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1 Introduction
Assuming that f,g € L*(R,), |If]l = {/;"f*() dx)? > 0, lgll > 0, we have the following
Hilbert integral inequality (cf [1]):

/ f T8O 4 gl v
0 0 x+y

where the constant factor 7 is best possible. If a = {a,}%%,, b = {b,}°, € 2, |la|| =

> a2)3 >0, ||b|| > 0, then we have the following analogous discrete Hilbert inequality:

n=1"n

mbn

<7 |lalllbl, (2)

2
gk
N
+
X

with the same best constant factor 7. Inequalities (1) and (2) are important in analysis and
its applications (cf. [2—4]).

In 1998, by introducing an independent parameter A € (0,1], Yang [5] gave an extension
of (1). For generalizing the results from [5], Yang [6] gave some best extensions of (1) and
(2):Ifp>1, 1% + % =1, M +A2 = A, ki (%, y) is a non-negative homogeneous function of degree
- satisfying k(A1) = [3° ku(t, D)eM171 de € Ry, ¢(x) = 22172071, () = x40-2271 f (> 0) €
Lys®.) = (I s = U SO @I dx}? < 00}, g (= 0) € Ly (R.), and [l gl >
0, then

/0 fo o (6 9) (0)g0) ddy < KO po gl g 3)
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where the constant factor k(1) is best possible. Moreover if the value of k; (x, y) is finite and

ki (, y)x*171 (ky (%, 9)y*271) is decreasing for x > 0 (y > 0), then for a,,, b, > 0, a = {a,,}5>, €
1

Ly = {alllallpg = {d oy ¢(M)]anl?}? < oo}, and b = {b,}32) € lgy, lallpgs [1bllgy > 0, we

have

oo oo
YD kilmmanb, <k(a)lalpglblgy, (4)

m=1 n=1

where the constant k(1) is still best value. Clearly, forp =g =2, 1 =1, ki(x,y) = afy, A=
Ay = %, (3) reduces to (1), while (4) reduces to (2). The reverses of (3) and (4) as well as the
equivalent forms are also considered by [6].

Some other results about integral and discrete Hilbert-type inequalities can be found
in [7-15]. On half-discrete Hilbert-type inequalities with the general non-homogeneous
kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove
that the constant factors are best possible. In 2005, Yang [16] gave a result with the kernel
m by introducing a variable and proved that the constant factor is best possible. Very
recently, Yang [17] and [18] gave the following half-discrete reverse Hilbert inequality with
best constant factor: For 0 < p < 1, }7 + é =LA >0,0<A <L, A1+ A=A, 0,(x) = O(x%) €

(0,1), $() = (1 — 63 (x))a? =),

a
G +”n)k dx > B(Ay, M) If Nl 311l g, - ()

[ e 3

n=1

In this paper, by means of weight functions and the improved Euler-Maclaurin summa-

tion formula, a more accurate half-discrete reverse Hilbert-type inequality with the kernel
(min{L (x-y)(n-m)})P
(max{L(x-y)(n-n)})¥
lent forms, the dual forms as well as some relating homogeneous cases are also considered.

similar to (5) and a best constant factor is given. Moreover, some equiva-

2 Some lemmas
Lemmal Ifny €N, s> no, g1(y) (v € [n0,5)), £2(y) (y € [s,00)) are continuous decreasing
functions satisfying g1(no) — g1(s — 0) + £2(s) > 0, g2(00) = 0, define a function g(y) as follows:

gl(y); ye [’/IO!S)i
= 6
£0) {gz(y), y € [s,00). (©)

Then there exists ¢ € [0,1], such that

_{l [€1(10) + £(ga(s) - a(s - 0)) ]

</ p(gy) dy < %(gZ(S)_gl(s_o))> @)

no

where p(y) =y—[y] - % is the Bernoulli function of the first order. In particular, for g1(y) = 0,
y € [nog,s), we have gy(s) > 0 and

-1 00 1
T2 < [ p0e0)dy< 5oy ®
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for g, (y) =0,y € [s,00), if @1(s — 0) > 0, then it follows g1(ng) > 0 and

_?lgl(no) </ P& (y)dy <O0. )

0

Proof Define a continuous decreasing function g(y) as follows:

=~y .. ] 810) + &) -gi(s-0), y€lno,s),
£0): {gz()/), y € [s,00).

Then it follows that

[ ooemrar= [ poorar+ [~ pgoras

no no s

_ f POV V) - 2:(5) + g1(s - 0)) dy + f P0E0) dy

- / POED) dy - (@:(5) - g(s - 0)) / ) dy,

no no

/gp(wdy:f:]p(y)dwf[;pwy:f[;(y—[s]—%)dy

2
- %[4(5—[5] - %) —1] - % (e €[0,1]).

Since g(no) = g1(no) + g2(s) — g1(s — 0) > 0, g(y) is a non-constant continuous decreasing
function with g(co) = g,(c0) = 0, by the improved Euler-Maclaurin summation formula
(cf [6], Theorem 2.2.2), it follows that

5 (@00) + 6 -6 -0) = T2 < [ pwFIdy <o,

and then in view of the above results and by simple calculation, we have (7). O

Lemma2 [fO0<a+8<2,yeRn<1- %(1+ /3 + ﬁ),andw(m) and w (x) are weight
functions given by

% (min{L, (x - y)(n - mMDE (1) T
= dx, N,
) /y (max(L, (= )T- DV ey "
X (min{L, (x— ) - NP (x-y)T
= , s 10
G A Y reveei e e T 1o
then we have
0< O[jﬁ(l—e(ac))<zzr(x)<a)(n): ﬁ, (11)
1 LS —y <L
9(96) = 5(1 1_ n) (xa+ﬁ y) ’ a+f 0<x VIS -’ (12)
1-30-n)"2@x-y)" 2, x-y>r;.

Page3of 13
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Proof Substituting ¢ = (x — y)(n — n) in (10), and by simple calculation, we have

[e'e) 1.t 1 o 00 o 4
w(n) = / (min{1, ¢)” £ / T / ot gy =
o (max{l,z})* 0 1 a+p

For fixed x > y, we find

ap (min{l, (& - y)(y - n)})" ()
(max{1, (x - y)(y — n)}*

:x y)7T (y nTﬂ‘l, N<y<n+ L,
=y ()T, Y=+

hx,y):=(x-y)

a+B

o asp_y
TR L) (x - )/)2()’ 7 n<y<n+ 2,
g (D) T -T2,y L,

o0 —=p)y-n) [*° (min{L,¢})? op 4
Hie, ) dy =20 n)/ (min{ R '
/77 )y o (max(Lo)e atp

By the Euler-Maclaurin summation formula (cf. [6]), it follows that

00 00 1 00 ,
)= Y i) - f1 W) dy + Shs 1) + [1 POV (x,3) dy
o 4
- /ﬂ b ) dy = R(9) = =~ R(),

1 00
R = [ hwy)dy= hw )= [ o0M ) dy (13)
n

(i) ForO<x—-y < ﬁ, we obtain —%h(x, 1) = —%(x— y)#(l - n)%‘l, and

1 a+ 1 C!+ 2
[ Hendy=-nF [[o-n¥a -%( '
n n

+

Setting ) i= -} (1), wherefrom 1) = (1 - By - y) T (- ) T2, () = (4L

Dx—y) % (- n)’wz
=)0
-0
-y

1
g2<n+x—y> —g1<<'7+x
= (a;ﬁ +1)(x—y)2— (1—#)(96—)/)2

=(@+Ba-y)>0,

then by (7), we find

- [ s nds= [ et
1 1

-1 1
> —[gl(l) +gz<n +
8 X —
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_ —_1[<1_ M)(x_ NF Q- 2k @+ pa- y)z}

8 2
> g[(l—“;’g)a—nﬁ 2 y) Y

In view of (11) and the above results, since for n <1 — %(1 +./3+ ﬁ), namely 1 —n >

%(1 +./3+ ﬁ), it follows that

2 a+f a+f 1
1-n)72 (x- 20— —
o +/3( n2 (x-y) 5

1 at, a+
- g(1+ “;ﬂ)(l—n)f-z(x—y)f

a+f 1

R(x) > w—1) -y

a+f

_ [2(1—77)2_(1—n)_2+0t+ﬂ] w-y) 2
L a+p 2 16 Ja_p4 "~

(ii) Forx — y > ﬁ, we obtain —%h(x,l) = —%(x— y)‘#(l - n)‘#‘l, and

: " w-y)F N O
/h(x,y)dy=/ Wdy-'—/ . —&ﬁldy
n n (y-n'z ey 0 -m) 2T
4 a+p a+f
= — 1=n)""2 (x—y) 2
oy a+ﬂ( n 2 (x-vy)

_atp _atf
4(1-n) 2 _wsp 2(1-n)" 2
— -y -

o+ oa+f

2 _asB _asp
=——@0-n"2 x-y) z.
o+ p

a+f

x—y)y 2

v

Sincefory>1,y—-n> ﬁ, by the improved Euler-Maclaurin summation formula (cf. [6]),
it follows that

o wrf
- [ romendy-(“

>—1(‘“ﬂ +1>(x—y)-%1—n)-#-2.

+ 1) (x - y)‘# /1 Py - n)‘#‘2 dy

8 2

In view of (13) and the above results, for 1 —n > %(1 +./3+ ﬁ), we find

o+,

=

atp 1 _at atp
7 _(1— y 7
;1=

.

R(x) > I-n)""72 (x-y) (x—y)

2
a+ B

~s(5Ea)amn e

_[2(1—77)2 1-7 2+a+ﬁ}(x—y)‘”5ﬂ
- a+p 2 16 (l_n)2+#_
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Hence for x > y, we have R(x) > 0, and then @ (x) < w(n) = ﬁ.

On the other-hand, since /(x, y) is decreasing with respect to y > n, we find

< (min{l, (x— 1)y - MNP (x—y)“T"
T /1 (max{L, (x = y)(y = mMD* (y — y)1-*7

=(x— — o° i ly t b L 4
t=a-)-1) / (minlb )7 w1 gy 2 (1-0(),
(1-n)(x—y) (max{L, £})* a+p

_ — : a-p
where 6(x) := % fo(l me=y) (([‘::)’({{lli}}))f, t2 dte(0,1).

(i()ForO<x—y < ﬁ, we obtain

(1-n)(x-y)

o+ a-p 1 a+f a+p

0(x) = 4’3] T =0T )T
0

(ii) Forx —y > ﬁ, it follows that

1 A-n)(x-v)
o + a-p a-p
Q(x)ZTIB[/ P _ldt+/ [ ‘ldt:|
0 1

1 _asp _atp
S1- - oy
2
Hence we have (11) and (12). O

Lemma 3 Let the assumptions of Lemma 2 be fulfilled and additionally, let 0 < p <1 or

p<0, }% + % =1,a,>0,n €N, f(x) be a non-negative measurable function in (y,00). Then
we have the following inequalities:

1

P ==
> (af ﬂ)%{ /y ww(x)(x—ywl-“ﬁ")-v"(x)dx}’%, (14)
| [ st e v |

Proof For 0 < p <1, setting k(x, n) := %,
[19]) and (11), it follows that

© (min{1, (x — y)(n — n)})? ]p
d
|:/y (max{L, (x — y)(n — U)})“f(x) x

[ (x—y)-2")a (n—y)1= 2 p
) Uy k(x’n)[(n - n)ﬂ—%/pf(x)] [ (x = )=V ] dx}

by the reverse Holder inequality (cf

Page 6 of 13
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n—-n)= 7"
o =5 gy yp-l
X {/ k( ,n)(n e = dx}
y (x—y)2

o« o0 —)1-5E) -1
= {w(m)(n — p)10=5"-11P7! / k(x, ) ("(y)—af"(x) dx
Y

4 \71 e 1-22)p-1)
=(d+ﬁ) (- ) ‘”/ kG, (’“n”—fp(x)dx.

(n-n)y—2

Then by the Lebesgue term by term integration theorem (c¢f. [20]), we have

]2( . )
oa+ B
4 oo X x J/) p
= Xk,—————J d
<a+ﬂ> / el o) (n—n)l 2 S x}

=< : )6 /Oow(x)(x—V)’”(l'¥)'lf”(x)dx}i,
Y

oa+p

=

)p-1)

3] 00 _ _#
Z/kmﬂiﬂjTT#mm}
n=1 Y 2

B

Q=

a
(m—n)y—2
1

1-42)p-1)

o=

and then (14) follows. By the reverse Holder inequality, for g < 0, we have

q a=p f q
3 s (=) () -Tﬂpan
|:n2=1: k(x, n)an:| = {;k(x, n)|: = ] |: 7 ] }

(n-n) (x—y)d-

00 =G ) 0 _ -5
S{Zk(x,n)(xy)—w} Zk(x’ ( (m—mp)t— 20

pr (n-n)t2 (-7
g1 _ a-%E)g-1)
= 7[15(96@_1 Zk(x,n)—(n ) —5 %
(x—y) 2 e x—-v)

By the Lebesgue term by term integration theorem, we have

1
00 & 1-%2) - q
n— 2
L > / Zk(x,n)(n)ﬁddx}
4 n=1 - Tz

(x—y)
oo ) ( 77)1 (g-1) q
= k(x, 9d
Zlfy o G x}

and in view of (11), inequality (15) follows. For p < 0, by the same way we still have (14)

and (15).

Lemma 4 Let the assumptions of Lemma 2 be fulfilled and additionally, let 0 < p < 1, 117 +
~ aB e ~
é =1,0<e< g(a + B). Setting f(x) = (x—y) 2 *» Lxe (y,y +1);f(x) =0,x € [y +1,00),

Page 7 of 13
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~ ap_e_
andd,=mn-n)2 4 1 neN, then we have

. & [ (min{1, (x — y)(n — n)})ﬁ -
= ” 4
;a /): (max{l, (x — y)(n _ n)})af(x) X

1 (x+p) e 1
2 ) 6
e (P -y [(1—77)8“ ' (l—n)‘] 1)

= { / Ty lf"(x)dx} 3 =yt
14 n=1

1 1 £ 1 %
> 5 (1-eom)? { =nyt " T=ny } "

Q=

Proof We find
& ap_e_q (V1 (min{l, (x — y)(n—n)})? af e
I= —n) 2 4 ~ £t
> - / (max(L (e — 7)) (x-) x

- wp_ey [ (minfl, (x—y)(n—n)})’ ebBiey
— 2 T q _ 2 "p T d
< Z‘” ) / (max(L, &= )= ) *

_ 1
- a+ﬁ (1 na+1 - (I’l 77)as+1

a+;3)2 ()2 (1 n)g+1 / ()/ n)s+1i|

1 (a+pB) [ & .\ 1 }
Ce(le-cpla-net T a-nr )

and then (16) is valid. We obtain

1

e [ L e e |
H{/y [1—5(1—77) (=) ](x—y) dx}

[ 1- 7])Hl Z )s+1]

n=2
. (1 ¥ _dy |7
Ty
1 ; & L)
- 2(1—80(”)"{(1-:7)“1 ' (1—n>8}

and so (17) is valid.

3 Main results
We introduce the functions

D)= (x -y 2,

W(n) = (n— )11 (neN),
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wherefrom [®(x)]'7 = (x — )/)‘1_2_’1 (D))= 1-0(x)(x—y)? 2 L and [¥(n)]"? =
(n -2,

Theorem1 I[fO<a+pB <2,y €R, n<1—°”ﬂ(1+ 3+ ) O<p<l, —+ —lfx) ay >
0,f€L,z(y,00), a={an;2; €lyw, Ifl,5 >0 and ||a||q,\p > 0, then we have the following
equivalent inequalities:

— [ (min{L,(x - y)(n - n)})*
I:= " d
= | e %
[ o S minfl, (e - y)(n - n))a, 4
O e 4 g Vel o)

[ o[ [ (min{L, (=) - ))Pf@) |, TP by )
' :Z[\I'(n)] [/y (max{L, (x — y)(n —n)})* dx} } > mllfllp,q» 19)

n=1

(][ 52 (intL =) mYa, ] '
{/y (o] [ (max(1, G 7)o~ )" } d’“} > gl GO

where the constant m is the best possible in the above inequalities.

Proof The two expressions for I in (18) follow from Lebesgue’s term by term integration
theorem. By (14) and (11), we have (19). By the reverse Holder inequality, we have

[e¢] 00 B 1
IZZ[ )/ (min{1, (x — y)(n - n)})’f(x )dx][\llq(n)an]zjllallq,q,.

(max{1, (x — y)(n - n)})

n=

Then by (19), we have (18). On the other-hand, assume that (18) is valid. Setting

_ [\p(n)]lp[ /°° (min(1, (x - )01 = )Df )
Y

-1
d , N,
(max{L, (x— y)(n - ) x} e

it follows that /7! = ||a||,w. By (14), we find J > 0. If J = oo, then (19) is trivially valid; if
J < 00, then by (18), we have

4
lallfy =71® =y =1> — o |Lf||p¢||a||qw,

therefore ||a||q\1, J> Mﬁ If1l,,3, that is, (19) is equivalent to (18). On the other-hand, by
(11) we have [ (x)]"7 > (1 - 6(x))*~ ‘f(af )14. Then in view of (15), we have (20). By the
Holder inequality, we find

Y B - (min{l, (x - y)(n—n)})’ a, .
1__/]/ [ G @) |:q> ( )HX:: (max{1, (x - y)(n—n)})* :|dx2|[f||p'¢L.

Then by (20), we have (18). On the other-hand, assume that (18) is valid. Setting

g[S (min{L - ) - )P, |
:: ¢ lq ) ) b
fe=[o6)] [Zl (max(L, (x— ) - m)* } *elre)

Page9of 13


http://www.journalofinequalitiesandapplications.com/content/2014/1/96

Yang and Chen Journal of Inequalities and Applications 2014, 2014:96 Page 10 0of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/96

then L77! = If1l,,3- By (15), we find L > 0. If L = 0o, then (20) is trivially valid; if L < 0o, then
by (18), we have

4
P _gplg-1) _ ~
I, 5 = L I> w P W 1lp,5 llallgws

therefore |[f||£;; =L> ﬁ llallgw, that is, (20) is equivalent to (18). Hence, (18), (19), and
(20) are equivalent.

If there exists a positive number k (> ﬁ), such that (18) is valid as we replace ﬁ with
k, then in particular, it follows that I > kH. In view of (16) and (17), we have

(@ +p) e 1 e LI
/ - p b
Sy (52 [(1—77)“1 ' (1—n>8] > k(1-e0W) {(1—77)“1 ' <1—n>6}

[
p

and i >k (¢ — 0%). Hence k = i is the best value of (18)
By the equivalence of the 1nequaht1es, the constant factor 1n (19) and (20) is the best
possible. O

For p < 0, we have the dual forms of (18), (19), and (20) as follows:

Theorem2 IfO<a+8 <2,y €R, n<1—M(1+ /3+ﬁ)p<0 1 l=1f(x) a, >0,
feLl,oly,00), a={ann €lgw, Iflpe >0 and ||allgeu > 0, then we have the following

equivalent inequalities:

oo

00 B
an/ (min{1, (x — ) (n - n)}) £(x) dx x> —— 4 |[f||p¢||a||q\p, (21)
Y

(max{L, (x — y)(m — )}

n=1

= 1p[ [ (minfL, (x — y)(m - n)})Ff(x) ) a
{ZM”)] Uy (max (L, (e — )01 - n)])" dx” > arp oo 22

n=1

00 - (mm{1 C-p-ma ] |7 4
Uy [#6] L_l (max(L, (x— y)(n — )" ]d"} Zavp ey 29

where the constant ﬁ is the best possible in the above inequalities.

Proof By means of Lemma 3 and the same way, we can prove that (21), (22), and (23) are
valid and equivalent. For 0<eltl 5 (@ + B), setting f x) and @, as Lemma 4, if there exists a
positive number k (> - o ) such that (21) is valid as we replace -5 —4_ with k, then in partic-

ular, by (16), it follows that

+p

a+f |: & s 1 ]
(S22 — (2L A-met - A-n)F

£
p

+1 5 | > %
>87>8k{/y (- y)‘“olx} iz(”‘ 177 M}

n=

”k( > {/ 0- n} =k (l—ln)s}%’
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and ﬁ >k (¢ — 0%). Hence k = ﬁ is the best value of (21). By the equivalence of the
inequalities, the constant factor -2~ in (21) and (22) is the best possible. O

a+f

Remark (i) Since we find

4 _
min {1_a+,3<1+ 3+ )}:3 \/§=0.19*>0,
8 a+ B

O<a+B<2 4

then for n =y = 0 in (18), we have

1 @B

%7, O<x <1,
eo(x): 17a+ﬁ

1—§x 2, x>1,

and the following inequality:

S © (min{1,xn})?
n=1 /0 Mf(x) dx
T AR T {21: nq<1-‘%>—1a2} ~ (24)

Hence (18) is a more accurate inequality of (24).
(ii) For 8=01in (18), wehave 0 < <2,y e R, n <1-g(1+,/3 + %),

1 4 1
emw==§w_yp, Ocx-y =iy

1 -2 1
—alk-y)7, x-y>

and the following inequality:

= o0 (%) dx
;"”fy (max{L, (x— ) (n — n)})*

> g { /y " (L= 6w) - D) dx} ’ {Zl(n - n)q“‘%”az} ; (25)

Q=

fora:Oin(lS),wehave0<,B§2,yeR,n§1—§(1+ /3+%),

B
—5le=y)72, x-y >

g
9ﬁ@={%@_yﬁ, O<xor =15
1-n

and the following inequality:

> [ (min1, - y)n- ) "f) o

o A AT {Dn - n>q<l+%>-laz} S e
14

n=1
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for=a=2in(18), wehave 0<A <1,y €eR,n<1-%(1+,/3+2),

=)t 0<x—y <5
1

93(95)2 1 -y
LA DRI b B wrr

and the following inequality:

I min{L, (x —y)(n-n)} 1"
Zlan[/ |:maX{1, (x_y)(n_n)}] fx)dx

n=

S q

A [T a- s prireas) TS - nea @7
14

n=1

(iii) Setting y = - + ¥, g = (y = V)* P2 (L + ), 0() = (y — =T and §(y) =
¥ y-y
1-o( }% +¥))¢(y) in (18), by simplification, we obtain the following inequality with the

homogeneous kernel:

4
gW)dy > o1 g &lpzllallge. (28)

/"" (min{y — y,n - n})P
y +B

= (max{y — y,n— )"
It is evident that (28) is equivalent to (18), and then the same constant factor ﬁ in (28)
is still the best possible. In the same way, we can find the following inequalities equivalent
to (28) with the same best possible constant factor ﬁ:

[e¢]

Z[\Il(n)]l_P [/OO (mln{y -y,n— ﬁ})ﬁg()’) dy]p
Y

— (max{y —y,n—n}H)*

AN

4
> m”f”p,% (29)

o ~ 1-¢q - (mln{y —-y,n— U})ﬁﬂn
/y [#0] ; (max(y— 11— n))" 4 B lallgw. (30)

(iv) Applying the same way in Theorem 2, we still can obtain some particular dual forms
as (i) and (ii) and some equivalent inequalities similar to (28), (29), and (30).
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