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1 Introduction
The set of all n × n real matrices is denoted by R

n×n, and C
n×n denotes the set of all n × n

complex matrices.
A matrix A = (aij) ∈ R

n×n is called an M-matrix [] if there exists a nonnegative matrix
B and a nonnegative real number λ such that

A = λI – B, λ ≥ ρ(B),

where I is an identity matrix, ρ(B) is a spectral radius of the matrix B. If λ = ρ(B), then A is
a singular M-matrix; if λ > ρ(B), then A is called a nonsingular M-matrix. Denote by Mn

the set of all n × n nonsingular M-matrices. Let us denote

τ (A) = min
{
Re(λ) : λ ∈ σ (A)

}
,

and σ (A) denotes the spectrum of A. It is known that [] τ (A) = 
ρ(A–) is a positive real

eigenvalue of A ∈ Mn.
The Hadamard product of two matrices A = (aij) and B = (bij) is the matrix A◦B = (aijbij).

If A and B are M-matrices, then it is proved in [] that A ◦ B– is also an M-matrix.
A matrix A is irreducible if there does not exist any permutation matrix P such that

PAPT =

[
A A

 A

]

,

where A and A are square matrices.
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For convenience, for any positive integer n, N denotes the set {, , . . . , n}. Let A = (aij) ∈
R

n×n be a strictly diagonally dominant by row, for any i ∈ N , denote

Ri =
∑

k �=i

|aik|, Ci =
∑

k �=i

|aki|, di =
Ri

|aii| , ci =
Ci

|aii| , i ∈ N ;

sji =
|aji| +

∑
k �=j,i |ajk|dk

|ajj| , j �= i, j ∈ N ; si = max
j �=i

{sij}, i ∈ N ;

mji =
|aji| +

∑
k �=j,i |ajk|ski

|ajj| , j �= i, j ∈ N ; mi = max
j �=i

{mij}, i ∈ N .

Recently, some lower bounds for the minimum eigenvalue of the Hadamard product of
an M-matrix and its inverse have been proposed. Let A ∈ Mn, it was proved in [] that

 < τ
(
A ◦ A–) ≤ .

Subsequently, Fiedler and Markham [] gave a lower bound on τ (A ◦ A–),

τ
(
A ◦ A–) ≥ 

n
,

and conjectured that

τ
(
A ◦ A–) ≥ 

n
.

Chen [], Song [] and Yong [] have independently proved this conjecture.
In [], Li et al. gave the following result:

τ
(
A ◦ A–) ≥ min

i

{
aii – siRi

 +
∑

j �=i sji

}
.

Furthermore, if a = a = · · · = ann, they have obtained

min
i

{
aii – siRi

 +
∑

j �=i sji

}
≥ 

n
.

In this paper, we present some new lower bounds for τ (A ◦ A–). These bounds improve
the results in [–].

2 Preliminaries and notations
In this section, we give some lemmas that involve inequalities for the entries of A–. They
will be useful in the following proofs.

Lemma . [] If A = (aij) ∈R
n×n is a strictly row diagonally dominant matrix, that is,

|aii| >
∑

j �=i

|aij|, i ∈ N ,
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then A– = (bij) exists, and

|bji| ≤
∑

k �=j |ajk|
|ajj| |bii|, j �= i.

Lemma . Let A = (aij) ∈R
n×n be a strictly diagonally dominant M-matrix by row. Then,

for A– = (bij), we have

bji ≤ |aji| +
∑

k �=j,i |ajk|ski

ajj
bii ≤ mjbii, j �= i, i ∈ N .

Proof For i ∈ N , let

dk(ε) =
∑

l �=k |akl| + ε

akk
,

and

sji(ε) =
|aji| + (

∑
k �=j,i |ajk| + ε)dk(ε)

|ajj| , j �= i.

Since A is strictly diagonally dominant, then  < dk <  and  < sji < . Therefore, there
exists ε >  such that  < dk(ε) <  and  < sji(ε) < . For any i ∈ N , let

Si(ε) = diag
(
si(ε), . . . , si–,i(ε), , si+,i(ε), . . . , sni(ε)

)
.

Obviously, the matrix ASi(ε) is also a strictly diagonally dominant M-matrix by row.
Therefore, by Lemma ., we derive the following inequality:

bji

sji(ε)
≤ |aji| +

∑
k �=j,i |ajk|ski(ε)

sji(ε)ajj
bii, j �= i, j ∈ N ,

i.e.,

bji ≤ |aji| +
∑

k �=j,i |ajk|ski(ε)
ajj

bii, j �= i, j ∈ N .

Let ε −→  to obtain

|bji| ≤
|aji| +

∑
k �=j,i |ajk|ski

ajj
bii ≤ mjbii, j �= i, i ∈ N .

This proof is completed. �

Lemma . Let A = (aij) ∈ R
n×n be a strictly row diagonally dominant M-matrix. Then,

for A– = (bij), we have


aii –

∑
j �=i |aij|mji

≥ bii ≥ 
aii

, i ∈ N .



Chen Journal of Inequalities and Applications  (2015) 2015:35 Page 4 of 12

Proof Let B = A–. Since A is an M-matrix, then B ≥ . By AB = I , we have

 =
n∑

j=

aijbji = aiibii –
∑

j �=i

|aij|bji, i ∈ N .

Hence

aiibii ≥ , i ∈ N ,

that is,

bii ≥ 
aii

, i ∈ N .

By Lemma ., we have

 = aiibii –
∑

j �=i

|aij|bji

≥ aiibii –
∑

j �=i

|aij|
|aji| +

∑
k �=j,i |ajk|ski

ajj
bii

=
(

aii –
∑

j �=i

|aij|mji

)
bii,

i.e.,


aii –

∑
j �=i |aij|mji

≥ bii, i ∈ N .

Thus the proof is completed. �

Lemma . [] If A– is a doubly stochastic matrix, then Ae = e, AT e = e, where e =
(, , . . . , )T .

Lemma . [] Let A = (aij) ∈ C
n×n and x, x, . . . , xn be positive real numbers. Then all

the eigenvalues of A lie in the region

n⋃

i,j=
i�=j

{
z ∈ C : |z – aii||z – ajj| ≤

(
xi

∑

k �=i


xk

|aki|
)(

xj
∑

k �=j


xk

|akj|
)}

.

Lemma . [] If P is an irreducible M-matrix, and Pz ≥ kz for a nonnegative nonzero
vector z, then τ (P) ≥ k.

3 Main results
In this section, we give two new lower bounds for τ (A◦A–) which improve some previous
results.
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Theorem . Let A = (aij) ∈ R
n×n be an M-matrix, and suppose that A– = (bij) is doubly

stochastic. Then

bii ≥ 
 +

∑
j �=i mji

, i ∈ N .

Proof Since A– is doubly stochastic and A is an M-matrix, by Lemma ., we have

aii =
∑

k �=i

|aik| +  =
∑

k �=i

|aki| + , i ∈ N ,

and

bii +
∑

j �=i

bji = , i ∈ N .

The matrix A is strictly diagonally dominant by row. Then, by Lemma ., for i ∈ N , we
have

 = bii +
∑

j �=i

bji ≤ bii +
∑

j �=i

|aji| +
∑

k �=j,i |ajk|ski

ajj
bii

=
(

 +
∑

j �=i

|aji| +
∑

k �=j,i |ajk|ski

ajj

)
bii

=
(

 +
∑

j �=i

mji

)
bii,

i.e.,

bii ≥ 
 +

∑
j �=i mji

, i ∈ N .

This proof is completed. �

Theorem . Let A = (aij) ∈ R
n×n be an M-matrix, and let A– = (bij) be doubly stochastic.

Then

τ
(
A ◦ A–) ≥ min

i�=j




{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

. (.)

Proof It is evident that (.) is an equality for n = .
We next assume that n ≥ .
Firstly, we assume that A– is irreducible. By Lemma ., we have

aii =
∑

j �=i

|aij| +  =
∑

j �=i

|aji| + , i ∈ N ,
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and

aii > , i ∈ N .

Let

mj = max
i�=j

{mji} = max
i�=j

{ |aji| +
∑

k �=j,i |ajk|ski

ajj

}
, j ∈ N .

Since A is an irreducible matrix, then  < mj ≤ . Let τ (A ◦ A–) = λ, so that  < λ < aiibii,
i ∈ N . Thus, by Lemma ., there is a pair (i, j) of positive integers with i �= j such that

|λ – aiibii||λ – ajjbjj| ≤
(

mi
∑

k �=i


mk

|akibki|
)(

mj
∑

k �=j


mk

|akjbkj|
)

≤
(

mi
∑

k �=i


mk

|aki|mkbii

)(
mj

∑

k �=i


mk

|akj|mkbjj

)

=
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)
. (.)

From inequality (.), we have

(λ – aiibii)(λ – ajjbjj) ≤
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)
. (.)

Thus, (.) is equivalent to

λ ≥ 


{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

,

that is,

τ
(
A ◦ A–) ≥ 



{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

≥ min
i�=j




{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

.
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If A is reducible, without loss of generality, we may assume that A has the following block
upper triangular form:

A =

⎡

⎢⎢⎢
⎣

A A · · · As

A · · · As

· · · · · ·
Ass

⎤

⎥⎥⎥
⎦

with irreducible diagonal blocks Aii, i = , , . . . , s. Obviously, τ (A ◦ A–) = mini τ (Aii ◦ A–
ii ).

Thus, the problem of the reducible matrix A is reduced to those of irreducible diagonal
blocks Aii. The result of Theorem . also holds. �

Theorem . Let A = (aij) ∈ Mn and A– = bij be a doubly stochastic matrix. Then

min
i�=j




{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

≥ min
i

{
aii – siRi

 +
∑

j �=i sji

}
.

Proof Since A– is a doubly stochastic matrix, by Lemma ., we have

aii =
∑

k �=i

|aik| +  =
∑

k �=i

|aki| + , i ∈ N .

For any j �= i, we have

dj – sji =
Rj

ajj
–

|aji| +
∑

k �=j,i |ajk|dk

ajj

=
|aji| +

∑
k �=j,i |ajk|

ajj
–

|aji| +
∑

k �=j,i |ajk|dk

ajj

=
( – dk)

∑
k �=j,i |ajk|

ajj
≥ ,

or equivalently

dj ≥ sji, j �= i, j ∈ N . (.)

So, we can obtain

mji =
|aji| +

∑
k �=j,i |ajk|ski

ajj
≤ |aji| +

∑
k �=j,i |ajk|dk

ajj
= sji, j �= i, j ∈ N , (.)

and

mi ≤ si, i ∈ N .
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Without loss of generality, for i �= j, assume that

aiibii – mi
∑

k �=i

|aki|bii ≤ ajjbjj – mj
∑

k �=j

|akj|bjj. (.)

Thus, (.) is equivalent to

mj
∑

k �=j

|akj|bjj ≤ ajjbjj – aiibii + mi
∑

k �=i

|aki|bii. (.)

From (.) and (.), we have




{
aiibii + ajjbjj –

[
(aiibii – ajjbjj) + 

(
mi

∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

≥ 


{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)(
ajjbjj – aiibii + mi

∑

k �=i

|aki|bii

)] 

}

=



{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)

+ 
(

mi
∑

k �=i

|aki|bii

)
(ajjbjj – aiibii)

] 

}

=



{
aiibii + ajjbjj –

[(
ajjbjj – aiibii + mi

∑

k �=i

|aki|bii

)] 

}

=



{
aiibii + ajjbjj –

(
ajjbjj – aiibii + mi

∑

k �=i

|aki|bii

)}

= aiibii – mi
∑

k �=i

|aki|bii

= bii

(
aii – mi

∑

k �=i

|aki|
)

≥ aii – miRi

 +
∑

j �=i mji

≥ aii – siRi

 +
∑

j �=i sji
.

Thus we have

min
i�=j




{
aiibii + ajjbjj –

[
(aiibii – ajjbjj) + 

(
mi

∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

≥ min
i

{
aii – siRi

 +
∑

j �=i sji

}
.

This proof is completed. �
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Remark . According to inequality (.), it is easy to know that

bji ≤ |aji| +
∑

k �=j,i |ajk|ski

ajj
bii ≤ |aji| +

∑
k �=j,i |ajk|dk

ajj
bii, j ∈ N .

That is to say, the result of Lemma . is sharper than that of Theorem . in []. More-
over, the result of Theorem . is sharper than that of Theorem . in [], respectively.

Theorem . Let A = (aij) ∈ R
n×n be an irreducible strictly row diagonally dominant M-

matrix. Then

τ
(
A ◦ A–) ≥ min

i

{
 –


aii

∑

j �=i

|aji|mji

}
.

Proof Since A is irreducible, then A– > , and A ◦ A– is again irreducible. Note that

τ
(
A ◦ A–) = τ

((
A ◦ A–)T)

= τ
(
AT ◦ (

AT)–).

Let

(
AT ◦ (

AT)–)e = (t, t, . . . , tn)T ,

where e = (, , . . . , )T . Without loss of generality, we may assume that t = mini{ti}, by
Lemma ., we have

t =
n∑

j=

|ajbj| = ab –
∑

j �=

|aj|bj

≥ ab –
∑

j �=

|aj|
|aj| +

∑
k �=j, |ajk|sk

ajj
b

= ab –
∑

j �=

|aj|mjb

=
(

a –
∑

j �=

|aj|mj

)
b

≥ a –
∑

j �= |aj|mj

a

=  –


a

∑

j �=

|aj|mj.

Therefore, by Lemma ., we have

τ
(
A ◦ A–) ≥ min

i

{
 –


aii

∑

j �=i

|aji|mji

}
.

This proof is completed. �
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Remark . According to inequality (.), we can get

 –


aii

∑

j �=i

|aji|mji ≥  –


aii

∑

j �=i

|aji|sji.

That is to say, the bound of Theorem . is sharper than the bound of Theorem . in [].

Remark . If A is an M-matrix, we know that there exists a diagonal matrix D with
positive diagonal entries such that D–AD is a strictly row diagonally dominant M-matrix.
So the result of Theorem . also holds for a general M-matrix.

4 Example
Consider the following M-matrix:

A =

⎡

⎢⎢⎢
⎣

 – – –
–  – –
 –  –

– – – 

⎤

⎥⎥⎥
⎦

.

Since Ae = e and AT e = e, A– is doubly stochastic. By calculations we have

A– =

⎡

⎢⎢⎢
⎣

. . . .
. . . .
. . . .
. . . .

⎤

⎥⎥⎥
⎦

.

() Estimate the upper bounds for entries of A– = (bij) . If we apply Theorem .(a) of
[], we have

A– ≤

⎡

⎢⎢⎢
⎣

 . . .
.  . .
. .  .
. . . 

⎤

⎥⎥⎥
⎦

◦

⎡

⎢⎢⎢
⎣

b b b b

b b b b

b b b b

b b b b

⎤

⎥⎥⎥
⎦

.

If we apply Lemma ., we have

A– ≤

⎡

⎢⎢⎢
⎣

 . . .
.  . .
. .  .
. . . 

⎤

⎥⎥⎥
⎦

◦

⎡

⎢⎢⎢
⎣

b b b b

b b b b

b b b b

b b b b

⎤

⎥⎥⎥
⎦

.

Combining the result of Lemma . with the result of Theorem .(a) of [], we see that
the result of Lemma . is the best.

By Theorem . and Lemma . of [], we can get the following bounds for the diagonal
entries of A–:

. ≤ b ≤ .; . ≤ b ≤ .,

. ≤ b ≤ .; . ≤ b ≤ ..
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By Lemma . and Theorem ., we obtain

. ≤ b ≤ .; . ≤ b ≤ .,

. ≤ b ≤ .; . ≤ b ≤ ..

() Lower bounds for τ (A ◦ A–).
By the conjecture of Fiedler and Markham, we have

τ
(
A ◦ A–) ≥ 

n
=




= ..

By Theorem . of [], we have

τ
(
A ◦ A–) ≥ min

i

{
aii – siRi

 +
∑

j �=i sji

}
= ..

By Corollary . of [], we have

τ
(
A ◦ A–) ≥  – ρ(JA) = ..

By Theorem . of [], we have

τ
(
A ◦ A–) ≥ min

i

{
aii – uiRi

 +
∑

j �=i uji

}
= ..

By Corollary  of [], we have

τ
(
A ◦ A–) ≥ min

i

{aii – wi
∑

j �=i | aji |
 +

∑
j �=i wji

}
= ..

If we apply Theorem ., we have

τ
(
A ◦ A–) ≥ min

i�=j




{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(

mi
∑

k �=i

|aki|bii

)(
mj

∑

k �=j

|akj|bjj

)] 

}

= ..

The numerical example shows that the bound of Theorem . is better than these cor-
responding bounds in [–].
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