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Abstract
Let Y be a real separable Banach space and (FKC(Y),d∞) be the space of all normal
fuzzy convex and upper semicontinuous fuzzy sets with compact support in Y , where
d∞ stands for the supremummetric in FKC(Y). In the present paper, several types of
quadratic fuzzy set-valued functional equations are introduced based on the space
mentioned above. We prove the Hyers-Ulam stability of the standard quadratic fuzzy
set-valued functional equation by using the fixed point technique. Simultaneously,
we also establish some Ulam type stability results of the Deeba and Appolonius type
fuzzy set-valued functional equations by employing the direct method, respectively.
The stability results of the corresponding single-valued and set-valued functional
equations acting as special cases will be included in our results.

Keywords: Ulam type stability; Hausdorff separation; supremummetric; quadratic
fuzzy set-valued functional equation

1 Introduction
Nowadays, the Ulam type stability is gradually becoming one of the most active research
topics in the theory of functional equations. The study of such stability problems of func-
tional equations originated from a question of Ulam [] concerning the stability of group
homomorphisms, i.e.:

Let G be a group and let G be a metric group with the metric d(·, ·). Given ε > ,
does there exist a δ >  such that if a function h : G → G satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G, then there is a homomorphism H : G → G

with d(h(x), H(x)) < ε for all x ∈ G?

Afterwards, Hyers [] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Later, this result was generalized by Aoki [] for additive mappings and in-
dependently by Rassias [] for linear mappings by considering an unbounded Cauchy def-
erence. In , a further generalization of T.M. Rassias theorem was obtained by Gǎvruţa
[]. Since then, the Ulam type stability problems for different types of functional equations
in various abstract spaces have been widely and extensively studied. For more details, we
refer the readers to [–]. Moreover, it is worth noting that the study of Ulam stability
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for some quadratic functional equations is important and interesting. For instance,

f (x + y) + f (x – y) = f (x) + f (y) (Standard type),

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x) (Deeba type),

f (x – z) + f (y – z) =



f (x – y) + f
(

z –
x + y



)
(Appolonius type).

It should be noted that the function f (x) = x is a solution of the three equations above.
Naturally, we call these equations quadratic functional equations and every solution a
quadratic function (mapping). In the case of single-valued equations, the corresponding
Ulam type stability of these equations have been investigated by Czerwik [], Kim []
and Jung [], Jun and Kim [], respectively.

In , Mirmostafaee and Moslehian [] initiated the study of the Ulam stability prob-
lems of functional equations in fuzzy setting. More precisely, they discussed the Ulam sta-
bility of Cauchy type and then in the same year, together with Mirzavaziri [], Jensen type
functional equations in a complete fuzzy normed linear space. Thereafter, the stability of
various functional equations in a fuzzy abstract space has been investigated by various
authors [–].

Summing up the above, the Ulam type stability problem is whether, for a given map-
ping which satisfies approximately a functional equation (or which satisfies a functional
inequality), there exists an exact solution of the corresponding functional equation such
that the preceding mapping is sufficiently close to this solution. Usually, an appropriate
metric associated with the corresponding space is chosen to characterize the error in
functional inequalities. Certainly, a fuzzy metric is adopted in fuzzy environment. Un-
like previous studies, Lu and Park [] first studied the stability of two types of additive
set-valued functional equations, in which the inclusion relation is employed to measure
the degree of approximation. Soon after, Park et al. [] further investigated the stability
of quadratic, cubic and quartic set-valued functional equations. However, the disadvan-
tage is that the obtained exact solution of these set-valued functional equations is just
single-valued mapping. Recently, Kenary et al. [] studied the stability of several types of
set-valued functional equations by using the fixed point method. It should be pointed out
that the same skill has been applied to solve the Ulam stability problems of single-valued
and set-valued functional equations, respectively.

The main objective of this paper is to further extend and establish some new Ulam
type stability results of the quadratic functional equations mentioned above, in which the
quadratic mapping is assumed to be a fuzzy set-valued mapping. More specifically, the
standard quadratic, Deeba and Appolonius type fuzzy set-valued functional equations. In
the mean time, the supremum metric will be used to estimate the error in fuzzy set-valued
functional inequalities.

2 Preliminaries
In this section, we present some related concepts and results which are mainly derived
from [–].

Let Y be a real separable Banach space with the norm ‖ · ‖Y . We denote by K(Y ) and
KC(Y ) the set of all nonempty compact subsets of Y and the set of all nonempty compact
convex subsets of Y , respectively.
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Let A and B be two nonempty subsets of Y and let λ ∈R. The (Minkowski) addition and
scalar multiplication can be defined by

A + B = {a + b | a ∈ A, b ∈ B}

and

λA = {λa | a ∈ A}.

Notice that the sets K(Y ) and KC(Y ) are closed under the operations of addition and
scalar multiplication. In fact, these two operations induce a linear structure on K(Y ) and
KC(Y ) with zero element {}, respectively. It should be noted that this linear structure is
just a cone rather than a vector space because, in general, A + (–)A �= {}. Moreover, for
all λ,μ ∈R, it follows that

λ(A + B) = λA + λB, (λ + μ)A ⊆ λA + μA.

Note that if A is convex and λμ ≥ , then (λ + μ)A = λA + μA.
Define the Hausdorff separation of B from A by

d∗
H (B, A) = inf{ε >  | B ⊆ A + εS},

where S denotes the closed unit ball in Y , i.e., S = {y ∈ Y | ‖y‖Y ≤ }. The Hausdorff
separation of A from B can also be defined similarly.

Based on these two types of separations, the Hausdorff distance between nonempty sub-
sets A and B is defined by

dH (A, B) = max
{

d∗
H (A, B), d∗

H (B, A)
}

.

In general, the Hausdorff distance has the following properties:
(i) dH (λA,λB) = |λ|dH (A, B) for all λ ∈R;

(ii) dH (A + C, B + C) = dH (A, B);
(iii) dH (A + C, B + D) ≤ dH (A, B) + dH (C, D) for all A, B, D ∈K(Y ) and C ∈KC(Y ).
If we restrict our attention to the nonemtpy closed subsets C(Y ) of Y , then one can

obtain the fact from [] that (C(Y ), dH ) is a complete metric space. Clearly, K(Y ) and
KC(Y ) are closed subsets of C(Y ). Hence, (K(Y ), dH ) and (KC(Y ), dH ) are also complete
metric spaces.

In the s, the concept of the Banach space-valued fuzzy sets was introduced by Inoue
[], who extended the usual fuzzy sets defined on R or Rn. In other words, the base space
of a fuzzy set is replaced by a more general Banach space.

A fuzzy set defined on Y is a mapping u : Y → [, ]. We denote by F (Y ) the set of all
fuzzy sets defined on Y . Let FK (Y ) denote the class of fuzzy sets u : Y → [, ] with the
following properties:

(i) u is normal, i.e., there exists y ∈ Y , such that u(y) = ;
(ii) u is upper semicontinuous;

(iii) [u]α = {y ∈ Y | u(y) ≥ α} is compact for each α ∈ (, ];
(iv) [u] =

⋃
α∈(,][u]α is a bounded subset of Y .
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In fact, the conditions (ii) and (iv) imply that [u] is also compact. Moreover, we use the
notation FKC(Y ) to denote the subspace of F (Y ) whose members also satisfy

(v) [u]α is convex for each α ∈ (, ], that is to say, u is fuzzy convex.
A linear structure can be defined in F (Y ) in a similar way to fuzzy sets in R or Rn, by

(u ⊕ v)(y) = sup
x+z=y

min
{

u(x), v(z)
}

,

(γ u)(y) =

⎧⎨
⎩

u( y
γ

), if γ �= ,

I(y), if γ = 

for u, v ∈F (Y ) and γ ∈ R, where I(y) =  if y �=  and I() = . Then F (Y ) is closed under
these operations, and level setwise

[u ⊕ v]α = [u]α + [v]α , [λu]α = λ[u]α

for each α ∈ [, ] and λ ∈R. Similar to the closeness of KC(Y ), it is easy to see that FKC(Y )
is also closed under these operations.

Based on the statement mentioned above, for any u, v ∈ FKC(Y ) and λ,μ ∈ R, the fol-
lowing equalities hold:

(i) λ(u ⊕ v) = λu ⊕ λv;
(ii) λ(μu) = (λμ)u;

(iii) (λ + μ)u = λu ⊕ μu for any λ,μ ≥ .
Therefore, it is easy to check that the set FKC(Y ) is just a cone defined on Y rather than

a vector space.
As a generalization of the Hausdorff metric dH in K(Y ), the supremum metric is defined

by

d∞(u, v) = sup
α∈(,]

dH
(
[u]α , [v]α

)
,

where u, v ∈FC(Y ).

Remark  Every ordinary crisp subset A of Y can be identified with the fuzzy set on Y by
its characteristic function χA : Y → {, }, that is with χA(y) =  if y ∈ A and χA(y) =  if
y /∈ A. Therefore, if A ∈K(Y ) (or A ∈KC(Y )), then χA ∈FC(Y ) (or FKC(Y )), and vice versa.

From Remark , for any A, B ∈K(Y ) (or FKC(Y )), it follows that

d∞(χA,χB) = sup
α∈(,]

dH
(
[χA]α , [χB]α

)
= dH (A, B). ()

Especially, if A and B are simplified into two singleton sets {a} and {b}, respectively, then
we can infer from equality () that d∞(χ{a},χ{b}) = d(a, b), where d denotes the usual metric
between a and b.

According to the properties of the Hausdorff metric, it can easily be shown that the
supremum metric has the following properties:
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(i) d∞(λu,λv) = λd∞(u, v) for any λ ≥ ;
(ii) d∞(u ⊕ w, v ⊕ w) = d∞(u, v);

(iii) d∞(u ⊕ v, u′ ⊕ v′) ≤ d∞(u, u′) + d∞(v, v′) for all u, v, w, u′, v′ ∈FKC(Y ).

Remark  If we restrict our attention to the set FKC(Y ), we then can prove that (FKC(Y ),
d∞) is a complete metric space by using the method analogous to that used in [, Propo-
sition ..].

Here we recall a fixed point theorem in a complete generalized metric space which are
useful in the next section.

Theorem . (Diaz and Margolis []) Let (X, d) be a complete generalized metric space,
i.e., one for which d may assume infinite values. Suppose that J : X → X be a strictly con-
tractive mapping with Lipschitz constant L < . Then, for each given element x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all n ≥  or there exists an n ∈N such that
(i) d(Jnx, Jn+x) < ∞ for all n ≥ n;

(ii) the sequence {Jnx} converges to a fixed point y∗ of J ;
(iii) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn x, y) < ∞};
(iv) d(y, y∗) ≤ 

–L d(y, Jy) for all y ∈ Y .

3 Hyers-Ulam stability of the standard quadratic fuzzy set-valued functional
equation

In this section, we shall establish the Hyers-Ulam stability of the standard quadratic fuzzy
set-valued functional equation by using the fixed point technique.

Definition . Let X be a real vector space and let f : X → FKC(Y ) be a fuzzy set-valued
mapping. The quadratic fuzzy set-valued functional equation is defined by

f (x + y) ⊕ f (x – y) = f (x) ⊕ f (y) ()

for all x, y ∈ X, where the equal sign means that the both sides of () (two fuzzy sets)
are equal pointwise. Every solution of () is called a standard quadratic fuzzy set-valued
mapping.

Example  Let X = Y = R. Suppose that f : R → FKC(Y ) is a triangular fuzzy set-valued
mapping, i.e., for every t ∈ X, f (t) is a triangular fuzzy set in R, which is defined by

f (t) =
(
t – at, t, t + bt), t ∈R,

where a, b are two nonnegative real numbers. From the definition of an α-level set of a
fuzzy set, it follows that

[
f (t)

]α =
[
t – at( – α), t + bt( – α)

]
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for every t ∈R and α ∈ [, ]. Thus, for every α ∈ [, ], it can easily be verified that

[
f (x + y)

]α +
[
f (x – y)

]α = 
[
f (x)

]α + 
[
f (y)

]α

for all x, y ∈ X. This implies that f is a solution of () in R.

Remark  Let u ∈FKC(Y ) be a fixed fuzzy set. Accordingly, it is easy to check that f (t) =
tu is also a solution of () by the same method as shown in Example .

Theorem . Let j ∈ {–, } be fixed and let ϕ : X × X → [,∞) be a function such that
there exists a positive constant L <  satisfying

ϕ(x, y) ≤ jLϕ
(
–jx, –jy

)
()

for all x, y ∈ X. Assume that f : X →FKC(Y ) is a mapping with f () = I which satisfies

d∞
(
f (x + y) ⊕ f (x – y), f (x) ⊕ f (y)

) ≤ ϕ(x, y) ()

for all x, y ∈ X, then

Q(x) = lim
n→∞ –jnf

(
jnx

)

exists for each x ∈ X and defines a unique quadratic fuzzy set-valued mapping Q : X →
FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩


(–L)ϕ(x, x), if j = ,

L
(–L)ϕ(x, x), if j = –

()

for all x ∈ X.

Proof Putting y = x in (), we can obtain

d∞
(




f (x), f (x)
)

≤ 


ϕ(x, x) ()

for all x ∈ X, since f () = I and u ⊕ I = u for any u ∈ FKC(Y ). Furthermore, it follows
from () that

d∞
(

f (x), f
(

x


))
≤ ϕ

(
x


,
x


)
≤ L


ϕ(x, x) ()

for all x ∈ X.
Consider the set E = {g | g : X →FKC(Y ), g() = I} and introduce the generalized metric

D on E, which is defined by

D(g, h) = inf
{
μ ∈ (,∞) | d∞

(
g(x), h(x)

) ≤ μϕ(x, x),∀x ∈ X
}

,
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where, as usual, inf∅ = ∞. In can easily be verified that (E, D) is a complete generalized
metric space (see [], Theorem .).

Now, we define an operator J : E → E by

Jg(x) = –jg
(
jx

)

for all x ∈ X.
Let g , h be given such that D(g, h) = ε. Then

d∞
(
g(x), h(x)

) ≤ εϕ(x, x)

for all x ∈ X. Hence, we can obtain

d∞
(
Jg(x), Jh(x)

)
= d∞

(
–jg

(
jx

)
, –jh

(
jx

))
= –jd∞

(
g
(
jx

)
, h

(
jx

))
≤ ε–jϕ

(
jx, jx

)
≤ Lεϕ(x, x)

for all x ∈ X. So D(g, h) = ε implies that D(Jg, Jh) ≤ Lε. This means that

D(Jg, Jh) ≤ LD(g, h)

for all g, h ∈ E. That is to say, J is a strictly contractive self-mapping on E with Lipschitz
constant L < .

Moreover, we can infer that from () and () that

D(f , Jf ) ≤
⎧⎨
⎩


 , if j = ,
L
 , if j = –.

()

According to Theorem ., there exists a mapping Q : X → FKC(Y ) satisfying the follow-
ing:

(i) Q is a fixed point of J , i.e.,

jQ(x) = Q
(
jx

)
()

for all x ∈ X. The mapping Q is the unique fixed point of J in the set

M =
{

g ∈ E | D(f , g) < ∞}
,

which implies that Q is the unique mapping satisfying () such that there exists an η ∈ (, )
satisfying

d∞
(
f (x), Q(x)

) ≤ ηϕ(x, x)

for all x ∈ X.
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(ii) D(Jnf , Q) →  as n → ∞. This implies the equality

lim
n→∞ –jng

(
jnx

)
= Q(x)

for all x ∈ X.
(iii) D(f , Q) ≤ 

–L D(f , Jf ), which implies the inequality

D(f , Q) ≤
⎧⎨
⎩


(–L) , if j = ,

L
(–L) , if j = –.

This shows that the inequality () holds.
Replacing x and y by jnx and jny in (), we can infer that

d∞
(
–jnf

(
jn(x + y)

) ⊕ –jnf
(
jn(x – y)

)
,  · –jnf

(
jnx

) ⊕  · –jnf
(
jny

))
≤ –jnϕ

(
jnx, jny

) ≤ –jn · jnLnϕ(x, y) = Lnϕ(x, y),

which tends to zero as n → ∞ for all x, y ∈ X. Thus,

Q(x + y) ⊕ Q(x – y) = Q(x) ⊕ Q(y)

for all x, y ∈ X and therefore the mapping Q : X → FKC(Y ) is a quadratic fuzzy set-valued
mapping, as desired. �

Corollary . Let X be a real normed space and let p, θ be positive real numbers with
p �= . Assume that f : X →FKC(Y ) is a mapping satisfying

d∞
(
f (x + y) ⊕ f (x – y), f (x) ⊕ f (y)

) ≤ θ
(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then

Q(x) = lim
n→∞ –jnf

(
jnx

)

exists for each x ∈ X and defines a unique quadratic fuzzy set-valued mapping Q : X →
FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩

θ‖x‖p

–p– , if j = , p < ,
θ‖x‖p

p–– , if j = –, p > 

for all x ∈ X.

Proof In Theorem ., let ϕ(x, y) = θ (‖x‖p + ‖y‖p). Then we can choose L = j(p–) and we
get the desired result. �

Corollary . Let X be a real normed space and let p, θ be positive real numbers with
p �= . Assume that f : X →FKC(Y ) is a mapping satisfying

d∞
(
f (x + y) ⊕ f (x – y), f (x) ⊕ f (y)

) ≤ θ‖x‖p‖y‖p
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for all x, y ∈ X. Then

Q(x) = lim
n→∞ –jnf

(
jnx

)

exists for each x ∈ X and defines a unique quadratic fuzzy set-valued mapping Q : X →
FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩

θ‖x‖p

–p , if j = , p < ,
θ‖x‖p

p– , if j = –, p > 

for all x ∈ X.

Proof In Theorem ., let ϕ(x, y) = θ‖x‖p‖y‖p. Then we can choose L = j(p–) and we get
the desired result. �

Corollary . Let X be a real normed space and let p, q, θ be positive real numbers with
p + q �= . Assume that f : X →FKC(Y ) is a mapping satisfying

d∞
(
f (x + y) ⊕ f (x – y), f (x) ⊕ f (y)

) ≤ θ
(‖x‖p‖y‖q + ‖x‖p+q + ‖y‖p+q)

for all x, y ∈ X. Then

Q(x) = lim
n→∞ –jnf

(
jnx

)

exists for each x ∈ X and defines a unique quadratic fuzzy set-valued mapping Q : X →
FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩

θ‖x‖p+q

–p+q , if j = , p + q < ,
θ‖x‖p+q

p+q– , if j = –, p + q > 

for all x ∈ X.

Proof In Theorem ., let ϕ(x, y) = θ (‖x‖p‖y‖q + ‖x‖p+q + ‖y‖p+q). Then we can choose
L = j[(p+q)–] and we get the desired result. �

Remark  Due to the condition (), all results obtained in this section still hold true, even
if the fuzzy set-valued mapping f : X → FKC(Y ) degenerates into a set-valued mapping
f : X → KC(Y ) or a single-valued mapping f : X → Y . Therefore, these results can be
regarded as an important extension of the stability results of the ordinary single-valued
and set-valued quadratic functional equations. In essence, our results extend some main
results obtained by Cholewa [], Czerwik [] and Jung et al. [].

4 Hyers-Ulam stability of the Deeba type fuzzy set-valued functional equation
In this section, we will consider the Hyers-Ulam stability of the Deeba type quadratic fuzzy
set-valued functional equation by using the direct method.
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Definition . Let X be a real vector space and let f : X → FKC(Y ) be a fuzzy set-valued
mapping. The Deeba type fuzzy set-valued functional equation is defined by

f (x + y + z) ⊕ f (x) ⊕ f (y) ⊕ f (z) = f (x + y) ⊕ f (y + z) ⊕ f (z + x) ()

for all x, y, z ∈ X, where the equal sign means that the both sides of () (two fuzzy sets) are
equal pointwise. Every solution of () is called a Deeba type fuzzy set-valued mapping.

Remark  In a similar way as shown before, it is easy to verify that the triangular fuzzy
set-valued mapping f constructed in Example  is a solution of (). Similarly, f (t) = tu

is also a solution of () for any fixed fuzzy set u ∈FKC(Y ). Moreover, these two examples
are suitable for () which is introduced in the next section.

Lemma . Let X be a real vector space. For a given ε ≥ , if a mapping f : X → FKC(Y )
satisfies the following inequality:

d∞
(
f (x + y + z) ⊕ f (x) ⊕ f (y) ⊕ f (z), f (x + y) ⊕ f (y + z) ⊕ f (z + x)

) ≤ ε ()

for all x, y, z ∈ X, then

d∞
(

f (x) ⊕ n – 
n+ f

(
–nx

)
,

n + 
n+ f

(
nx

)) ≤ ε

n∑
k=

–k ()

for all x ∈ X and n ∈ N
+.

Proof Letting x = y = z =  in (), we get d∞(f (), I) ≤ ε. Putting x = y = –z in (), we get

d∞
(
f (x) ⊕ f (–x), f () ⊕ f (x)

) ≤ ε.

According to the properties of the supremum metric, we can obtain

d∞
(
f (x) ⊕ f (–x), f (x)

)
≤ d∞

(
f (x) ⊕ f (–x), f () ⊕ f (x)

)
+ d∞

(
f () ⊕ f (x), f (x)

)
= d∞

(
f (x) ⊕ f (–x), f () ⊕ f (x)

)
+ d∞

(
f (), I

)
≤ ε. ()

Furthermore, by substituting –x for x in (), we have

d∞
(
f (–x) ⊕ f (x), f (–x)

) ≤ ε. ()

By () and (), we can infer that

d∞
(

f (x) ⊕ 


f (–x),



f (x)
)

= d∞
(




f (x) ⊕ 


f (–x) ⊕ 


f (–x),



f (x) ⊕ 


f (–x) ⊕ 


f (x)
)
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≤ 


d∞
(
f (x) ⊕ f (–x), f (x)

)
+




d∞
(
f (–x), f (–x) ⊕ f (x)

)

≤ 

ε +



ε =



ε,

which implies that the inequality () holds true for n = . By mathematical induction, we
can assume that the inequality () is true for some n ∈N

+. Therefore, we have

d∞
(

f (x) ⊕ n+ – 
n+ f

(
–n+x

)
,

n+ + 
n+ f

(
n+x

))

= d∞
(

f (x) ⊕ n – 
n+ f

(
–nx

) ⊕ n+ + 
n+

(
f

(
nx

) ⊕ f
(
–nx

))

⊕ n+ – 
n+ f

(
–n+x

)
,

n+ + 
n+ f

(
n+x

) ⊕ n+ – 
n+

(
f

(
–nx

) ⊕ f
(
nx

))

⊕ n + 
n+ f

(
nx

))

≤ d∞
(

f (x) ⊕ n – 
n+ f

(
–nx

)
,

n + 
n+ f

(
nx

))
+

n+ + 
n+ d∞

(
f

(
nx

)

⊕ f
(
–nx

)
, f

(
n+x

))
+

n+ – 
n+ d∞

(
f

(
–nx

) ⊕ f
(
nx

)
, f

(
–n+x

))

≤ ε

( n∑
k=

–k +
n+ + 

n+ +
n+ – 

n+

)

= ε

n+∑
k=

–k ,

which proves the validity of the inequality () for n + . This completes the proof. �

Theorem . Let X be a real vector space. Assume that a mapping f : X →FKC(Y ) satisfies
the inequality () and the following inequality:

d∞
(
f (x), f (–x)

) ≤ θ ()

for some θ ≥  and for all x ∈ X. Then there exists a unique Deeba quadratic fuzzy set-
valued mapping Q : X →FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤ ε ()

for all x ∈ X with Q(x) = Q(–x).

Proof According to Lemma . and the condition (), we can infer that

d∞
(
f (x), –nf

(
nx

))

= d∞
(

f (x) ⊕ n – 
n+ f

(
–nx

)
,

n – 
n+ f

(
–nx

) ⊕ –nf
(
nx

))

≤ d∞
(

f (x) ⊕ n – 
n+ f

(
–nx

)
,

n + 
n+ f

(
nx

))
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+ d∞
(

n + 
n+ f

(
nx

)
,

n – 
n+ f

(
–nx

) ⊕ –nf
(
nx

))

≤ ε

n∑
k=

–k +
n – 
n+ d∞

(
f
(
nx

)
, f

(
–nx

))

≤ ε

n∑
k=

–k +
n – 
n+ θ . ()

For n ≥ m, by (), we can obtain

d∞
(
–nf

(
nx

)
, –mf

(
mx

))
= –md∞

(
–(n–m)f

(
n–m · mx

)
, f

(
mx

))

≤ –m

(
ε

n–m∑
k=

–k +
n–m – 
(n–m)+ θ

)
. ()

It is easy to see that the sequence {–nf (nx)} is Cauchy sequence, since the last expression
of the inequality () tends to zero as m → ∞. From the completeness of the metric space
(FKC(Y ), d∞), the sequence {–nf (nx)} is convergent for any x ∈ X. Set

Q(x) = lim
n→∞ –nf

(
nx

)
.

To show that Q satisfies (), one can replace x, y, z in () by nx, ny, n, z, respectively,
it follows that

d∞
(
f
(
n(x + y + z)

) ⊕ f
(
nx

) ⊕ f
(
ny

) ⊕ f
(
nz

)
, f

(
n(x + y)

)
⊕ f

(
n(y + z)

) ⊕ f
(
n(z + x)

)) ≤ ε.

Dividing both sides by n in the last inequality, and by letting n → ∞, it is easy to see
that Q is a solution of (). In a similar manner, we can find the condition () implies
that Q(x) = Q(–x). Moreover, by letting n → ∞ in (), it can easily be verified that the
inequality () holds true.

Now we show the uniqueness of Q. Let Q′ be another Deeba quadratic mapping which
satisfies the equality () and the inequality (). It is obvious that Q(nx) = nQ(x) and
Q′(nx) = nQ′(x) for all x ∈ X and n ∈N. Then it follows from () that

d∞
(
Q(x), Q′(x)

)
= –nd∞

(
Q

(
nx

)
, Q′(nx

))
≤ –n(d∞

(
Q

(
nx

)
, f

(
nx

))
+ d∞

(
f
(
nx

)
, Q′(nx

)))

≤ ε

n

for all x ∈ X. By letting n → ∞, we conclude that Q(x) ≡ Q′(x). The proof of the theorem
is now completed. �

Theorem . Let X be a real vector space. Assume that a mapping f : X →FKC(Y ) satisfies
the inequality () and the following inequality:

d∞
(
f (x) ⊕ f (–x), I

) ≤ θ ()
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for some θ ≥  and for all x ∈ X. Then there exists a unique Deeba type additive fuzzy
set-valued mapping A : X →FKC(Y ) such that

d∞
(
f (x), A(x)

) ≤ ε ()

for all x ∈ X with A(x) ⊕ A(–x) = I.

Proof By Lemma . and the condition (), we have

d∞
(
f (x), –nf

(
nx

))

= d∞
(

f (x) ⊕ n – 
n+ f

(
–nx

)
,

n – 
n+ f

(
–nx

) ⊕ –nf
(
nx

))

≤ d∞
(

f (x) ⊕ n – 
n+ f

(
–nx

)
,

n + 
n+ f

(
nx

))

+ d∞
(

n + 
n+ f

(
nx

)
,

n – 
n+ f

(
–nx

) ⊕ –nf
(
nx

))

≤ ε

n∑
k=

–k +
n – 
n+ d∞

(
I, f

(
nx

) ⊕ f
(
–nx

))

≤ ε

n∑
k=

–k +
n – 
n+ θ . ()

By the preceding inequality, for n ≥ m, we can obtain

d∞
(
–nf

(
nx

)
, –mf

(
mx

))
= –md∞

(
–(n–m)f

(
n–m · mx

)
, f

(
mx

))

≤ –m

(
ε

n–m∑
k=

–k +
n–m – 
(n–m)+ θ

)
, ()

which means that the sequence {–nf (nx)} is a Cauchy sequence in the complete metric
space (FKC(Y ), d∞). Therefore, we can define

A(x) = lim
n→∞ –nf

(
nx

)

for all x ∈ X. Using the same argument as in the proof of Theorem ., we conclude that
the mapping A satisfies the equality () with A(x) ⊕ A(–x) = I. Clearly, we get A() = I.

Putting z = –y in (). According to the preceding properties of A, let u = x + y, v = x – y,
we can obtain

A
(

u + v


)
= A(u) + A(v).

That is to say, the mapping A is additive fuzzy set-valued mapping due to [].
We now show that A is a unique Deeba type additive mapping. Let A′ be another

mapping which satisfies the equality () and the inequality (). Since A(nx) = nA(x),
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A′(nx) = nA′(x), we get

d∞
(
A(x), A′(x)

)
= –nd∞

(
A

(
nx

)
, A′(nx

))
≤ –n(d∞

(
A

(
nx

)
, f

(
nx

))
+ d∞

(
f
(
nx

)
, A′(nx

)))

≤ ε

n

for all x ∈ X. By letting n → ∞, we conclude that A(x) ≡ A′(x). This completes the proof.
�

Remark  From Theorems . and ., the condition () ensures that the mapping is
quadratic, whereas the condition () implies that the mapping is additive.

Remark  The preceding theorems extend some stability results of the single-valued
Deeba type functional equation obtained by Jung [].

5 Hyers-Ulam stability of the Appolonius type quadratic fuzzy set-valued
functional equation

Here we shall prove the Hyers-Ulam stability of the Appolonius type quadratic fuzzy set-
valued functional equation by using the same method as employed in the preceding sec-
tion.

Definition . Let X be a real vector space and let f : X → FKC(Y ) be a fuzzy set-valued
mapping. The Appolonius type fuzzy set-valued functional equation is defined by

f (x – z) ⊕ f (y – z) =



f (x – y) ⊕ f
(

z –
x + y



)
()

for all x, y, z ∈ X, where the equal sign means that the both sides of () (two fuzzy sets)
are equal pointwise. Every solution of () is called an Appolonius type fuzzy set-valued
mapping.

Theorem . Let j ∈ {–, } be fixed and let ϕ : X × X × X → [,∞) be a function such
that

�(j)(x, y, z) =
∞∑

k=

–jkϕ
(
jkx, jky, jkz

)
< +∞ ()

for all x, y, z ∈ X. Assume that the mapping f : X →FKC(Y ) satisfies

d∞
(

f (x – z) ⊕ f (y – z),



f (x – y) ⊕ f
(

z –
x + y



))
≤ ϕ(x, y, z) ()

for all x, y, z ∈ X. Moreover, f () = I in the case j = . Then

Q(x) = lim
n→∞ –jnf

(
jnx

)
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exists for each x ∈ X and defines a unique Appolonius type quadratic fuzzy set-valued map-
ping Q : X →FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤ 

�(j)(x, –x, x) +




�(j)(x, x, –x) ()

for all x ∈ X.

Proof Firstly, we claim that f () = I in the case j = –. Indeed, letting x = y = z =  in
(), we can infer that f () = I because the condition �(, , ) =

∑∞
k= kϕ(, , ) < +∞

implies that ϕ(, , ) = . So we have f () = I regardless of j =  or j = –.
Replacing y, z by x, –x in (), respectively, we have

d∞
(
f (x), f (–x)

) ≤ ϕ(x, x, –x) ()

for all x ∈ X. Substituting y, z by –x, x in (), respectively, we get

d∞
(

f (–x),



f (x) ⊕ f (x)
)

≤ ϕ(x, –x, x) ()

for all x ∈ X. From the inequalities () and (), it follows that

d∞
(
f (x), f (x)

)
= d∞

(
f (x) ⊕ f (x), f (x)

)
≤ d∞

(
f (x) ⊕ f (x), f (–x)

)
+ d∞

(
f (–x), f (x)

)
≤ ϕ(x, x, –x) + ϕ(x, –x, x) ()

for all x ∈ X. Dividing both sides in () by , we obtain

d∞
(




f (x), f (x)
)

≤ 


ϕ(x, x, –x) +


ϕ(x, –x, x) ()

for all x ∈ X. Replacing x by n–x and dividing by n– in (), we conclude that

d∞
(


n f

(
nx

)
,


n– f

(
n–x

))

≤ ϕ(n–x, n–x, –n–x)
n +

ϕ(n–x, –n–x, n–x)
 · n– ()

for all x ∈ X and for all n ∈N. Combining the inequalities () and () gives

d∞
(
f (x), –nf

(
nx

)) ≤
n–∑
i=

ϕ(ix, –ix, ix)
 · i +

n–∑
i=

ϕ(ix, ix, –ix)
i+ ()

for all x ∈ X and for all n ∈N.
Moreover, substituting x by x

 in (), we get

d∞
(

f (x), f
(

x


))
≤ ϕ

(
x


,
x


, –
x


)
+ ϕ

(
x


, –
x


,
x


)
()
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for all x ∈ X. By using a similar argument, we can infer that

d∞
(

f (x), nf
(

x
n

))
≤ 



n∑
i=

iϕ

(
x
i ,

x
i , –

x
i

)
+




n∑
i=

iϕ

(
x
i , –

x
i ,

x
i

)
()

for all x ∈ X and n ∈N. Here we claim that the sequence {–jnf (jnx)} is a Cauchy sequence
in the complete metric space (FKC(Y ), d∞). Indeed, it follows from () and () that

d∞
(
–j(n+m)f

(
j(n+m)x

)
, –jmf

(
jmx

))
= –jmd∞

(
–jnf

(
jn · jmx

)
, f

(
jmx

))

≤
⎧⎨
⎩


m (

∑n–
i=

ϕ(i+mx,–i+mx,i+mx)
·i +

∑n–
i=

ϕ(i+mx,i+mx,–i+mx)
i+ ), j = ,



∑n

i= i+mϕ( x
i+m , x

i+m , – x
i+m ) + 


∑n

i= i+m+ϕ( x
i+m , – x

i+m , x
i ), j = –

for all x ∈ X and for all n, m ∈ N. When j = , it is obvious that the last expression tends
to zero as m → ∞. When j = –, we can infer from the condition () that the preced-
ing expression also tends to zero as m → ∞. Thus, we have proved that the sequence
{–jnf (jnx)} is Cauchy. By the completeness of FKC(Y ), we can define

Q(x) = lim
n→∞ –jnf

(
jnx

)

for all x ∈ X.
Now we show that Q satisfies (). Replacing x, y, z in () by jnx, jny, jnz, respectively,

and dividing both sides by jn, we can obtain

–jnd∞
(

f
(
jn(x – z)

) ⊕ f
(
jn(y – z)

)
,




f
(
jn(x – y)

) ⊕ f
(

jn
(

z –
x + y



)))

≤ –jnϕ
(
jnx, jny, jnz

)
.

Taking the limit in the preceding expression, it can easily be seen that Q satisfies () since
the right hand side tends to zero as n → ∞.

By letting n → ∞ in () and (), we can infer that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩


�()(x, –x, x) + 

�()(x, x, –x), j = ,

�(–)(x, –x, x) + 

�(–)(x, x, –x), j = –
()

for all x ∈ X.
Let us prove the uniqueness. Let Q′ be another Appolonius type quadratic fuzzy set-

valued mapping satisfying the inequality (). Since Q(jnx) = jnQ(x), Q′(jnx) = jnQ′(x),
we have

d∞
(
Q(x), Q′(x)

)
= –jnd∞

(
Q

(
jnx

)
, Q′(jnx

))
≤ –jn(d∞

(
Q

(
jnx

)
, f

(
jnx

))
+ d∞

(
f
(
jnx

)
, Q′(jnx

)))

≤ –jn
(



�(j)(jnx, –jnx, jnx

)
+




�(j)(jnx, jnx, –jnx
))

.
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From the condition (), it follows that the last expression tends to zero as n → ∞. Thus,
we conclude that Q(x) ≡ Q′(x). This completes the proof. �

Based on Theorem ., we can obtain the following corollaries.

Corollary . Let j ∈ {–, } be fixed. Suppose that X is a real normed space and p, θ are
positive real numbers with p �= . Assume that the mapping f : X →FKC(Y ) satisfies

d∞
(

f (x – z) ⊕ f (y – z),



f (x – y) ⊕ f
(

z –
x + y



))
≤ θ

(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y ∈ X. Moreover, f () = I in the case j = . Then

Q(x) = lim
n→∞ –jnf

(
jnx

)

exists for each x ∈ X and defines a unique Appolonius type quadratic fuzzy set-valued map-
ping Q : X →FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩

θ‖x‖p

–p , if j = , p < ,
θ‖x‖p

––p , if j = –, p > 

for all x ∈ X.

Remark  In Theorem . and Corollary ., if the fuzzy set-valued mapping f degen-
erates into a single-valued mapping, then the supremum metric d∞ will reduce to the
ordinary metric between two points. Thus, these results can be viewed as an extension of
the main results obtained by Jun and Kim [].

Corollary . Let j ∈ {–, } be fixed. Suppose that X is a real normed space and p, θ are
positive real numbers with p �= 

 . Assume that the mapping f : X →FKC(Y ) satisfies

d∞
(

f (x – z) ⊕ f (y – z),



f (x – y) ⊕ f
(

z –
x + y



))
≤ θ‖x‖p‖y‖p‖z‖p

for all x, y ∈ X. Moreover, f () = I in the case j = . Then

Q(x) = lim
n→∞ –jnf

(
jnx

)

exists for each x ∈ X and defines a unique Appolonius type quadratic fuzzy set-valued map-
ping Q : X →FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩

θ‖x‖p

–p , if j = , p < 
 ,

θ‖x‖p

––p , if j = –, p > 


for all x ∈ X.

Corollary . Let j ∈ {–, } be fixed. Suppose that X is a real normed space and p, q, r,
θ are positive real numbers with p + q + r �= . Assume that the mapping f : X → FKC(Y )
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satisfies

d∞
(

f (x – z) ⊕ f (y – z),



f (x – y) ⊕ f
(

z –
x + y



))

≤ θ
(‖x‖p‖y‖q‖z‖r + ‖x‖p+q+r + ‖y‖p+q+r + ‖z‖p+q+r)

for all x, y ∈ X. Moreover, f () = I in the case j = . Then

Q(x) = lim
n→∞ –jnf

(
jnx

)

exists for each x ∈ X and defines a unique Appolonius type quadratic fuzzy set-valued map-
ping Q : X →FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤
⎧⎨
⎩

θ‖x‖p+q+r

–(p+q+r)– , if j = , p + q + r < ,
θ‖x‖p+q+r

–(p+q+r)– , if j = –, p + q + r > 

for all x ∈ X.

Corollary . Let X is a real normed space. For a given θ > , if the mapping f : X →
FKC(Y ) satisfies

d∞
(

f (x – z) ⊕ f (y – z),



f (x – y) ⊕ f
(

z –
x + y



))
≤ θ

for all x, y ∈ X and with f () = I, then

Q(x) = lim
n→∞ –nf

(
nx

)

exists for each x ∈ X and defines a unique Appolonius type quadratic fuzzy set-valued map-
ping Q : X →FKC(Y ) such that

d∞
(
f (x), Q(x)

) ≤ θ

for all x ∈ X.
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