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1 Introduction
In 1920, Hardy [1] stated (without proof) the following inequality:

/ ( /f(t)dt) dx<< )/fp(x)dx, ool )

where f is a non-negative measurable function. This result was finally proved by Hardy [2]
(see also Hardy [3]) in 1925.
In 1928, Hardy [4] obtained and proved the following generalization of inequality (1.1):

/ ( /f(t)dt)x dx<(p - a) / FP(x)x d, (1.2)

which holds for all measurable and non-negative functions f on (0, c0) whenever o < p—1,
p=1L

In 1965, Godunova [5] discovered that inequality (1.1) can be proved via convexity ar-
gument, but this result was not well known in western literature. The use of convexity
argument to prove Hardy-type inequalities was independently rediscovered by Imoru [6]
and Kaijser et al. [7] in 1977 and 2002, respectively. After that a great number of papers
based on this idea have been presented and applied (see [8-10]).

In a recent paper, Persson and Samko [11] used the convexity argument to prove that

inequality (1.1) is equivalent to the following inequality:

©r1 [ P dx o0 dx
fo (; /0 f(t)dt> = /0 ok 13)
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via the substitution f(x) = g(x!"V7)xV/7, In the same paper [11] it was also shown that in-
equality (1.2) is equivalent to inequality (1.3) via the substitution f (¢) = g(¢®-1-)/P);=1+1p),
It thus follows that Hardy?s initial generalization {.2) is not actually a generalization. Fur-
thermore, in the same paper, sufficient conditions for a variant of inequality (1.3) to hold
were given, namely the following inequality:

ey Pdx dx
_ — P _ | =
/o <x/0 f(t)dt> </f (x)<1 ) " (1.4)

for p < 0 or p > 1. The authors established the equivalence theorem for the one-
dimensional Hardy-type inequalities. In particular, it was shown that inequality (1.4) is
equivalent to the following variant of (1.2):

p-a-1

[Cfromfeas() fro-() 7 Je oo

forp<l,a<p-lorp<0,a>p-1land0<I[<oo.

A multidimensional version of this equivalence theorem concerning Hardy-type in-
equalities was proved by Oguntuase et al. [12]. For the development of the use of convexity
argument in obtaining Hardy-type inequalities, we refer interested readers to the review
article by Oguntuase and Persson [9] and the references cited therein. In a recent paper,
Oguntuase et al. [13] stated and proved multidimensional Hardy-type inequalities with
?broken? exponent. In particular, the following result was established.

Theorem 1.1 Let b>0,0 <[ < o0 and

, 0<x=<b, , 0<x<b,
plx) = 170 By = |0
p1, x>b, B, x>b,

where po, p1, Bo, 1 € N\ {0}. If f is non-negative and measurable and B(x) > 0, then

l 1 r* px) 1 x B(x)
— —Bx) p ﬁ(x r
/0 <x/0f(t)dt> x P dx < | B )fx) ( (l) )dx+10, (1.6)

where Iy = 0, if | < b (so that B(x) = By and p(x) = po) and

X an oy [ g Lo _ oy [ pieo
- )/Of(x) di (b -1 )/Of(x) dx,

if I >b.If0 < p(x) <1, then (1.6) holds in the reversed direction (for the case [ = co, 1 —
(5P =1and P =[P =0).

Remark 1.2 Observe that under suitable substitutions, all the variants (1.1)-(1.5) can be
recovered from (1.6). Thus (1.6) is more general than all the other inequalities above.

In 2005, Rehdk [14, Lemma 1.1] proved that if T is any arbitrary time scale that is un-
bounded above and containing 4 and « > 1, then the following estimates hold:

/uoo 0 S/amgff;% 7
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Rehdk used inequality (1.7) to establish the time scale version of the Hardy inequality as
follows.

Theorem 1.3 Ifa >0, p>1, and f is a non-negative function such that the delta integral
faoo (f(8))? As exists as a finite number, then

o1 [oW P N
/a (o(x)—a/a ﬂt)“) <<ﬁ) / frx)Ax. (1.8)

The above result by Rehdk [14] signaled the beginning of research on the time scale

Hardy inequality. Since the publication of Rehdk?s result on the time scale Hardy inequal-
ity, other researchers (see, for instance, [15-19] and the references cited therein) have ob-
tained its generalization both in the one-dimensional and multidimensional settings.

The aim of this paper is to obtain one-dimensional Hardy-type inequalities on a time
scale with ?broken? exponent. It is a great interest of this subject (seeg.g., papers [20-24]
where a lot of interesting facts complementing this paper can be found).

Before we present our results, let us recall some essentials about time scales. In 1988,
Hilger introduced the calculus on time scales which unifies continuous and discrete anal-
ysis. A time scale T is an arbitrary nonempty closed subset of the real numbers fi. The
two most popular examples are T = % and T = Z. We define the forward jump operator
o by o(t) := inf{s € T : s > £} and the graininess p of the time scale T by u(t) := o (¢) — ¢.
A point ¢ € T is said to be right-dense and right-scattered if o () = ¢, o (£) > ¢, respectively.
We define f? := f o 0. For a function f : T — R, the delta derivative is defined by

Poe tim LSO

s—to()#  o(s)—t

A function f : T — R is called rd-continuous provided it is continuous at all right-dense
points in T and its left-sided limits exist (finite) at all left-dense points in T. Note that we
have

b b
o) =t u(t) =0, A=, /f(t)Atz/f(t)dt, when T =R,

b b-1
c®)=t+1, u@®)=1  f>=Af, / fOAE=) f(t), whenT=Z.

For more understanding of the theory of time scales, we refer the interested reader to [25,
26].
We recall the following definition of the well-known binomial theorem.

Definition 1.4 ([25, Definition 1.51]) (Binomial theorem) If «,x € i, the expansion of
(1 + x)* defined by

alo —1)x* ol —1)--- (=B +1)x?
2! +...+ ﬂ! +

1+x)*=1+ax+

(a)(ﬂ)

xP 1.9)
P rp+1)

is known as the binomial theorem.
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Definition 1.5 ([27, Definition 2.1]) A function ¢ : [0,00) — N is called superquadratic
provided that for all x > 0 there exists a constant C, € i such that

$0) ~ p() — d(ly — =) = Culy — )

forally > 0.
We say that ¢ is subquadratic if —¢ is superquadratic.

2 Time scale Hardy-type inequalities with ?broken? exponenp via convexity

Before we state our results in this section, we shall need the following lemmas.

Lemma 2.1 ([28, Theorem 1.1]) (Fubini?s theorem on time scales) Let (2, M, ) and
(A, L,Ap) be two finite dimensional time scale measure spaces. If f : Q x A > R is a
Wa X ha-integrable function and the function ¢(y) = [f(x,y)Ax for a.e. y € A and
@) = [, f(x,y)Ay for a.e. x € Q, then ¢ is hn-integrable on A, ¢ is u-integrable on Q
and

[ 8% [ rwnsy= [ ay [ rwnax 21)

Lemma 2.2 ([25, Theorem 6.17]) Let a,b € T and c,d € R. Suppose that f : [a, bl —

(¢, d) is rd-continuous and ¢ : (c,d) — R is convex. Then

1 [ 1 [t
¢(EL‘ f(t)At) < m/ﬂ o(f (1) At. (2.2)

First, we give the following proposition which is an adaptation of Lemma 1.1 in [14].

Proposition 2.3 Let o > 1 and T be any arbitrary time scale that is unbounded above. Let
a,l € T be such that 0 < a <1 < co. Then the following estimates hold:

I » ) N
f (o(s) “As < / ad < =5 (2.3)
a a Sa a Sa
Proof Suppose [ < oo and denote [a,/]r := {t € T : a < ¢t <I}. We prove only that I < I*,
where

b
I:/ (o(s)) “As

and

!

ol A
since the other inequality can be proven analogously. Suppose by contradiction that there
exists a time scale T* such that a,/ € T* and I > I'*, where I* is taken over [a, []T+. This

implies that there exists € > 0 such that I — e > I'*.



Oguntuase et al. Journal of Inequalities and Applications (2015) 2015:17 Page 5 of 14

On the other hand, by virtue of the definition of the delta Riemann integrability, there
exists a time scale T containing a and satisfying

Tp={tx:0<k<n} withO<a=ty<ti<tr<---<t,=1

such that |[I* — Ip| < €/2, where

!
Ip:= TD/ (a(s))faAs.

Here, the delta integral is taken over [a, /]r,,. Thus we get
I'+e<Ip<I*+¢€/2,

a contradiction.

For the case / = 0o, the proof is given in [14]. O
Our first result in this section reads as follows.

Theorem 2.4 Let 8 > 0 and T be any arbitrary time scale. If f : T — R is differentiable,
then the following inequality

ng+
¢ (ﬁ 1) u(s) < l B (1B
/b s — |: kX: 72 ( ) i|AS_ ﬁ[(t a)’ —(b-a) ] (2.4)

holds for any a, b,t € T such that 0 < a < b < t, where

ng :=inf{ne{NU{0}}:ﬂ—nzO}. (2.5)
Proof Let f: T — N be a function defined by
f@t):= %[(t—a)ﬁ —(b—a)ﬁ] VteT.
By Definition 1.4 and equation (2.5) we have that
s E=aPT( Bu®)  BB-1) [ u®))?
o= e e () )
2
i YD (A0 B0 D o), ]
2! t—a 3! t—a
ng-1 k
- B-1)P  u@)
— (t_ )81 =
= (t-a) {“; Tk +2) <t—a> }

((ﬂ—l)(ﬂ—2)~~(ﬂ—
+0
F(n,3+2)

ng—
) L(B-1)® [ (o)
_ \B-1 2:
z(t-a) [ — r(k+2)< ”

}’113) (Mnﬂ (t)(t _ a)ﬂ(”ﬂ”)))
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Integrating, we get that

}’lﬁ—l k
! i} B-D% [ u(s) 1
/b(s_ﬂ)ﬂl[lJer_ll"(k—JJ)(E)}As glt-a" - b-ay] 0

Remark 2.5 We observed that the chain rule can be applied to simplify the proof of Theo-
rem 2.4. The techniques for doing this can be found in the papers [20-24] and the details
are left to interested readers. Also, a discrete version of Theorem 2.4 can easily be ob-
tained, and interested readers can fill this gap since this is not the main focus of this paper.

Theorem 2.6 Letb >0, B(x)>0,0<[ <00, and

, 0<x<b, , 0<x<b,
plx) = {” 0 Blx) = {ﬁ 0 (2.6)
P, x>b, B, x>b,

where po, p1, Bo, 1 € R\{0}. Iff : T — N is non-negative A-integrable and f € C,4([a, b], R)
for which

o) oo

then

! px)
-Bx)
/L; ( (o(x) - (,z)/ f@)AO’)> (o) —a)"" Alx)

(x) _ Bx)
< fi:():) [1-<’;_Z> ](x-a)5<x>A(x)+10, 2.7)

where Iy = 0 if | < b (so that B(x) = Bo and p(x) = po) and

Iy =

o [ ey 1 -p o1 [ i
,31[(b a)y P —(1-a) ]/;f(x) Ax—E[(b—a) —(l-a) ]/;f(x) Ax.

Moreover, assume that po > 1,p1 > 10rpo > 1,p1 <0 0rpy <0,p1 >1orpy <0, p1 <0 (for
the case with negative parameters, we assume that the function f is strictly positive on the
corresponding interval).

If 0 < p(x) <1, then (2.7) holds in the reverse direction.

Proof Let [ < b. Applying Jensen?s inequality @.2), Fubini?s Theorem2.1 and Proposi-
tion 2.3, we obtain that

l p)
B
/a ( (o) —a) / f O’)Ay) (0w) -a) " Ax
! 1 o(x N
E/a [m/ fWW] (6@ -a) ™ Ax

lf(y)p(y) —B() (y—ﬂ) £0)
=), 8 97 [l_(a—a)) }A
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Next, for the case b < [, by applying Jensen?s inequality 2.2), Fubini?s Theorem?2.1, Propo-
sitions 2.3 and 2.6, we find that

I "
/ ( (o (%) — / f()’)Ay> (o(x) _a)-ﬂ(x)Ax
b
:/ (U(x) a)/ f(y)Ay) (o) —a)” Po A
l -B
/ ((o(x) a) / f(y)Ay) (o) - a) " Ax
! UX 1
+/b: <m/b f(y)Ay) (U(x)—a)_ﬂle
< bf(y)PO —Bo y-a Bo
“Ja Bo O-a” (1_<ﬁ) )A
o (y—a\"
' b B b-a” <1_<)?a) )
' /ab<((b - “)_W% (- (l—a)"ﬂo)%)A

N\ B
[V o (- (Z0) e

For the proof of the case 0 < p(x) <1, we first note that the functions involving exponents
po and p; are concave. Therefore the two inequalities above hold in the reverse direction
so also this case is proved. O

Remark 2.7 By taking T = % and 4 = 0 in Theorem 2.6, inequality (2.7) coincides with
inequality (1.6) obtained in [13].

Next, we state a dual version of Theorem 2.6, when the Hardy operator

Hf() - / FO)ny

x)a

is replaced by the dual Hardy operator

- *_ far
H":f(x) > (0(x) - a) /a(:o cO-a)t-a)

Hence, our result in this direction reads as follows.

Theorem 2.8 Letbh>0,8>0,0 <[< 00 and

, 0<x<b, , 0<x<b,
) = 170 Bx) = P 2.8)
P x>bx ﬁl, x>b,

where po, p1, Bo, B1 € N\ {0}. Moreover, assume thatpy > 1,p; > 1lorpy >1,p1 <0orpg <0,
p1>1orpo <0, p1 <0 (for the case with negative parameters, we assume that the function



Oguntuase et al. Journal of Inequalities and Applications (2015) 2015:17 Page 8 of 14

f is strictly positive on the corresponding interval). If f is a non-negative delta integrable
function and f € Cy([a, D], R) for which

© 1 o0 s l_—a)ﬂ(t)> At
/l sV - ( (t—u CO-at-a >

then

* — * %)p(ﬂ _ ﬁ(x)
f, (("(’“) “)fm) co-at-a) *79
ng(x)-1 ) k
(Bx)-1) (%) Ax
[ * Z Tk +2) (x—a) :|(a(x)—a)(x—a)

k=1

@, s+ l—a ’S(x)) Ax
—/l ﬁ(x)(f(x) =a) (l (x—a) Cw-aw—a > 29

where Iy = 0 if | < b (so that B(x) = Bo and p(x) = po) and

1 (o
= —((b=a)fo — (|- a)f YV
g (b-aVt-U-a) )/b Cw-am—a

o [C
ﬁl((b )P — (- a) )/b

(0(x) - a)(x—a)
If 0 < p(x) <1, then (2.9) holds in the reverse direction.

Proof Let !> b. By utilizing Jensen?s inequality .2), Fubini?s Theorem2.1 and Lemma 2.4
and taking into account (2.8), we find that

> Y f(t)#)m) VW
/l (("(’“) ) /m CO-at-a) “°
np(x)~1 k
Bx)-1D® / pu(x) Ax
X[“ 2 Tk +2) (x—a) :|(a(x)—a)(x—a)

k=1

-1
t))ﬁlm BL-)® () \* pit
/ L(x (o) —a)(t- oz)|:1 ; 'k +2) (x—a) j|(x—a) Ax
: ﬁ_w»” [amar i3 G0 (1))
N e -ae-a)\J; — k+2
I—a\*® At
_/z RO [l_(t—a) La(t)—a)(t—a)

Next, let [ < b. Then, by applying Jensen?s inequality 2.2), Fubini?s Theorem2.1 and

Lemma 2.4, and taking into account (2.8), we find that

00 00 f(t)At p(x) s
/l (("(’“) ~4) /m 0 -a)t- a)) (-a)

LS B@ -0 @\ A
o T(k+2) <x—a> @) -a)(x—a)
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(f(5))° At (Bo—1)® (k) .
// ((8) —a)(t - a)[lJrkX_: F(k+2) >}(x a)* " Ax

=1

(f)r At il (81 wix) , Br-1
/ /m (&) —a)t- a)[“; F(k+2) (x a):| Ty A

b t
_ (f(t))}’() _ \Po-1 (ﬂl wlx
- (G(t)—ﬂ)(t—ﬂ)</z o [” r<k+2>( )} )At

k=1

* <t>)po fo- (/30 i)

+/b (0(t)—a)(t- a)(/ w-a) [ — k+2 ( )} )At
~_ (fwy i (m H® ( () >

+/b (0(0)-a)(e - a)(f M [* Tk+2) \x-a At

k=1

b (f(t))po L Bo Bo
<[ comai g lt-a® -0

RAC)C. o0 s
+/b (0(t) —a)(t—a) ﬂo[(h ay — (- ayo]At

SN0 Y
+/b (0O —a)t—a) i

b-a\? At
_ EPAY:10)] _ _
/l ﬂ(t)(ﬂt)) t-a) (1 (r—a> )(o(t)—a)(t—a)”"' =

Remark 2.9 By taking T = it and a = 0 in Theorem 2.8, inequality (2.9) coincides with
Theorem 2.5 in [13].

[(t —a)fr —(b- a)ﬂl]At

3 Time scale Hardy-type inequalities with ?broken? exponenp via
superquadracity

Refined Jensen?s inequality on time scales for superquadratic functions has been recently

obtained by Bari¢ et al. This inequality is very useful in the proof of our results in this

section.

Lemma 3.1 ([16, Theorem 2.5]) Let a,b € T. Suppose that f : [a,blp — [0,00] is rd-
continuous and ¢ : [0,00] — N is continuous and superquadratic. Then

¢>(ﬁ | bf(t)At> ) b[qb(f(s)) —¢>('/<s> et bf(t)Aths. (31)

Proof For the proof, see [16]. d
Our first result in this section reads as follows.

Theorem 3.2 Let the assumptions of Theorem 2.6 be satisﬁed Moreover, let u € Cyy([a, b],
u(x)

P Ax < oo and define

M) be a non-negative function such that the A-integral f: =
the weight function v by

I
v(t) = (¢ - a) / %Am te(ab). (32)
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(1) If © is a non-negative superquadratic function on (a,c), 0 <a < ¢ < 0o, then

l
f (x)d>< / ft At) (%) — a)fﬁ(x)Ax
u(x)
S (P“’ a1 gttt
= [ v 2

holds for all A-integrable functions and f € C,y([a, b], R) such that f(x) € (a,c).
(2) If the real-valued function ® is subquadratic on (a,c), 0 < a < ¢ < 0o, then (3.3) holds
in the reversed direction.

(3.3)

Proof (1) Let [ < b. Applying refined Jensen?s inequality 8.1), after taking into account
Definition 2.8, we get that

!
/ (x)CD( (x) — )/ ft)At>(o(x) a) B A
u(x) o (%)
/ (o (x) a)ﬂoﬂ/ cb(f(t))AtAx

u(x) o (x) 1 o (x)
_/a W/ ¢<P(t)_m/a f(t)AtDAtAx. (3.4)

By utilizing Fubini?s Theorem2.1 and taking into account Definition 3.2 of the weight
function v, we obtain that the right-hand side of (3.4) is not greater than

!
/ u(t)ob(f(t))%

a a
I pl 1 o(x) u(x)
[ [ olbo-ca= [ 10n) ormgmmans

Let [ > b. Applying again refined Jensen?s inequality 8.1), after taking into account Defini-
tion 2.8, we find that

l
Pt [P s
u(x) o(x)
/(G(x a)ﬂoﬂ/ q>(f(t))AtAx

u(x) o(x) 1 o(x)
a(a<x>—a)ﬂo+1/a q’(%”‘(o(x)—a)/a f‘”“DMA"

! u(x) o (%)
+/u (o (%) —a)prrt / D(f (1) AtAx

b u) ot 1 o)
. W/ (D(L/(t)_m/ﬂ f(t)AtDAtAx. (3.5)

Finally, utilizing Fubini?s Theorem2.1 and taking into account Definition 3.2 of the weight
function v, we obtain that the right-hand side of (3.5) equals
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!
/ u(z)eb(f(t))#

u(x)
oo gra [ road) e e
At
+\/a U(t)q)(f(t))m
I pl 1 o(x) u(x)
[ [ elro-garma [ ros)or e 6o

The proof for the case when ¢ is subquadratic is similar except that the only inequality

above holds in the reverse direction. The proof is now complete. 0
We now give some applications of Theorem 3.2.

Example 3.3 If we let 8(x) =1 and apply Theorem 3.2 to ( )u(x) instead of u(x), then

we get

! Ax

/ (x)(b(cr(x) a)/ 1o )x—a
1 o) u(x)

/ f (V cwal ﬂ”“‘)(x—a)(a(x)—a)A"“

= [ v X

The sign of inequality (3.7) is reversed for the case 1 < p(x) < 2.

Remark 3.4 Inequality (3.7) coincides with Theorem 2.3 in [17].

Now we will use the well-known fact that ¢(u) = ™ is superquadratic for p(x) > 2 and

(subquadratic if 0 < p(x) < 2) in the next example.

Example 3.5 Let u(x) = 1 and p(x) > 2. By Proposition 2.3, we get that

(% — a)l-P® x—a\f®W
vix) < 50 |:1_<l—zz) i| if [ < oo.

Under these conditions, inequality (3.3) yields

) 1 o(x) px) )
/; (m / f(t)At) (O'(?C) — ﬂ) Ax

px)

u(x)
/ / P() 00 a)/ JOAL g gy AFAL
fpx)( ) x—a Bx) 5
= 5w |:1 <l—a> ](x a) Ax. (3.8)

The sign of inequality (3.8) is reversed for the case 1 < p(x) <2
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Remark 3.6 Since ¢ is a non-negative function, the second term on the left-hand side of

inequality (3.8) is non-negative.

Theorem 3.7 Let the assumptions of Theorem 2.8 be satisfied. Moreover, let u € C,4([a, b],

R) be a non-negative function such that
f (Br-D® () b1
/l(1+k21: F(k+2)( —a) )u(x)(x—a) Ax < 00,
and define the weight function v by
np -1 k
- ! (B~ 1)(k) (x) Bx)-1
u(t) = /1 (1 + ; TEs D <E> )u(x)(x ~ a7 A%, te(ab) (3.9)

(1) If the real-valued function ® is a superquadratic on (a,c), 0 < a < ¢ < 00, then

0 _ = % - a)f®
[ wn(towr-a [ o)

U B0 e\
o Z I'(k+2) <x—a> (o(x)—a)x—a)

k=1

(Bi- DY )\ P
/ / |: k k+2) ( ) :|u(x)(x—a)

1

© ()AL
‘DO/“) ~(0-a) /H(x) e )
Ax

holds for all A-integrable functions f € Cy([a, b], R) such that f (x) € (a,c).
(2) If the real-valued function ® is subquadratic on (a,c), 0 < a < ¢ < 0o, then (3.5) holds
in the reversed direction.

Proof Let !> b. Applying refined Jensen?s inequality 8.1), we find that the first term on the
left-hand side of inequality (3.5) is not greater than

00 o [T OU@)AL
/I ulx)lx—a) /”(o(t)—a)(t—a)

(ﬁl—l)(k) ) \¥

[“ 2 TEry T(k+2) ( >}M

00 - (ﬁl ) M(x) ‘
_./1 u(x)(x — a)? 1|:1+ Z 'k +2) ( _“) j|

k=1

Fo)AL
(P(t (C@-a) | CO-at-a

)AtAx. (3.11)
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Finally, employing Fubini?s Theorem?2.1 and Proposition 2.4, we obtain that the right-hand
side of (3.11) is not greater than

o At
/I VOO oy —a)(t—a)

2 (B-p® ( (x))k}t piot
(6)(x — )"
//[ k Tk+2)

1

° f()AL

Now we consider Theorem 3.2 in some special cases. First we note that if we set u(x) =1,
then we find that

_ \B&) _ B(x)
v(x) < (xﬁ(ax)) |:1— <alc—jz> ] ifl < o0

by Proposition 2.4.

>AxAt. O

Corollary 3.8 Let the assumptions of Theorem 3.7 be satisfied. If ¢ is non-negative su-
perquadratic, then

/I d’<((’(")‘“)/a<x ) - a)(t )

X{“ 3 (B - /L(x) }

P I'k+2) x a

A ) e

1

(x — a)f®

a)x a)

o f)At
x ® O/(t) —(o(x) - a) /m) CO—at=a >AxAt
* (x — a)f® [—a\™ Ax
<] S [1 - <E> }q’(ﬂ’”) GO -ae-a) (312
Example 3.9 Assume that T =R, a = 0 and ®(x) = #”. Then inequality (3.12) yields the
inequality
L [T\ ., dx
[ G[7aE)
0 pt o ® f(£)dt px)
+/l /[ (x—a)P® IQ/(t) -xfx 5 ) dxdt

_/z ﬁ(x)(f(") ( (;c)ﬂ)% (313)

Remark 3.10 Since ¢ is a non-negative function, the second term on the left-hand side
of inequality (3.13) is non-negative. Hence inequality (3.13) provides a refinement of in-
equality (2.3) in [13] if written for [ < b.
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