheClu,v),h< t},

M(u)={veV:VgeBu,v),g<t},
and
N(u) = {Ve V:Vf e Alu,v),f < t}

for all u € U. By (iii), L(u) C M(u) C N(u) forallu e U.

Since the mapping u — C(u,v) is above-RR, -quasi-convex on U for each v € V, the set
L7Y(v) is convex for each v € V. Similarly, the set N~}(v) is convex for each v € V. Next,
we claim that the set L(u) is openin V, or theset V \ L(u) = {ve V:3h € C(u,v),h > t} is
closed for each u € U. For any net {v,} C V' \ L(x) that converges to some point vy € V,
there exists /1, € C(u,v,) such that /1, > ¢. By the upper semicontinuity of H at v, C(u, vo) is
compact. By Lemma 2.2 [10], there exist /1o € C(u, vo) and a subnet {#,,} that converges to
hy. Since h,, > t, we have Ky > ¢, and hence vy € V'\ L(u). This proves that the set V'\ L(u)
is closed, and the set L(x) is open for each u# € U. Similarly, by the upper semicontinuity
of A and B, the sets M~!(v) and N (u) are open for eachu € U and ve V.

Next, we claim that the set V' \ M(u) is convex in V for each u € U. For each u € U, for
any vy, v, € V\M(u) and any t € [0,1]. There exist g € B(u,v1) with gy > tand g, € B(u,v3)
with g¢» > ¢, 7g1 + (1 - 7)g2 > t. By the above-R, -concavity of B,

g +(1-1)g CB(u,tvi + (1-1)vs) - R,
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Thus, thereisag, € B(x, tvi +(1—-1)v;) suchthat7gy + (1-1)gy < g;.Hence, tv1+(1-1)v; €
V \ M(u) and the set V' \ M(u) is convex in V for each u € U.

Since all conditions of Lemma 1 hold, by Lemma 1, either there is an vy € V such that
L7Y(vp) is an empty set, or the whole intersection ﬂvevD‘l(v) is nonempty. That is, for
each t € R, either there is vy € V such that

Clu,vo)N(t+R,) #0
for all u € U, or there is uy € U such that
A(ug,v) Ct—intR,
forallve V. g

Theorem 2 We work under the framework of Theorem 1, in addition, U is compact, for
each (u,v) € U x V, the union  J,,.,; C(u,v) is compact, and the mappings u — A(u,v) and
vi> C(u,v) are lower semicontinuous on U and V, respectively. If the following condition
holds: for each v € V, there is an u, € U such that

max C(u,,v) < max U min U C(u,v), (L)

veV uel

then (sH) is valid.

Proof For any ¢ > max |, minlJ,.,; C(&,v). From (L), we see that, for each v € V there
is an u, € U such that

Clu,,v)N({t+R,)=0.
Hence, by Theorem 1, there is uy € U such that
A(ug,v) Ct—intR,
for all v € V. This will suffice to show that (sH) holds. O
We note that Theorems 1 and 2 include some special cases as follows.

Corollary 1 If we replace (iii) of Theorem 2 by any one of the following conditions:
(i) forall (u,v) e U x V, A(u,v) = B(u,v) = C(u,v);
(ii) forall (u,v) e U x V, A(u,v) C B(u,v) = C(u,v);
(iii) forall (u,v) e U x V, A(u,v) = B(u,v) C C(u,v);
(iv) forall (u,v) e U x V, A(u,v) C B(u,v) C C(us, v);
(v) forall (u,v) e U x V, max A(u,v) < max B(u,v) < max C(u,v), but
A(u,v) # B(u,v) # C(u,v);
(vi) forall (u,v) e U x V, max A(u,v) < max B(u,v) < max C(u,v), but
A(u,v) C B(u,v) # C(u,v);
(vil) forall (u,v) e U x V, max A(u,v) < max B(u,v) < max C(u,v), but
A(u,v) # B(u,v) C C(u,v),
then (sH) is valid.
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We state the first one of Corollary 1 as follows.

Corollary 2 Let U, V be two nonempty compact convex subset of real Hausdor{f topolog-
ical spaces, respectively. Suppose that the set-valued mappings A : U x V = R come with
nonempty compact values and satisfy the following conditions:
(i) the mapping u— A(u,v) is above-R,-quasi-convex on U for each v € V, and the
mapping v A(u,v) is continuous on 'V for each u € U;
(ii) the mapping u— A(u,v) is continuous on U for each v € V, and the mapping
vi> A(u,v) is above-R, -concave for each u € U.
If the following condition holds: for each v € V, there is an u, € U such that

max A(u,, v) < max U min U A(u,v),

veV ueld

then (sH) with A = B = C is valid.

From Proposition 3.12 [3], every above-naturally R,-quasi-convex is an above-R,-

quasi-convex. We can see that Corollary 1 slightly generalizes Theorem 2.1 [4].

3 Hierarchical minimax theorems
In this section, we will discuss three versions of hierarchical minimax theorems. The first

one is as follows.

Theorem 3 Let U, V be nonempty compact convex subsets of real Hausdor{f topological
spaces, respectively, W be a complete locally convex Hausdorff topological vector space.
Suppose that the set-valued mappings A,B,C : U x V. = W come with nonempty compact
values and satisfy the following conditions:
(i) (u,v) > A(u, V) is upper semicontinuous on U x V, and u > A(u,v) is
above-naturally D-quasi-convex and lower semicontinuous on U for each v € V;

(i) u > B(u,v) is upper semicontinuous on U for eachve V, and v B(u,v) is
above-D-concave on V for each u € U;

(iti) (z,v) > C(u,v) is upper semicontinuous on U x V, u > C(u,v) is above-naturally
D-quasi-convex on U for each v € V, and v~ C(u,v) is continuous on 'V for each
uel;

(iv) for any ¢ € C* and for each v € V, there is an u, € U such that

max ¢ C(u,,v) < max U min U oC(u,v);

veV uel

(v) foreachveV,

Max U Min,, U C(u,v) C Min,, U C(u,v)+D; and

veV uel uel

(vi) forall (u,v) € U x V, Max,, A(u,v) C Max,, B(u,v) — D, and
Max,, B(u,v) C Max,, C(u,v) — D.
Then (Hy) is valid.
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Proof We omit some parts of the proof since the techniques of the proof are similar to
Theorem 3.1 [1]. Suppose that v ¢ co(|J,,c;; Maxy |,y A, v)) + D. There is a nonzero
continuous linear functional ¢ : Z — R such that

¢(v) < min U max U 0A(u,v).

uel veV

Since u — A(u,v) and u — C(u,v) are above-naturally D-quasi-convex for each v € V, by
Proposition 3.13 [3], # — @A(u,v) and u — ¢C(u, v) are above-naturally R, -quasi-convex
for each v € V and ¢ € C*. Since v — B(u,v) is above-D-concave on V for each u € U,
by Proposition 3.9 [3], v ¢B(u,v) is above-R,-concave on V for each u € U and ¢ €
C*. Since every ¢ € C* is continuous, all continuities of Theorem 2 are satisfied for the
mappings @A, ¢B, ¢C. By Proposition 2 and (vi), pA(u,v) < ¢B(u,v) < ¢C(u,v) for all
(#,v) € U x V. Thus, all conditions of Theorem 2 hold for pA, ¢B, ¢C. Hence,

¢(v) < max U min U oC(u,v).

veV uel

Since V is compact, there is a v/ € V such that

¢(v) < min U @C(u,v').
uel

Thus,

vé U C(u,v/) +D,

uel

and hence,

v ¢ Min,, U C(u, 1/) +D. (2)

uel

If v e Max (., Min,, ., C(u,v), then, by (v),

v € Min,, U C(u,v) +D,
uel

which contradicts (2). Hence, for every v € Max | J,.,, Min,, ,,c; C(1, v),

Ve co(U Max,, UA(u, v)) +D.

uel veV

That is, (H;) is valid. O

Corollary 3 If we replace (vi) of Theorem 3 by any one of the following conditions:
(i) forall (u,v) e U x V, A(u,v) = B(u,v) = C(u,v);
(ii) forall (u,v) el x V,A(u,v) C B(u,v) = C(u,v);
(iii) forall (u,v) e U x V, A(u,v) = B(u,v) C C(u, v);
(iv) forall (u,v) e U x V, A(u,v) C B(u,v) C C(us,v);
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(v) forall (u,v)e U x V, forall (u,v) € U x V, Max,, A(u,v) C Max,, B(i,v) — D, and
Max,, B(u,v) C Max,, C(u,v) — D, but A(u,v) ¢ B(u,v) ¢ C(u,v);
(vi) forall (u,v) e U x V, forall (u,v) € U x V, Max,, A(u,v) C Max,, B(u,v) — D, and
Max,, B(u,v) C Max,, C(u,v) — D, but A(u,v) C B(u,v) ¢ C(u,v);
(vil) forall (u,v) e U x V,Max,, A(u,v) C Max,, B(u4,v) — D, and
Max,, B(u,v) C Max,, C(u,v) — D, but A(u,v) ¢ B(u,v) C C(u,v),
then (Hy) is valid.

The following example illustrates that Theorem 3 is true.

Example1 Let U =V =[0,1], D = R?, and f : U = R be defined by

[-1,0], v=0,
0},  v<o.

f)=

Define A,B,C: U x V = R? by

Au,v) = {1 - cos(un/2)} x f(v),
B(u,v) = {1 + cos(un/2)} x [v-1,1],
Clu,v) = {2 +u*} x [V* +1,2],
forall (u,v) e x V.
We can easily see that the mappings A, B, C satisfy (vi) and all continuities in Theorem 3.

For each v € V, the mapping u > A(u, v) is above-naturally D-quasi-convex on U for each

v € V since, for any « € [0,1] and uy,u, € U,
A(aul +(1-a)u,, V)
= {1-cos((au + (1 - a)uz)m/2)} x f(v)
C oz{l - cos(uln/Z)} xf(w)+(1- a){l - cos(uzn/2)} x f(v)-D
- co[A(ul,v) UA(uz,v)} -D.
We see that the mapping v +— B(u, v) is above-D-concave on V for each u € U since, for
any a € [0,1] and v;,v, €V,
aB(u,v1) + (1 - a)B(v2)
= a{l + cos(un/2)} x[v-1,1]+1- oz){l + cos(un/Z)} X [vy —1,1]
= {1 + cos(un/2)} X [av1 +(1-a)vy - 1,1]
C B(u,avy) + (1 — a)vy — D.

We note that the mapping u# — C(u,v) is above-D-convex on U for each v € V. Hence,

by definition, u — C(u, v) is above-naturally D-quasi-convex on U for each v € V. Thus,
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conditions (i)-(iii) of Theorem 3 are valid. Now we claim that condition (iv) holds. Indeed,

for each ve V and ¢ = (¢1, ¢2) € D*, we need to find an u, € U such that

max ¢C(u,,v) = max{¢1(2 + uz) +ot:VP+l<t< 2}

= ¢1(2 + uz) +2¢9

<2¢1 +2¢
= max U min U oC(u,v).
veV uell

Hence, we choose u, by the following rule:

any point in [0,1], ¢ =0,
0, (%] 7‘/ 01

v =

then (iv) of Theorem 3 holds. Next, we claim (v) of Theorem 3 is valid. Indeed, by a simple

calculation, we get

Max U Min,, U C(u,v)
veV uell
- {6.2)

c (2 x [ +12)) [ (1231 x {y* +1}) +D

= Min,, U C(u,v)+D
uel

for each v € V. Thus, condition (v) of Theorem 3 holds. By Theorem 3, (H;) is valid. In-

deed,

Max U Min,, U C(u,v)

veV ueld

={G.2)
c{,-n}+D

= Min (co U Max,, U Alu, v)) +D,

uel veV

and hence the conclusion of Theorem 3 is valid.

In the following result, we apply the Gerstewitz function ¢, : W +— R to introduce the

second version of the hierarchical minimax theorems, where k € intD and w € W.

Theorem 4 Let U, V be nonempty compact convex subsets of real Hausdor{f topological

spaces, respectively, W be a real Hausdorff topological vector space. We work under the

framework of Theorem 3 except (iv) and the concavity of B. If, in addition, the mapping
V> QrB(u, v) is above-R, -concave on V for each u € U, and for any Gerstewitz function
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@iw and for each v € V, there is an u, € U such that

(iv)  max gy Cluy,v) < max |_Jmin | g Clu,v);
veV uel

then (Hy) is valid.

Proof Using the same steps as in the proof of Theorem 3, we see that the set |, _;; Max,, x

uel

U,ev Ay, v) is nonempty and compact. Suppose that v ¢  J,,.,, Max,, |, A, v) + D. For
any k € intD, there is a Gerstewitz function gy, : W + R such that

Pienw(t) > 0 3)

for all u € | J,,c; Max,, ey A1, v). Then, for each u € U, there is v}, € Y and f(u,v}) €
F(u,vy) with f(u,v%) € Max,, ., A(4,v) such that

veV

@iw(f (4,v})) = max U OiwA W, v).

veV

Choosing u = f(u,v}) in (3),

max U oA, v) >0

veV

for all u € U. Therefore,

min U max U VA, v) > 0.

ueld veV

By conditions (i)-(iii) and (iv'), we see that all conditions of Theorem 2 hold for the
mappings @A, ¢iwB, ¢iwC, and hence, by (sH),

max U min U ©ewC(u,v) > 0.

veV uel

Since V is compact, there is a y’ € Y such that

min U (pkWC(u, v/) > 0.
uel

Thus,

ve U C(u,v) +D,

uel

and hence

v ¢ Min,, U C(u, v’) +D. (4)

uel
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If v € Max | J,..,, Min,, U, ; A, v), then, by (v),

v € Min,, U C(u, v’) +D,

uel

which contradicts (4). From this, we can deduce (H,). |

The third version of hierarchical minimax theorems is as follows. We remove condition
(v) in Theorem 4 to deduce (H3).

Theorem 5 We work under the framework of Theorem 4 except condition (v). Equation
(Hs) is valid.

Proof Following the proof of Theorem 4. Fix any v € MinJ,,.;; Max,, |,y A(#,v). Then
(U Max,, UA(M, V)) \{v}N(v-D)=40.
uell veV

For any k € int D, there is a Gerstewitz function ¢y, : W — R such that

ikw(u) >0

for all u € | J,,c,; Max,, ey A, v) \ {v}. For each u € U,
max U OrwA(u,v) > 0,
veV
or

min U max U OrwA(u,v) > 0.

uel veV

Hence, by Theorem 2 for the mappings ¢iwA, @kwB, YiwC,

max U min U ©iwC(u,v) > 0.

veV uel

Since U and V are compact, there are uy € U, vo € V, and hg € C(uy, vo) such that

@rowlho) = min ) g Clu, v9) > 0.
uell

Applying Proposition 3.14 [3], iy € Min, (J,o;; C(u,vo). If ho = v, v & hy + (D \ {0}). If
ho # v, giw(ho) > 0, and hence /g ¢ v — D. Therefore, v ¢ hy + (D \ {0}). Thus, in any case,
vehy+ W\ (D\{0}). This implies (Hs). O

4 Hierarchical minimax inequalities

As an application of scalar hierarchical minimax theorems, we discuss minimax inequal-
ities which were investigated by Lin et al. [2]. The following result as regards (Hi;) is dif-
ferent from [2] and holds under very different conditions.
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Theorem 6 Let U be a nonempty compact convex subset of a real Hausdorff topological
vector space, W be a complete locally convex Hausdor{fftopological vector space. Let the set-
valued mappings A, B, C : U x U = W come with nonempty compact values and satisfy the
following conditions:
(i) the mappings u> A(u,v) and u> C(u,v) are above-naturally D-quasi-convex on
U for each v € U, the mappings (u,v) — A(u,v) and (u,v) — C(u,v) are upper
semicontinuous on U for each u € U, and the mappings u +— A(u,v) and
vi=> C(u,v) are lower semicontinuous on U,
(i) @+ B(u,v) is upper semicontinuous on U for each v € U, and the mapping
v+ B(u,v) is above-D-concave on U for each u € U;
(iii) for each v € U, for each ¢ € D*, there is an u, € U such that

max ¢C(u,, u) < max U min U oC(u,v);
vel uel

(iv) foreachve U,

Max U C(u,u) C Min,, U C(u,v) + D;and
uel uel

(v) forall (u,v)eU x U,
Max,, A(u,v) C Max,, B(u,v) - D
and
Max,, B(u,v) C Max,, C(u,v) — D.
Then (Hiy) is valid.

Proof Suppose that v ¢ co(|J,,;; Max,, |,y A(1,v)) + D. With the help of technique in
the proof of Theorems 2 and 3 for the mappings pA, 9B, ¢C, we can see that

¢(v) < max U min U oC(u,v).

yeld uel

In a similar way to Theorem 3, there is a v’ € V such that

¢(v) <min U 9C(u, V).

uel

Hence, v ¢ Min,, | J,,;; C(4,V') + D. By condition (iv), we see that

v ¢ Max U C(u, u).
uel

Therefore, (Hi;) is valid. O

In the following example we modify Example 1, which serves to illustrate Theorem 6.
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Example 2 Let X =[0,1], D =R? and f : U = R be defined by

-1,0], y=0,
) = [(-1,0], y

{0}, y#0.
Define A,B,C: U x U = R? by

A(u,v) = {1 - cos(un/2)} x f(v),
B(u,v) = {1 + cos(un/Z)} x [v-1,1],

C(u,v) = {2+u2} X [v2 +1,2],

forall (u,v) e x V.

We can easily see that the mappings A, B, C satisfy (v) and all continuities in Theorem 6.
From the illustrations in Example 1, we see that the mapping u# — A(u, v) is above-naturally
D-quasi-convex on U for each v € V, the mapping v+ B(u,v) is above-D-concave on V
for each u € U, the mapping u — C(u, v) is above-naturally D-quasi-convex on U for each
v € V. Furthermore, for each v € V and ¢ = (¢1, ¢2) € D*, by using the same choice of i, as
in Example 1, (iii) of Theorem 6 holds. Next, we claim (iv) of Theorem 6 is valid. Indeed,
by a simple calculation, we get

Max U C(u, u)

uel

:MaxU{2+u2} X [u2 +1,2]
uel

={3.2)}
C ({2} X [v2 +1,2]) U ([2,3] X {V2 +1}) +D

= Min,, U C(u,v)+D

uel

for each v € V. Thus, condition (iv) of Theorem 6 holds. By Theorem 6, (Hi;) is valid.
Indeed,

Max U C(u,u)

uel
={G.2)
c{,-n}+D

= Min (co U Max,, U Alu, v)) +D,

uel vel

and hence the conclusion of Theorem 6 is valid.

Theorem 7 Let U be a nonempty compact convex subset of real Hausdor(f topological vec-
tor space, W be a real Hausdor[f topological vector space. We work under the framework of
Theorem 6 except (iii) and the convexities of B. If, in addition, the mapping v > ¢y, B(u,v)



Lin Journal of Inequalities and Applications (2015) 2015:57 Page 14 of 15

is above-R , -concave on U for each u € U, and for each v € U, there is an x, € U such that

for any Gerstewitz function @iy,

(iii)’  max @k, C(u,,v) < max U min U owCu,v),
vel uel

then (Hiy) is valid.

Proof Suppose that v ¢ | J,.,;Max,, | J,.; A, v) + D. Using a similar technique to the
proofs of Theorems 2 and 4 for the mappings ¢iwA, ¢iwB, PxwC, we can see that

max U min U ©wC(u,v) > 0.

vel uel

By the same technique as in Theorem 6 and condition (iv), we see that

v ¢ Max U C(u, u).
uell

Hence, (Hi,) is valid. O

5 Saddle points

In this section, we list the existence of saddle points for set-valued mappings as applica-
tions of scalar hierarchical minimax theorems. The proofs of the following results can be
deduced directly from Corollary 2, so we omit them. We refer the reader to [2, 3] for more
details. Nevertheless, the conditions used in Theorems 8-10 are quite different from the

ones used in the literature [2, 3].

Theorem 8 Under the framework of Corollary 2.2, we have

max |_J A(@,v) = min |_ A(x, 7) = A(z, D),

veV uel

which means: A has R, -saddle point (u,V).

Theorem 9 Let U, V be nonempty compact convex subsets of real Hausdorff topologi-
cal spaces, respectively. W is a complete locally convex Hausdor{f topological vector space.
Suppose that the set-valued mappings F : U x V = W have nonempty compact values and
satisfy the following conditions:
(i) (u,v) > A(u, V) is upper semicontinuous on U x V, and u > A(u,v) is
above-naturally D-quasi-convex and lower semicontinuous on U for each v € V;

(i) v A(u,v) is above-D-concave on V for each u € U,

(iii) v A(u,v) is continuous on V for each u € U; and

(iv) for any ¢ € D* and for each v € V, there is an u, € U such that

max A (u,, v) < max U min U QA(u,v).
veV uel
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Then

A, v) N (Maxw A, v)) n (Minw A 9)) #0,

veV uel

which means: A has a weakly D-saddle point (i1, V).

Theorem 10 Let U, V be nonempty compact convex subsets of real Hausdor{f topological
spaces, respectively. W is a real Hausdor(f topological vector space. We work under the
framework of Theorem 9 except (iv) and the convexities of A. If, in addition, the mapping
V> oAy, v) is above-R, -concave on V for each u € U, and for any Gerstewitz function
Orw and for each v € V, there is an u, € U such that

(iv) max grA(uy,v) < max U min U OrwA (U, v);
veV uel

then A has a weakly D-saddle point (1, 7).
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