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Abstract
LetAn (n ∈N) be the class of certain analytic functions f (z) in the open unit disk U
and Pn(λ) be the subclass ofAn consisting of f (z) which satisfy |f ′′(z)|� λ (λ > 0)
in U. Some properties for the class Pn(λ), which are the improvements of the
previous results due to Ponnusamy and Singh (Complex Var. Theory Appl. 34:276-291,
1997), are discussed.
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1 Introduction
Let An denote the class of functions of the form

f (z) = z +
∞∑

k=n+

akzk (
n ∈N = {, , , . . .}), (.)

which are analytic in the open unit disk U = {z ∈C : |z| < }, and let A = A.
A function f (z) ∈A is said to be in the class S∗(α) in U if it satisfies

Re
zf ′(z)
f (z)

> α (z ∈ U) (.)

for some real α (α < ). If f (z) ∈ S∗(α) with  � α < , then f (z) is said to be univalent and
starlike of order α in U. We denote S∗() = S∗. A function f (z) ∈ A is said to be in the
class C(α) if it satisfies

Re

{
 +

zf ′′(z)
f ′(z)

}
> α (z ∈U) (.)

for some real α (α < ). If f (z) ∈ C(α) with  � α < , then f (z) is said to be univalent and
convex of order α in U. We write C() = C .

Let f (z) and g(z) be analytic inU. Then we say that f (z) is subordinate to g(z) inU, written
f (z) ≺ g(z), if there exists a function w(z) analytic in U which satisfies w() = , |w(z)| < 
(z ∈U) and f (z) = g(w(z)) for z ∈U. If g(z) is univalent in U, then the subordination f (z) ≺
g(z) is equivalent to f () = g() and f (U) ⊂ g(U) (cf. Duren []).
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A function f (z) ∈A is said to be strongly starlike of order β in U if it satisfies

zf ′(z)
f (z)

≺
(

 + z
 – z

)β

(.)

for some real β ( < β � ). We denote this class by S̃∗(β). Note that S̃∗() = S∗.
Define

Pn(λ) =
{

f (z) ∈An :
∣∣f ′′(z)

∣∣ � λ (λ > ; z ∈U)
}

. (.)

Mocanu [] considered the problem of finding λ such that

f (z) ∈Pn(λ) implies f (z) ∈ S∗.

Mocanu [] has shown that:

Theorem A ([]) If

λ =
n(n + )
n + 

(n ∈N),

then Pn(λ) ⊂ S∗.

Ponnusamy and Singh [] proved the following results.

Theorem B Let

λn =
n(n + )√
(n + ) + 

(n ∈ N).

If  < λ � λn, then Pn(λ) ⊂ S∗(β), where

β = βn(λ) =

{ (n+)(n–λ)
n(n+)+λ

, if  < λ� n(n+)
n+ ,

n(n+)–((n+)+)λ

(n(n+)–λ) , if n(n+)
n+ ≤ λ ≤ λn.

Theorem C Let  < β �  and

λ′
n =

n(n + ) sin πβ

√
 + (n + ) + (n + ) cos πβ



(n ∈N).

If  < λ � λ′
n, then Pn(λ) ⊂ S̃∗(β).

It is easy to verify that Theorem B and Theorem C are better than Theorem A in two
different ways.

In this paper we generalize and refine the above theorems. Furthermore we find λ such
that f (z) ∈Pn(λ) implies f (z) ∈ C(α) (α < ). These results are sharp.
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2 Main results
To derive our first result, we need the following lemma due to Hallenbeck and Ruscheweyh
[].

Lemma Let g(z) be analytic and convex univalent in U and f (z) = g() +
∑∞

k=n akzk (n ∈ N)
be analytic in U. If f (z) ≺ g(z), then

z–c
∫ z


tc–f (t) dt ≺ 

n
z– c

n

∫ z


t

c
n –g(t) dt,

where Re(c) �  and c 	= .

Now, we derive the following.

Theorem  Let  < λ < n(n + ) (n ∈N). If f (z) ∈Pn(λ), then

∣∣∣∣
zf ′(z)
f (z)

– 
∣∣∣∣ <

nλ

n(n + ) – λ
(z ∈U). (.)

The bound nλ
n(n+)–λ

in (.) is sharp.

Proof Let

f (z) = z +
∞∑

k=n+

akzk ∈Pn(λ) and  < λ < n(n + ) (n ∈N).

Then we have

zf ′′(z) = n(n + )an+zn + · · · ≺ λz. (.)

Applying the lemma with c = , it follows from (.) that


z

∫ z


tf ′′(t) dt ≺ λ

n
z– 

n

∫ z


t


n dt,

which yields

f ′(z) –
f (z)

z
≺ λz

n + 
, (.)

and hence

∣∣∣∣f
′(z) –

f (z)
z

∣∣∣∣ <
λ

n + 
(z ∈U). (.)

By (.) we can write

f ′(z) –
f (z)

z
=

λw(z)
n + 

, (.)
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where w(z) is analytic in U with w() =  and |w(z)| <  (z ∈U). Since

f ′(z) –
f (z)

z
= nan+zn + · · · ,

the function w(z) in (.) satisfies |w(z)| ≤ |z|n (z ∈ U) by the Schwarz lemma. Also (.)
leads to

∫ z



(
f ′(t)

t
–

f (t)
t

)
dt =

λ

n + 

∫ z



w(t)
t

dt. (.)

In view of (.), we deduce that

∣∣∣∣
f (z)

z
– 

∣∣∣∣ =
λ

n + 

∣∣∣∣
∫ 



w(uz)
u

du
∣∣∣∣�

λ

n + 

∫ 



|w(uz)|
u

du

� λ|z|n
n + 

∫ 


un– du <

λ

n(n + )

and so

∣∣∣∣
f (z)

z

∣∣∣∣ >  –
λ

n(n + )
>  (z ∈U). (.)

Now, by using (.) and (.), we find that

∣∣∣∣
zf ′(z)
f (z)

– 
∣∣∣∣ =

∣∣∣∣
z

f (z)

∣∣∣∣

∣∣∣∣f
′(z) –

f (z)
z

∣∣∣∣

<
λ

n+

 – λ
n(n+)

=
nλ

n(n + ) – λ

for z ∈U, which shows (.).
For sharpness, we consider the function

f (z) = z +
λ

n(n + )
zn+ (z ∈ U) (.)

for  < λ < n(n + ). Obviously f (z) ∈Pn(λ). Furthermore we have

∣∣∣∣
zf ′(z)
f (z)

– 
∣∣∣∣ =

∣∣∣∣
λ

n+ zn

 + λ
n(n+) zn

∣∣∣∣ → nλ

n(n + ) – λ

as z → e π i
n . This completes the proof of Theorem . �

Next, we prove the following.

Theorem  Let  < λ < n(n + ) (n ∈N). Then

Pn(λ) ⊂ S∗(α),
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where

α = αn(λ) =
(n + )(n – λ)
n(n + ) – λ

. (.)

The result is sharp, that is, the order α is best possible.

Proof If f (z) ∈Pn(λ) and  < λ < n(n + ) (n ∈N), then an application of Theorem  yields

 – Re
zf ′(z)
f (z)

<
nλ

n(n + ) – λ
(z ∈ U).

Hence f (z) ∈ S∗(α) where α = αn(λ) is given by (.).
For the function f (z) ∈Pn(λ) defined by (.), we have

Re
zf ′(z)
f (z)

= Re

{  + λ
n zn

 + λ
n(n+) zn

}
→ (n + )(n – λ)

n(n + ) – λ
= α

as z → e π i
n . Therefore the order α cannot be increased. �

Remark  Let us compare Theorem  with Theorem B. Clearly

n(n + ) > λn and αn(λ) > βn(λ)
(

 < λ � n(n + )
n + 

)
.

Also, for n(n+)
n+ � λ � λn, we have

αn(λ) – βn(λ) =
(n + )(n – λ)
n(n + ) – λ

–
n(n + ) – ((n + ) + )λ

(n(n + ) – λ)

=
(n + )(n – λ)(n(n + ) + λ) – (n(n + ) – ((n + ) + )λ)

(n(n + ) – λ)

=
n(n +  – λ)

(n(n + ) – λ)
> .

Thus we conclude that Theorem  extends and improves Theorem B by Ponnusamy and
Singh [].

Taking

λ =
n(n + )
n + 

and λ = n,

Theorem  reduces to the following.

Corollary  For n ∈N we have

Pn

(
n(n + )
n + 

)
⊂ S∗

(



)
and Pn(n) ⊂ S∗. (.)

The results are sharp.
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Further, applying Theorem , we derive the following.

Theorem  Let  < β �  and

λ̃n =
n(n + ) sin πβ



n + sin πβ



(n ∈N). (.)

If  < λ � λ̃n, then Pn(λ) ⊂ S̃∗(β) and the bound λ̃n cannot be increased.

Proof Let

 < β � , f (z) ∈Pn(λ) and  < λ � λ̃n,

where λ̃n is given by (.). Then λ̃n � n and it follows from Theorem  that

∣∣∣∣
zf ′(z)
f (z)

– 
∣∣∣∣ <

ñλn

n(n + ) – λ̃n
= sin

πβ


(z ∈U).

This implies that
∣∣∣∣arg

zf ′(z)
f (z)

∣∣∣∣ <
πβ


(z ∈U).

Hence f (z) ∈ S̃∗(β).
Furthermore, for the function f ∈Pn(λ) defined by (.) and λ̃n < λ < n(n + ), we have

∣∣∣∣
zf ′(z)
f (z)

– 
∣∣∣∣ → nλ

n(n + ) – λ
>

ñλn

n(n + ) – λ̃n
= sin

πβ



as z → e π i
n . This shows that f /∈ S̃∗(β) and so the proof of Theorem  is completed. �

Remark  Since λ̃n > λ′
n (cf. Theorem C) we see that Theorem  is better than Theorem C

by Ponnusamy and Singh [].

Finally we discuss the following.

Theorem  Let  < λ < n (n ∈N) and  < σ � . If f (z) ∈Pn(λ), then

Re

{
σ

(
 +

zf ′′(z)
f ′(z)

)
+ ( – σ )

zf ′(z)
f (z)

}
> α (z ∈ U), (.)

where

α = αn(σ ,λ) = σ
n – (n + )λ

n – λ
+ ( – σ )

(n + )(n – λ)
n(n + ) – λ

. (.)

The result is sharp, that is, the bound αn(σ ,λ) cannot be increased.

Proof Let f (z) ∈ Pn(λ) and  < λ < n. Then, by (.) (used in the proof of Theorem ) and
the Schwarz lemma, we can write

zf ′′(z) = λw(z) (z ∈U), (.)
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where w(z) is analytic in U and |w(z)| ≤ |z|n (z ∈U). Further, we deduce from (.) that

f ′(z) –  =
∫ z


f ′′(t) dt = λ

∫ z



w(t)
t

dt = λ

∫ 



w(uz)
u

du,

which leads to

∣∣f ′(z)
∣∣ �  – λ

∫ 



|w(uz)|
u

du

>  – λ|z|n
∫ 


un– du

>  –
λ

n
>  (z ∈U). (.)

Also, by Theorem , we have

Re
zf ′(z)
f (z)

>
(n + )(n – λ)
n(n + ) – λ

(z ∈U). (.)

Let us define the function g(z) by

g(z) = σ

(
 +

zf ′′(z)
f ′(z)

)
+ ( – σ )

zf ′(z)
f (z)

– α, (.)

where  < σ �  and α is given by (.). Then g(z) is analytic in U and

g() =  – α =  – σ
n – (n + )λ

n – λ
– ( – σ )

(n + )(n – λ)
n(n + ) – λ

= σ
nλ

n – λ
+ ( – σ )

nλ

n(n + ) – λ
> .

We claim that Re g(z) >  for z ∈U. Otherwise there exists a point z ∈U such that

Re g(z) > 
(|z| < |z|

)
and Re g(z) = . (.)

Thus, in view of (.)-(.) and (.), we find that

σ
∣∣zf ′′(z)

∣∣ =
∣∣f ′(z)

∣∣
∣∣∣∣g(z) + α – σ – ( – σ )

zf ′(z)
f (z)

∣∣∣∣

�
∣∣f ′(z)

∣∣
∣∣∣∣Re g(z) + α – σ – ( – σ ) Re

zf ′(z)
f (z)

∣∣∣∣

>
(

 –
λ

n

)(
σ – α + ( – σ )

(n + )(n – λ)
n(n + ) – λ

)

= σλ > .

This contradicts the expression (.). Hence, we say that Re g(z) >  (z ∈ U) and (.) is
proved.
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For the function f (z) ∈Pn(λ) ( < λ < n) defined by (.), we get

Re

{
σ

(
 +

zf ′′(z)
f ′(z)

)
+ ( – σ )

zf ′(z)
f (z)

}

= σ

(
 + Re

{
λzn

 + λ
n zn

})
+ ( – σ ) Re

{  + λ
n zn

 + λ
n(n+) zn

}

→ σ
n – (n + )λ

n – λ
+ ( – σ )

(n + )(n – λ)
n(n + ) – λ

= α

as z → e π i
n . Therefore the bound α is best possible. �

Making σ =  in Theorem , we have the following.

Corollary  Let  < λ < n (n ∈N). Then

Pn(λ) ⊂ C
(

n – (n + )λ
n – λ

)
. (.)

The result is sharp. In particular, for n ∈N, we have

Pn

(
n

n + 

)
⊂ C

(



)
, Pn

(
n

n + 

)
⊂ C, (.)

and the results are sharp.

Taking σ = 
 in Theorem , we obtain the following.

Corollary  Let  < λ < n (n ∈N). If f (z) ∈Pn(λ), then

Re

{
 +

zf ′′(z)
f ′(z)

+
zf ′(z)
f (z)

}
>

n – (n + )λ
n – λ

+
(n + )(n – λ)
n(n + ) – λ

(z ∈ U). (.)

The result is sharp.
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