RESEARCH Open Access

Criteria for starlike and convex functions of order α

Neng Xu^{1*} and Ding-Gong Yang²

*Correspondence: xun@cslg.edu.cn
¹Department of Mathematics,
Changshu Institute of Technology,
Changshu, Jiangsu 215500, China
Full list of author information is
available at the end of the article

Abstract

Let \mathcal{A}_n ($n \in \mathbb{N}$) be the class of certain analytic functions f(z) in the open unit disk \mathbb{U} and $\mathcal{P}_n(\lambda)$ be the subclass of \mathcal{A}_n consisting of f(z) which satisfy $|f''(z)| \leq \lambda$ ($\lambda > 0$) in \mathbb{U} . Some properties for the class $\mathcal{P}_n(\lambda)$, which are the improvements of the previous results due to Ponnusamy and Singh (Complex Var. Theory Appl. 34:276-291, 1997), are discussed.

MSC: Primary 30C45

Keywords: starlike function; convex function; strongly starlike function; subordination

1 Introduction

Let A_n denote the class of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \quad (n \in \mathbb{N} = \{1, 2, 3, \ldots\}),$$
 (1.1)

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, and let $\mathcal{A}_1 = \mathcal{A}$. A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}^*(\alpha)$ in \mathbb{U} if it satisfies

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha \quad (z \in \mathbb{U})$$
(1.2)

for some real α (α < 1). If $f(z) \in \mathcal{S}^*(\alpha)$ with $0 \le \alpha$ < 1, then f(z) is said to be univalent and starlike of order α in \mathbb{U} . We denote $\mathcal{S}^*(0) = \mathcal{S}^*$. A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{C}(\alpha)$ if it satisfies

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \quad (z \in \mathbb{U})$$
(1.3)

for some real α (α < 1). If $f(z) \in \mathcal{C}(\alpha)$ with $0 \le \alpha$ < 1, then f(z) is said to be univalent and convex of order α in \mathbb{U} . We write $\mathcal{C}(0) = \mathcal{C}$.

Let f(z) and g(z) be analytic in $\mathbb U$. Then we say that f(z) is subordinate to g(z) in $\mathbb U$, written $f(z) \prec g(z)$, if there exists a function w(z) analytic in $\mathbb U$ which satisfies w(0) = 0, |w(z)| < 1 $(z \in \mathbb U)$ and f(z) = g(w(z)) for $z \in \mathbb U$. If g(z) is univalent in $\mathbb U$, then the subordination $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(\mathbb U) \subset g(\mathbb U)$ (cf. Duren [1]).

A function $f(z) \in \mathcal{A}$ is said to be strongly starlike of order β in \mathbb{U} if it satisfies

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\beta} \tag{1.4}$$

for some real β (0 < $\beta \le 1$). We denote this class by $\widetilde{\mathcal{S}}^*(\beta)$. Note that $\widetilde{\mathcal{S}}^*(1) = \mathcal{S}^*$. Define

$$\mathcal{P}_n(\lambda) = \{ f(z) \in \mathcal{A}_n : |f''(z)| \le \lambda \ (\lambda > 0; z \in \mathbb{U}) \}. \tag{1.5}$$

Mocanu [2] considered the problem of finding λ such that

$$f(z) \in \mathcal{P}_n(\lambda)$$
 implies $f(z) \in \mathcal{S}^*$.

Mocanu [2] has shown that:

Theorem A ([2]) If

$$\lambda = \frac{n(n+1)}{2n+1} \quad (n \in \mathbb{N}),$$

then $\mathcal{P}_n(\lambda) \subset \mathcal{S}^*$.

Ponnusamy and Singh [3] proved the following results.

Theorem B Let

$$\lambda_n = \frac{n(n+1)}{\sqrt{(n+1)^2 + 1}} \quad (n \in \mathbb{N}).$$

If $0 < \lambda \leq \lambda_n$, then $\mathcal{P}_n(\lambda) \subset \mathcal{S}^*(\beta)$, where

$$\beta = \beta_n(\lambda) = \begin{cases} \frac{(n+1)(n-\lambda)}{n(n+1)+\lambda}, & \text{if } 0 < \lambda \leq \frac{n(n+1)}{n+2}, \\ \frac{n^2(n+1)^2 - ((n+1)^2 + 1)\lambda^2}{2(n^2(n+1)^2 - \lambda^2)}, & \text{if } \frac{n(n+1)}{n+2} \leq \lambda \leq \lambda_n. \end{cases}$$

Theorem C Let $0 < \beta \le 1$ and

$$\lambda'_n = \frac{n(n+1)\sin\frac{\pi\beta}{2}}{\sqrt{1+(n+1)^2+2(n+1)\cos\frac{\pi\beta}{2}}} \quad (n \in \mathbb{N}).$$

If
$$0 < \lambda \leq \lambda'_n$$
, then $\mathcal{P}_n(\lambda) \subset \widetilde{\mathcal{S}}^*(\beta)$.

It is easy to verify that Theorem B and Theorem C are better than Theorem A in two different ways.

In this paper we generalize and refine the above theorems. Furthermore we find λ such that $f(z) \in \mathcal{P}_n(\lambda)$ implies $f(z) \in \mathcal{C}(\alpha)$ ($\alpha < 1$). These results are sharp.

2 Main results

To derive our first result, we need the following lemma due to Hallenbeck and Ruscheweyh [4].

Lemma Let g(z) be analytic and convex univalent in \mathbb{U} and $f(z) = g(0) + \sum_{k=n}^{\infty} a_k z^k$ $(n \in \mathbb{N})$ be analytic in \mathbb{U} . If $f(z) \prec g(z)$, then

$$z^{-c} \int_0^z t^{c-1} f(t) dt < \frac{1}{n} z^{-\frac{c}{n}} \int_0^z t^{\frac{c}{n} - 1} g(t) dt,$$

where $Re(c) \ge 0$ and $c \ne 0$.

Now, we derive the following.

Theorem 1 Let $0 < \lambda < n(n+1)$ $(n \in \mathbb{N})$. If $f(z) \in \mathcal{P}_n(\lambda)$, then

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < \frac{n\lambda}{n(n+1) - \lambda} \quad (z \in \mathbb{U}). \tag{2.1}$$

The bound $\frac{n\lambda}{n(n+1)-\lambda}$ in (2.1) is sharp.

Proof Let

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \in \mathcal{P}_n(\lambda)$$
 and $0 < \lambda < n(n+1)$ $(n \in \mathbb{N})$.

Then we have

$$zf''(z) = n(n+1)a_{n+1}z^n + \dots < \lambda z.$$
 (2.2)

Applying the lemma with c = 1, it follows from (2.2) that

$$\frac{1}{z}\int_0^z tf''(t)\,dt < \frac{\lambda}{n}z^{-\frac{1}{n}}\int_0^z t^{\frac{1}{n}}\,dt,$$

which yields

$$f'(z) - \frac{f(z)}{z} < \frac{\lambda z}{n+1},\tag{2.3}$$

and hence

$$\left| f'(z) - \frac{f(z)}{z} \right| < \frac{\lambda}{n+1} \quad (z \in \mathbb{U}). \tag{2.4}$$

By (2.3) we can write

$$f'(z) - \frac{f(z)}{z} = \frac{\lambda w(z)}{n+1},$$
 (2.5)

where w(z) is analytic in \mathbb{U} with w(0) = 0 and |w(z)| < 1 ($z \in \mathbb{U}$). Since

$$f'(z) - \frac{f(z)}{z} = na_{n+1}z^n + \cdots,$$

the function w(z) in (2.5) satisfies $|w(z)| \le |z|^n$ ($z \in \mathbb{U}$) by the Schwarz lemma. Also (2.5) leads to

$$\int_{0}^{z} \left(\frac{f'(t)}{t} - \frac{f(t)}{t^{2}} \right) dt = \frac{\lambda}{n+1} \int_{0}^{z} \frac{w(t)}{t} dt.$$
 (2.6)

In view of (2.6), we deduce that

$$\left| \frac{f(z)}{z} - 1 \right| = \frac{\lambda}{n+1} \left| \int_0^1 \frac{w(uz)}{u} du \right| \le \frac{\lambda}{n+1} \int_0^1 \frac{|w(uz)|}{u} du$$
$$\le \frac{\lambda |z|^n}{n+1} \int_0^1 u^{n-1} du < \frac{\lambda}{n(n+1)}$$

and so

$$\left| \frac{f(z)}{z} \right| > 1 - \frac{\lambda}{n(n+1)} > 0 \quad (z \in \mathbb{U}). \tag{2.7}$$

Now, by using (2.4) and (2.7), we find that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| \frac{z}{f(z)} \right| \left| f'(z) - \frac{f(z)}{z} \right|$$

$$< \frac{\frac{\lambda}{n+1}}{1 - \frac{\lambda}{n(n+1)}} = \frac{n\lambda}{n(n+1) - \lambda}$$

for $z \in \mathbb{U}$, which shows (2.1).

For sharpness, we consider the function

$$f(z) = z + \frac{\lambda}{n(n+1)} z^{n+1} \quad (z \in \mathbb{U})$$
(2.8)

for $0 < \lambda < n(n+1)$. Obviously $f(z) \in \mathcal{P}_n(\lambda)$. Furthermore we have

$$\left|\frac{zf'(z)}{f(z)} - 1\right| = \left|\frac{\frac{\lambda}{n+1}z^n}{1 + \frac{\lambda}{n(n+1)}z^n}\right| \to \frac{n\lambda}{n(n+1) - \lambda}$$

as $z \to e^{\frac{\pi i}{n}}$. This completes the proof of Theorem 1.

Next, we prove the following.

Theorem 2 Let $0 < \lambda < n(n+1)$ $(n \in \mathbb{N})$. Then

$$\mathcal{P}_n(\lambda) \subset \mathcal{S}^*(\alpha)$$
,

where

$$\alpha = \alpha_n(\lambda) = \frac{(n+1)(n-\lambda)}{n(n+1) - \lambda}.$$
(2.9)

The result is sharp, that is, the order α is best possible.

Proof If $f(z) \in \mathcal{P}_n(\lambda)$ and $0 < \lambda < n(n+1)$ $(n \in \mathbb{N})$, then an application of Theorem 1 yields

$$1 - \operatorname{Re} \frac{zf'(z)}{f(z)} < \frac{n\lambda}{n(n+1) - \lambda} \quad (z \in \mathbb{U}).$$

Hence $f(z) \in S^*(\alpha)$ where $\alpha = \alpha_n(\lambda)$ is given by (2.9).

For the function $f(z) \in \mathcal{P}_n(\lambda)$ defined by (2.8), we have

$$\operatorname{Re} \frac{zf'(z)}{f(z)} = \operatorname{Re} \left\{ \frac{1 + \frac{\lambda}{n} z^n}{1 + \frac{\lambda}{n(n+1)} z^n} \right\} \to \frac{(n+1)(n-\lambda)}{n(n+1) - \lambda} = \alpha$$

as $z \to e^{\frac{\pi i}{n}}$. Therefore the order α cannot be increased.

Remark 1 Let us compare Theorem 2 with Theorem B. Clearly

$$n(n+1) > \lambda_n$$
 and $\alpha_n(\lambda) > \beta_n(\lambda)$ $\left(0 < \lambda \le \frac{n(n+1)}{n+2}\right)$.

Also, for $\frac{n(n+1)}{n+2} \leq \lambda \leq \lambda_n$, we have

$$\alpha_n(\lambda) - \beta_n(\lambda) = \frac{(n+1)(n-\lambda)}{n(n+1) - \lambda} - \frac{n^2(n+1)^2 - ((n+1)^2 + 1)\lambda^2}{2(n^2(n+1)^2 - \lambda^2)}$$

$$= \frac{2(n+1)(n-\lambda)(n(n+1) + \lambda) - (n^2(n+1)^2 - ((n+1)^2 + 1)\lambda^2)}{2(n^2(n+1)^2 - \lambda^2)}$$

$$= \frac{n^2(n+1-\lambda)^2}{2(n^2(n+1)^2 - \lambda^2)} > 0.$$

Thus we conclude that Theorem 2 extends and improves Theorem B by Ponnusamy and Singh [3].

Taking

$$\lambda = \frac{n(n+1)}{2n+1} \quad \text{and} \quad \lambda = n,$$

Theorem 2 reduces to the following.

Corollary 1 *For* $n \in \mathbb{N}$ *we have*

$$\mathcal{P}_n\left(\frac{n(n+1)}{2n+1}\right) \subset \mathcal{S}^*\left(\frac{1}{2}\right) \quad and \quad \mathcal{P}_n(n) \subset \mathcal{S}^*.$$
 (2.10)

The results are sharp.

Further, applying Theorem 1, we derive the following.

Theorem 3 *Let* $0 < \beta \le 1$ *and*

$$\widetilde{\lambda}_n = \frac{n(n+1)\sin\frac{\pi\beta}{2}}{n+\sin\frac{\pi\beta}{2}} \quad (n \in \mathbb{N}).$$
(2.11)

If $0 < \lambda \leq \widetilde{\lambda}_n$, then $\mathcal{P}_n(\lambda) \subset \widetilde{\mathcal{S}}^*(\beta)$ and the bound $\widetilde{\lambda}_n$ cannot be increased.

Proof Let

$$0 < \beta \le 1$$
, $f(z) \in \mathcal{P}_n(\lambda)$ and $0 < \lambda \le \widetilde{\lambda}_n$,

where $\widetilde{\lambda}_n$ is given by (2.11). Then $\widetilde{\lambda}_n \leq n$ and it follows from Theorem 1 that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < \frac{n\widetilde{\lambda}_n}{n(n+1) - \widetilde{\lambda}_n} = \sin\frac{\pi\beta}{2} \quad (z \in \mathbb{U}).$$

This implies that

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi\beta}{2} \quad (z \in \mathbb{U}).$$

Hence $f(z) \in \widetilde{\mathcal{S}}^*(\beta)$.

Furthermore, for the function $f \in \mathcal{P}_n(\lambda)$ defined by (2.8) and $\widetilde{\lambda}_n < \lambda < n(n+1)$, we have

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \to \frac{n\lambda}{n(n+1) - \lambda} > \frac{n\widetilde{\lambda}_n}{n(n+1) - \widetilde{\lambda}_n} = \sin\frac{\pi\beta}{2}$$

as $z \to e^{\frac{\pi i}{n}}$. This shows that $f \notin \widetilde{S}^*(\beta)$ and so the proof of Theorem 3 is completed.

Remark 2 Since $\widetilde{\lambda}_n > \lambda'_n$ (*cf.* Theorem C) we see that Theorem 3 is better than Theorem C by Ponnusamy and Singh [3].

Finally we discuss the following.

Theorem 4 Let $0 < \lambda < n \ (n \in \mathbb{N})$ and $0 < \sigma \le 1$. If $f(z) \in \mathcal{P}_n(\lambda)$, then

$$\operatorname{Re}\left\{\sigma\left(1+\frac{zf''(z)}{f'(z)}\right)+(1-\sigma)\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in \mathbb{U}), \tag{2.12}$$

where

$$\alpha = \alpha_n(\sigma, \lambda) = \sigma \frac{n - (n+1)\lambda}{n - \lambda} + (1 - \sigma) \frac{(n+1)(n-\lambda)}{n(n+1) - \lambda}.$$
 (2.13)

The result is sharp, that is, the bound $\alpha_n(\sigma, \lambda)$ *cannot be increased.*

Proof Let $f(z) \in \mathcal{P}_n(\lambda)$ and $0 < \lambda < n$. Then, by (2.2) (used in the proof of Theorem 1) and the Schwarz lemma, we can write

$$zf''(z) = \lambda w(z) \quad (z \in \mathbb{U}), \tag{2.14}$$

where w(z) is analytic in \mathbb{U} and $|w(z)| \leq |z|^n$ ($z \in \mathbb{U}$). Further, we deduce from (2.14) that

$$f'(z) - 1 = \int_0^z f''(t) dt = \lambda \int_0^z \frac{w(t)}{t} dt = \lambda \int_0^1 \frac{w(uz)}{u} du,$$

which leads to

$$|f'(z)| \ge 1 - \lambda \int_0^1 \frac{|w(uz)|}{u} du$$

$$> 1 - \lambda |z|^n \int_0^1 u^{n-1} du$$

$$> 1 - \frac{\lambda}{n} > 0 \quad (z \in \mathbb{U}).$$

$$(2.15)$$

Also, by Theorem 2, we have

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \frac{(n+1)(n-\lambda)}{n(n+1)-\lambda} \quad (z \in \mathbb{U}). \tag{2.16}$$

Let us define the function g(z) by

$$g(z) = \sigma \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - \sigma) \frac{zf'(z)}{f(z)} - \alpha, \tag{2.17}$$

where $0 < \sigma \le 1$ and α is given by (2.13). Then g(z) is analytic in $\mathbb U$ and

$$g(0) = 1 - \alpha = 1 - \sigma \frac{n - (n+1)\lambda}{n - \lambda} - (1 - \sigma) \frac{(n+1)(n-\lambda)}{n(n+1) - \lambda}$$
$$= \sigma \frac{n\lambda}{n - \lambda} + (1 - \sigma) \frac{n\lambda}{n(n+1) - \lambda} > 0.$$

We claim that $\operatorname{Re} g(z) > 0$ for $z \in \mathbb{U}$. Otherwise there exists a point $z_0 \in \mathbb{U}$ such that

$$\operatorname{Re} g(z) > 0 \quad (|z| < |z_0|) \quad \text{and} \quad \operatorname{Re} g(z_0) = 0.$$
 (2.18)

Thus, in view of (2.15)-(2.18) and (2.13), we find that

$$\sigma |z_0 f''(z_0)| = |f'(z_0)| \left| g(z_0) + \alpha - \sigma - (1 - \sigma) \frac{z_0 f'(z_0)}{f(z_0)} \right|$$

$$\geq |f'(z_0)| \left| \operatorname{Re} g(z_0) + \alpha - \sigma - (1 - \sigma) \operatorname{Re} \frac{z_0 f'(z_0)}{f(z_0)} \right|$$

$$> \left(1 - \frac{\lambda}{n} \right) \left(\sigma - \alpha + (1 - \sigma) \frac{(n+1)(n-\lambda)}{n(n+1) - \lambda} \right)$$

$$= \sigma \lambda > 0.$$

This contradicts the expression (2.14). Hence, we say that $\text{Re } g(z) > 0 \ (z \in \mathbb{U})$ and (2.12) is proved.

For the function $f(z) \in \mathcal{P}_n(\lambda)$ (0 < λ < n) defined by (2.8), we get

$$\operatorname{Re}\left\{\sigma\left(1 + \frac{zf''(z)}{f'(z)}\right) + (1 - \sigma)\frac{zf'(z)}{f(z)}\right\}$$

$$= \sigma\left(1 + \operatorname{Re}\left\{\frac{\lambda z^{n}}{1 + \frac{\lambda}{n}z^{n}}\right\}\right) + (1 - \sigma)\operatorname{Re}\left\{\frac{1 + \frac{\lambda}{n}z^{n}}{1 + \frac{\lambda}{n(n+1)}z^{n}}\right\}$$

$$\to \sigma\frac{n - (n+1)\lambda}{n - \lambda} + (1 - \sigma)\frac{(n+1)(n-\lambda)}{n(n+1) - \lambda} = \alpha$$

as $z \to e^{\frac{\pi i}{n}}$. Therefore the bound α is best possible.

Making $\sigma = 1$ in Theorem 4, we have the following.

Corollary 2 *Let* $0 < \lambda < n \ (n \in \mathbb{N})$. *Then*

$$\mathcal{P}_n(\lambda) \subset \mathcal{C}\left(\frac{n-(n+1)\lambda}{n-\lambda}\right).$$
 (2.19)

The result is sharp. In particular, for $n \in \mathbb{N}$ *, we have*

$$\mathcal{P}_n\left(\frac{n}{2n+1}\right) \subset \mathcal{C}\left(\frac{1}{2}\right), \qquad \mathcal{P}_n\left(\frac{n}{n+1}\right) \subset \mathcal{C},$$
 (2.20)

and the results are sharp.

Taking $\sigma = \frac{1}{2}$ in Theorem 4, we obtain the following.

Corollary 3 *Let* $0 < \lambda < n \ (n \in \mathbb{N})$. *If* $f(z) \in \mathcal{P}_n(\lambda)$, *then*

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)} + \frac{zf'(z)}{f(z)}\right\} > \frac{n - (n+1)\lambda}{n - \lambda} + \frac{(n+1)(n-\lambda)}{n(n+1) - \lambda} \quad (z \in \mathbb{U}). \tag{2.21}$$

The result is sharp.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors' contributions

The main idea was proposed by NX and D-GY participated in the research. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, China. ²Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, China.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11171045; 11471163). The authors would like to express deep appreciation to Professor Shigeyoshi Owa for enlightening discussions and help.

Received: 7 December 2014 Accepted: 2 January 2015 Published online: 27 January 2015

References

- 1. Duren, PL: Univalent Functions. Springer, New York (1983)
- 2. Mocanu, PT: Two simple sufficient conditions for starlikeness. Mathematica **34**, 175-181 (1992)
- 3. Ponnusamy, S, Singh, V: Criteria for strongly starlike functions. Complex Var. Theory Appl. 34, 267-291 (1997)
- 4. Hallenbeck, DJ, Ruscheweyh, S: Subordination by convex functions. Proc. Am. Math. Soc. 52, 191-195 (1975)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com