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1 Introduction
Consider the following DC infinite optimization problem:

(P)
Min f (x) – g(x),
s. t. ft(x) – gt(x) ≤ , t ∈ T ,

x ∈ C,
(.)

where T is an arbitrary (possibly infinite) index set, C is a nonempty convex subset of a
locally convex Hausdorff topological vector space X and f , g, ft , gt : X → R := R ∪ {+∞},
t ∈ T , are proper convex functions. This problem has been studied extensively by many
researchers. For example, the authors in [–] studied Lagrange dualities, Farkas lemmas,
and optimality condition in the case when g = gt = , t ∈ T and the authors in [] estab-
lished the Fenchel-Lagrange duality in the case when X = R

n and T is finite, and Sun et
al. gave some dualities and Farkas-type results in [, ]. In particular, the authors in []
defined the dual problem of (.) by

(D) sup
λ∈R(T)

+

inf
w∗∈H∗ L

(
w∗,λ

)
, (.)

where H∗ = dom g∗ × ∏
t∈T dom g∗

t , and the Lagrange function L : H∗ ×R
(T)
+ →R for (.)

is defined by

L
(
w∗,λ

)
:= g∗(u∗) +

∑

t∈T

λtg∗
t
(
v∗

t
)

–
(

f + δC +
∑

t∈T

λt ft

)∗(
u∗ +

∑

t∈T

λtv∗
t

)
(.)
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for any (w∗,λ) ∈ H∗ × R
(T)
+ with w∗ = (u∗, (v∗

t )) ∈ H∗ and λ = (λt) ∈ R
(T)
+ , and they estab-

lished some Lagrangian dualities between (P) and (D).
Usually, the main interest for the above optimization problems is focused on two aspects:

one is about strong Lagrangian duality and the other is about total Lagrangian duality. For
the strong Lagrangian duality for problem (.), one seeks conditions ensuring

inf
x∈A

{
f (x) – g(x)

}
= max

λ∈R(T)
+

inf
w∗∈H∗ L

(
w∗,λ

)
; (.)

and, for the problem of total Lagrangian duality, one seeks conditions ensuring the follow-
ing equality holds:

min
x∈A

{
f (x) – g(x)

}
= max

λ∈R(T)
+

inf
w∗∈H∗ L

(
w∗,λ

)
, (.)

where A := {x ∈ C : ft(x) – gt(x) ≤ , for each t ∈ T}. To establish the strong Lagrangian
duality, the authors in [] introduced the following constraint qualification (the conical
(WEHP)):

epi(f – g + δA)∗ =
⋃

λ∈R(T)
+

( ⋂

(u∗ ,v∗)∈H∗

(
epi

(
f + δC +

∑

t∈T

λt ft

)∗
–

(
u∗, g∗(u∗))

–
∑

t∈T

λt
(
v∗

t , g∗
t
(
v∗

t
))

))
,

and to consider the total Lagrangian duality, the authors in [] introduced two constraint
qualifications: the quasi-(WBCQ)

∂(f – g + δA)(x) ⊆
⋃

λ∈R(T)
+

( ⋂

(u∗ ,v∗)∈∂H(x)

(
∂

(
f + δC +

∑

t∈T(x)

λt ft

)
(x) – u∗ –

∑

t∈T(x)

λtv∗
t

))
,

and the (WBCQ)

∂(f – g + δA)(x) ⊆
⋃

λ∈R(T)
+

( ⋂

(u∗ ,v∗)∈H∗

(
∂

(
f + δC +

∑

t∈T(x)

λt ft

)
(x) – u∗ –

∑

t∈T(x)

λtv∗
t

))
,

where ∂H(x) := ∂g(x) × ∏
t∈T ∂gt(x), for each x ∈ X and T(x) := {t ∈ T : ft(x) – gt(x) = }.

In this paper, we continuous to study the general case, that is, C is not necessarily closed
and f , g , ft , gt , t ∈ T , are not necessarily lsc. Our main aim in the present paper is focused
on the relationships among the conical (WEHP), the quasi-(WBCQ), and the (WBCQ).
The paper is organized as follows. The next section contains some necessary notations
and preliminary results. In Section , some relationships among the conical (WEHP), the
quasi-(WBCQ), and the (WBCQ) are obtained and some examples illustrating the rela-
tionships are given.

2 Notations and preliminaries
The notations used in this paper are standard (cf. []). In particular, we assume through-
out the whole paper that X is a real locally convex space and let X∗ denote the dual space
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of X. For x ∈ X and x∗ ∈ X∗, we write 〈x∗, x〉 for the value of x∗ at x, that is, 〈x∗, x〉 := x∗(x).
Let Z be a set in X. The closure of Z is denoted by cl Z. If W ⊆ X∗, then cl W denotes the
weak∗-closure of W . For the whole paper, we endow X∗ ×R with the product topology of
w∗(X∗, X) and the usual Euclidean topology.

The normal cone of Z at z ∈ Z is denoted by NZ(z) and is defined by

NZ(z) =
{

x∗ ∈ X∗ :
〈
x∗, z – z

〉 ≤  for all z ∈ Z
}

.

The indicator function δZ of Z is defined by

δZ(x) :=

{
, x ∈ Z,
+∞, otherwise.

Let f be a proper function defined on X. The effective domain, the conjugate function, and
the epigraph of f are denoted by dom f , f ∗, and epi f , respectively; they are defined by

dom f :=
{

x ∈ X : f (x) < +∞}
,

f ∗(x∗) := sup
{〈

x∗, x
〉
– f (x) : x ∈ X

}
, for each x∗ ∈ X∗,

and

epi f :=
{

(x, r) ∈ X ×R : f (x) ≤ r
}

.

It is well known and easy to verify that epi f ∗ is weak∗-closed. The closure of f is denoted
by cl f , which is defined by

epi(cl f ) = cl(epi f ).

Then (cf. [, Theorems ..]),

f ∗ = (cl f )∗. (.)

By [, Theorem ..], if cl f is proper and convex, then the following equality holds:

f ∗∗ = cl f . (.)

Let x ∈ X. The subdifferential of f at x is defined by

∂f (x) :=
{

x∗ ∈ X∗ : f (x) +
〈
x∗, y – x

〉 ≤ f (y), for each y ∈ X
}

(.)

if x ∈ dom f , and ∂f (x) := ∅ otherwise. We also define

dom ∂f =
{

x ∈ X : ∂f (x) �= ∅}
,

and

Im ∂f =
{

x∗ ∈ X∗ : x∗ ∈ ∂f (x) for some x ∈ X
}

.
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By [, Theorems .. and ..(iii)], the Young-Fenchel inequality below holds:

f (x) + f ∗(x∗) ≥ 〈
x, x∗〉, for each pair

(
x, x∗) ∈ X × X∗, (.)

and the Young equality holds:

f (x) + f ∗(x∗) =
〈
x∗, x

〉
if and only if x∗ ∈ ∂f (x). (.)

Furthermore, if g , h are proper functions, then

epi g∗ + epi h∗ ⊆ epi(g + h)∗, (.)

g ≤ h ⇒ g∗ ≥ h∗ ⇔ epi g∗ ⊆ epi h∗, (.)

and

∂g(a) + ∂h(a) ⊆ ∂(g + h)(a), for each a ∈ dom g ∩ dom h. (.)

We end this section with the remark that an element p ∈ X∗ can be naturally regarded
as a function on X in such way that

p(x) := 〈p, x〉, for each x ∈ X. (.)

Thus the following fact is clear for any a ∈R and real-valued proper function f :

epi(f + p + a)∗ = epi f ∗ + (p, –a). (.)

3 Relationships among constraint qualifications
Let X be a real locally convex Hausdorff vector space, and C ⊆ X be a convex set. Let T
be an index set and let f , g , ft , gt , t ∈ T be proper convex functions such that f – g and
ft – gt , t ∈ T , are proper functions. Here and throughout the whole paper, following [,
p.], we adapt the convention that (+∞) + (–∞) = (+∞) – (+∞) = +∞,  · (+∞) = +∞,
and  · (–∞) = . Then

∅ �= dom f ⊆ dom g and ∅ �= dom ft ⊆ dom gt . (.)

Let A �= ∅ be the solution set of the following system with the assumption that A∩dom(f –
g) is nonempty:

x ∈ C; ft(x) – gt(x) ≤ , for each t ∈ T , (.)

and let Acl be the solution set of the following system:

x ∈ C; ft(x) – cl gt(x) ≤ , for each t ∈ T . (.)

Then Acl ⊆ A. Following [], we use R
(T) to denote the space of real tuples λ = (λt) with

only finitely many λt �= , and let R(T)
+ denote the nonnegative cone in R

(T), that is,

R
(T)
+ :=

{
λ = (λt) ∈R

(T) : λt ≥ , for each t ∈ T
}

.
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For simplicity, we denote

H∗ := dom g∗ ×
∏

t∈T

dom g∗
t

and

∂H(x) := ∂g(x) ×
∏

t∈T

∂gt(x), for each x ∈ X.

To make the dual problem considered here well defined, we further assume that cl g and
cl gt , t ∈ T , are proper. Then H∗ �= ∅. For the whole paper, any elements λ ∈ R

(T) and v∗ ∈
∏

t∈T dom g∗
t are understood as λ = (λt) ∈ R

(T) and v∗ = (v∗
t ) ∈ ∏

t∈T dom g∗
t , respectively.

Following [], we define the characteristic set K for the DC optimization problem (.) by

K :=
⋃

λ∈R(T)
+

( ⋂

(u∗ ,v∗)∈H∗

(
epi

(
f + δC +

∑

t∈T

λt ft

)∗
–

(
u∗, g∗(u∗)) –

∑

t∈T

λt
(
v∗

t , g∗
t
(
v∗

t
))

))
,

(.)

where we adopt the convention that
⋂

t∈∅ St = X (see [, p.]). Below we will make use of
the subdifferential ∂h(x) for a general proper function (not necessarily convex) h : X →R;
see (.). Clearly, the following equivalence holds:

x is a minimizer of h if and only if  ∈ ∂h(x). (.)

For each x ∈ X, let T(x) be the active index set of system (.), that is,

T(x) :=
{

t ∈ T : ft(x) – gt(x) = 
}

.

Define N ′(x) by

N ′(x) :=
⋃

λ∈R(T)
+

( ⋂

(u∗ ,v∗)∈H∗

(
∂

(
f + δC +

∑

t∈T(x)

λt ft

)
(x) – u∗ –

∑

t∈T(x)

λtv∗
t

))
(.)

and define N ′
(x) by

N ′
(x) :=

⋃

λ∈R(T)
+

( ⋂

(u∗ ,v∗)∈∂H(x)

(
∂

(
f + δC +

∑

t∈T(x)

λt ft

)
(x) – u∗ –

∑

t∈T(x)

λtv∗
t

))
. (.)

Then, for each x ∈ X,

N ′(x) ⊆ N ′
(x).

Definition . The family {f , g, δC ; ft , gt : t ∈ T} is said to satisfy
(a) the lower semi-continuity closure ((LSC)) if

epi(f – g + δA)∗ = epi(f – cl g + δAcl )∗; (.)
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(b) the conical weak epigraph hull property ((WEHP)) if

epi(f – g + δA)∗ = K ; (.)

(c) the quasi-weakly basic constraint qualification (the quasi-(WBCQ)) at x ∈ A if

∂(f – g + δA)(x) ⊆ N ′
(x); (.)

(d) the weakly basic constraint qualification (the (WBCQ)) at x ∈ A if

∂(f – g + δA)(x) ⊆ N ′(x). (.)

It is said that the family {f , g, δC ; ft , gt : t ∈ T} satisfies the quasi-(WBCQ) (resp. the
(WBCQ)) if it satisfies the quasi-(WBCQ) (resp. the (WBCQ)) at each point x ∈ A.

Remark .
(a) The notions of (LSC) and the conical (WEHP) were introduced in [] and the

quasi-(WBCQ) and the (WBCQ) were taken from [].
(b) Recall from [, ] that the family {δC ; ft : t ∈ T} has the conical (WEHP)f if

epi(f + δA)∗ =
⋃

λ∈R(T)
+

epi

(
f + δC +

∑

t∈T

λt ft

)∗
(.)

and has the (WBCQ)f at x ∈ dom f ∩ A if

∂(f + δA)(x) =
⋃

λ∈R(T)
+∑

t∈T λt ft (x)=

∂

(
f + δC +

∑

t∈T

λt ft

)
(x). (.)

Thus, in the special case when g = gt = , t ∈ T , the conical (WEHP) coincides with the
conical (WEHP)f for the family {δC ; ft : t ∈ T} and the quasi-(WBCQ) and (WBCQ) are
reduced to the (WBCQ)f for the family {δC ; ft : t ∈ T}.

Theorems . and . characterize the relationships among the quasi-(WBCQ), the
(WBCQ), and the conical (WEHP).

Theorem . The following implication holds:

[
epi(f – g + δA)∗ ⊆ K

] �⇒ the quasi-(WBCQ). (.)

Consequently,

the conical (WEHP) �⇒ the quasi-(WBCQ). (.)

Proof Suppose that epi(f – g + δA)∗ ⊆ K . To show the quasi-(WBCQ), let x ∈ A and let
x∗ ∈ ∂(f – g + δA)(x). Then, by (.),

〈
x∗, x

〉
– (f – g + δA)(x) = (f – g + δA)∗

(
x∗).
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This implies that

(
x∗,

〈
x∗, x

〉
– (f – g + δA)(x)

) ∈ epi(f – g + δA)∗ ⊆ K .

Hence, there exists λ ∈R
(T)
+ such that, for each (u∗, v∗) ∈ ∂H(x),

(
x∗,

〈
x∗, x

〉
–(f –g +δA)(x)

) ∈ epi

(
f +δC +

∑

t∈T

λt ft

)∗
–

(
u∗, g∗(u∗))–

∑

t∈T

λt
(
v∗

t , g∗
t
(
v∗

t
))

.

Let (u∗, v∗) ∈ ∂H(x). There exists (x∗
 , r) ∈ epi(f + δC +

∑
t∈J λt ft)∗ such that

x∗ = x∗
 – u∗ –

∑

t∈J

λtv∗
t (.)

and

〈
x∗, x

〉
– (f – g + δA)(x) = r – g∗(u∗) –

∑

t∈J

λtg∗
t
(
v∗

t
)
, (.)

where J := {t ∈ T : λt �= } is a finite subset of T . Below we only need to show that x∗
 ∈

∂(f + δC +
∑

t∈J λt ft)(x) and J ⊆ T(x). To do this, note by the definition of epigraph, one
has

(
f + δC +

∑

t∈J

λt ft

)∗(
x∗


) ≤ r. (.)

Note that (u∗, v∗) ∈ ∂H(x), it follows from (.) that

g(x) + g∗(u∗) =
〈
u∗, x

〉
and gt(x) + g∗

t
(
v∗

t
)

=
〈
v∗

t , x
〉
, for each t ∈ T . (.)

This together with (.), (.), and (.) implies that

(
f + δC +

∑

t∈J

λt ft

)∗(
x∗


)

≤ 〈
x∗, x

〉
– (f – g + δA)(x) + g∗(u∗) +

∑

t∈J

λtg∗
t
(
v∗

t
)

≤
〈
x∗

 – u∗ –
∑

t∈J

λtv∗
t , x

〉
–

(
f – g + δC +

∑

t∈J

λt(ft – gt)
)

(x)

+ g∗(u∗) +
∑

t∈J

λtg∗
t
(
v∗

t
)

≤ 〈
x∗

 , x
〉
–

(
f + δC +

∑

t∈J

λt ft

)
(x) +

{
g(x) –

〈
u∗, x

〉
+ g∗(u∗)}

+
∑

t∈J

λt
{

gt(x) –
〈
v∗

t , x
〉
+ g∗

t
(
v∗

t
)}

=
〈
x∗

 , x
〉
–

(
f + δC +

∑

t∈J

λt ft

)
(x),
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where the second inequality holds because x ∈ A. Hence,

(
f + δC +

∑

t∈J

λt ft

)∗(
x∗


)

+
(

f + δC +
∑

t∈J

λt ft

)
(x) =

〈
x∗

 , x
〉

since

(
f + δC +

∑

t∈J

λt ft

)∗(
x∗


) ≥ 〈

x∗
 , x

〉
–

(
f + δC +

∑

t∈J

λt ft

)
(x)

holds automatically by the Fenchel-Young inequality (.). Therefore, by (.), x∗ ∈ ∂(f +
δC +

∑
t∈J λt ft)(x). To show J ⊆ T(x), note that x ∈ A, then

(
f + δC +

∑

t∈J

λt ft

)∗(
x∗


) ≤ 〈

x∗, x
〉
– f (x) + g(x) + g∗(u∗) +

∑

t∈J

λtg∗
t
(
v∗

t
)

and

(
f + δC +

∑

t∈J

λt ft

)∗(
x∗


) ≥ 〈

x∗
 , x

〉
– f (x) –

∑

t∈J

λt ft(x).

Thus, by (.) and (.), we have

f (x) – g(x) –
〈
x∗, x

〉 ≤ g∗(u∗) +
∑

t∈J

λtg∗
t
(
v∗

t
)

–
(

f + δC +
∑

t∈J

λt ft

)∗(
x∗


)

≤ g∗(u∗) +
∑

t∈J

λtg∗
t
(
v∗

t
)

–
〈
x∗

 , x
〉
+ f (x) +

∑

t∈J

λt ft(x)

= f (x) – g(x) –
〈
x∗, x

〉
+

∑

t∈J

λt
(
ft(x) – gt(x)

)

≤ f (x) – g(x) –
〈
x∗, x

〉
.

Since λt >  and ft(x) – gt(x) ≤ , for each t ∈ J , it follows that λt(ft(x) – gt(x)) = , that
is, ft(x) – gt(x) = , for each t ∈ J . Thus, J ⊆ T(x) and hence the quasi-(WBCQ) holds.

�

Theorem . If dom(f – g + δA)∗ ⊆ im ∂(f – g + δA), then

the (WBCQ) �⇒ [
epi(f – g + δA)∗ ⊆ K

]
. (.)

Furthermore, if the (LSC) holds, then

the (WBCQ) �⇒ the conical (WEHP). (.)

Proof Suppose that dom(f –g +δA)∗ ⊆ im ∂(f –g +δA) and that the (WBCQ) holds. To show
epi(f –g +δA)∗ ⊆ K , let (x∗,α) ∈ epi(f –g +δA)∗. Since x∗ ∈ dom(f –g +δA)∗ ⊆ im ∂(f –g +δA),
it follows that there exists x ∈ dom(f – g) ∩ A such that x∗ ∈ ∂(f – g + δA)(x) ⊆ N ′(x),
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thanks to the assumed (WBCQ). This means that there exists λ ∈ R
(T)
+ such that, for each

(u∗, v∗) ∈ H∗,

x∗ ∈ ∂

(
f + δC +

∑

t∈J

λt ft

)
(x) – u∗ –

∑

t∈J

λtv∗
t

for some finite subset J ⊆ T(x) and {λt} ⊆R with λt ≥ , for each t ∈ J . Let (u∗, v∗) ∈ H∗.
Then there exists x∗

 ∈ ∂(f + δC +
∑

t∈J λt ft)(x) such that

x∗ = x∗
 – u∗ –

∑

t∈J

λtv∗
t . (.)

By the Young equality (.), we have

〈
x∗

 , x
〉

=
(

f + δC +
∑

t∈J

λt ft

)∗(
x∗


)

+
(

f + δC +
∑

t∈J

λt ft

)
(x) (.)

and

〈
x∗, x

〉
= (f – g + δA)∗

(
x∗) + (f – g + δA)(x) ≤ α + f (x) – g(x), (.)

where the last inequality holds because of (x∗,α) ∈ epi(f –g +δA)∗ and x ∈ A. This together
with (.) and (.) implies that

(
f + δC +

∑

t∈J

λt ft

)∗(
x∗


) ≤ 〈

u∗, x
〉
+

∑

t∈J

λt
〈
v∗

t , x
〉
+ α – g(x) –

∑

t∈J

λt ft(x)

≤ α + g∗(u∗) +
∑

t∈J

g∗
t
(
v∗

t
)

–
∑

t∈J

λt
(
ft(x) – gt(x)

)

= α + g∗(u∗) +
∑

t∈J

g∗
t
(
v∗

t
)
,

where the second inequality holds by the Fenchel-Young inequality and the last equality
holds because J ⊆ T(x). This means that

(
x∗

 ,α + g∗(u∗) +
∑

t∈J

g∗
t
(
v∗

t
)
)

∈ epi

(
f + δC +

∑

t∈J

λt ft

)∗
.

Hence,

(
x∗,α

)
=

(
x∗

 ,α + g∗(u∗) +
∑

t∈J

g∗
t
(
v∗

t
)
)

–
(
u∗, g∗(u∗)) –

∑

t∈J

λt
(
v∗

t , g∗
t
(
v∗

t
))

∈ epi

(
f + δC +

∑

t∈J

λt ft

)∗
–

(
u∗, g∗(u∗)) –

∑

t∈J

λt
(
v∗

t , g∗
t
(
v∗

t
))

and so (x∗,α) ∈ K by the arbitrary of (u∗, v∗) ∈ H∗. Therefore,

epi(f – g + δA)∗ ⊆ K . (.)
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Furthermore, we assume that the (LSC) holds. Then (.) holds. By [, Lemma .], we
see that

K =
⋃

λ∈R(T)
+

(
f – cl g + δC +

∑

t∈T

λt(ft – cl gt)
)∗

; (.)

while by [, (.)],

⋃

λ∈R(T)
+

(
f – cl g + δC +

∑

t∈T

λt(ft – cl gt)
)∗

⊆ epi(f – cl g + δAcl )∗. (.)

Combining (.), (.) with (.), we have

K ⊆ epi(f – g + δA)∗. (.)

Hence, by (.), the conical (WEHP) holds and the proof is complete. �

Remark . By [, Remark .], we see that

the (WBCQ) �⇒ the quasi-(WBCQ)

and by Theorems . and ., we get

[
the (WBCQ) & dom(f – g + δA)∗ ⊆ im ∂(f – g + δA) & the (LSC)

]

�⇒ the conical (WEHP) �⇒ the quasi-(WBCQ).

By Theorems . and ., we get the following corollary directly, which was given in [,
Proposition .]. Note that the conical (WEHP)f and the (WBCQ)f for the family {δC ; ft :
t ∈ T} were introduced in [, ]; see also Remark .(ii).

Corollary . For the family {δC ; ft : t ∈ T}, the following implication holds:

the conical (WEHP)f �⇒ the quasi-(WBCQ)f

and

the conical (WEHP)f ⇐⇒ the quasi-(WBCQ)f

if dom(f + δA)∗ ⊆ im ∂(f + δA).

The following example illustrates (.) and shows that the quasi-(WBCQ) in (.) can-
not be replaced by the (WBCQ).

Example . Let X = C := R and let T = {}. Define f , g, f, g : R →R, respectively, by

f (x) :=

{
x, x ≥ ,
+∞, x < ,

g(x) :=

⎧
⎪⎨

⎪⎩

, x > ,
, x = ,
+∞, x < ,

for each x ∈R,
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f := δ[,+∞) and g := . Then f , g , f, and g are proper convex functions and A = [, +∞).
Note that, for each x ∈R,

(f – g + δA)(x) =

⎧
⎪⎨

⎪⎩

x, x > ,
–, x = ,
+∞, x < ,

and f + δC + λf = f holds, for each λ ≥ . Then, for each x∗ ∈ R, g∗ = δ(–∞,],

(f – g + δA)∗
(
x∗) =

{
, x∗ ≤ ,
+∞, x∗ > ,

and, for each λ ≥ ,

(f + δC + λf)∗
(
x∗) =

{
, x∗ ≤ ,
+∞, x∗ > .

This means that dom g∗ = (–∞, ],

epi(f – g + δA)∗ = (–∞, ] × [, +∞)

and

epi(f + δC + λf)∗ = (–∞, ] × [, +∞), for each λ ≥ .

Hence

K =
⋃

λ≥

( ⋂

u∗∈(–∞,]

(
epi(f + δC + λf)∗ –

(
u∗, g∗(u∗)))

)
= (–∞, ] × [, +∞).

This implies that epi(f – g + δA)∗ ⊆ K . Moreover, it is easy to see that, for each x ∈ A,

∂g(x) =

{
{}, x > ,
∅, x = ,

and, for each λ ≥ ,

∂(f – g + δA)(x) = ∂(f + δC + λf)(x) =

{
, x > ,
(–∞, ], x = .

Hence, for each x ∈ A,

N ′
(x) =

⋃

λ≥

( ⋂

u∗∈∂g(x)

(
∂(f + δC + λf)(x) – u∗)

)
=

{
, x > ,
R, x = ,

and

N ′(x) =
⋃

λ≥

( ⋂

u∗∈dom g∗

(
∂(f + δC + λf)(x) – u∗)

)
=

{
∅, x > ,
(–∞, ], x = .
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This means that ∂(f – g + δA)(x) ⊆ N ′
(x) but ∂(f – g + δA)(x) � N ′(x), for each x ∈ A. Thus,

the quasi-(WBCQ) holds but not the (WBCQ).

Example . illustrates Theorem . and Example . shows that the condition (LSC) is
essential for (.) to hold.

Example . Let X = C := R. Define f , g, f, g : R →R, respectively, by f = f = g := δ(–∞,],
g := . Then f , g , f, and g are proper convex functions. Consider the system (.) with
T := {}. Then one sees that

A =
{

x ∈R : f(x) – g(x) ≤ 
}

= (–∞, ].

It is easy to see that

f – g + δA = δA and (f – g + δA)∗ = δ[,+∞).

Hence,

dom(f – g + δA)∗ = [, +∞),

and, for each x ∈ A,

∂(f – g + δA)(x) = NA(x) =

{
{}, x < ,
[, +∞), x = .

This implies that dom(f – g + δA)∗ ⊆ im ∂(f – g + δA). Note that g∗
 = δ{}, g∗ = δ[,+∞), and

(f + λf)∗ = δ[,+∞), for each λ ≥ . It follows that, for each x ∈ A,

N ′(x) =
⋃

λ≥

( ⋂

u∗∈[,+∞)

(
NA(x) – u∗)

)
=

{
{}, x < ,
[, +∞), x = .

Thus, ∂(f – g + δA)(x) = N ′(x) and the (WBCQ) holds. Therefore, by Theorem ., we see
that epi(f –g +δA)∗ ⊆ K . Moreover, since g is lsc, it follows that the (LSC) holds. Therefore,
by (.), one sees that the conical (WEHP) holds. In fact, it is easy to see that

epi(f – g + δA)∗ = [, +∞) × [, +∞)

and

K =
⋃

λ≥

( ⋂

u∗∈[,+∞)

(
epi(f + λf)∗ –

(
u∗, g∗(u∗)))

)
= [, +∞) × [, +∞).

Example . Let X = C := R. Define f , g, f, g : R → R as in [, Example .], that is,
f = f := δ(–∞,], g :=  and, for each x ∈R,

g(x) :=

⎧
⎪⎨

⎪⎩

, x < ,
, x = ,
+∞, x > .
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Then f , g , f, and g are proper convex functions. Consider the system (.) with T := {}.
Then one sees that

A =
{

x ∈R : f(x) – g(x) ≤ 
}

= (–∞, ].

It is easy to see that, for each x ∈R,

(f – g + δA)(x) =

⎧
⎪⎨

⎪⎩

, x < ,
–, x = ,
+∞, x > ,

and, for each x∗ ∈R,

(f – g + δA)∗
(
x∗) =

{
, x∗ ≥ ,
+∞, x∗ < .

Moreover, for each x ∈ A, we see that

∂(f – g + δA)(x) =

{
∅, x < ,
[, +∞), x = .

Thus, dom(f – g + δA)∗ ⊆ im ∂(f – g + δA). Note that g∗
 = δ{}, g∗ = δ[,+∞), and (f + λf)∗ =

δ[,+∞), for each λ ≥ . It follows that, for each x ∈ A,

N ′(x) =
⋃

λ≥

( ⋂

u∗∈[,+∞)

(
NA(x) – u∗)

)
=

{
{}, x < ,
[, +∞) x = .

Therefore, the (WBCQ) holds. However, the conical (WEHP) does not hold as shown in
Example . in []. Actually, the family {f , g, δC ; ft , gt : t ∈ T} does not satisfy the (LSC),
since

epi(f – g + δA)∗ = [, +∞) × [, +∞);

but

epi(f – cl g + δA)∗ = [, +∞) × [, +∞).
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