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Abstract
Let n and k be positive integers; an operator T ∈ B(H) is called a k-quasi-class A(n)
operator if T∗k(|T1+n| 2

1+n – |T |2)Tk ≥ 0, which is a common generalization of class A
and class A(n) operators. In this paper, firstly we prove some basic structural
properties of this class of operators, showing that if T is a k-quasi-class A(n) operator,
then the nonzero points of its point spectrum and joint point spectrum are identical,
the eigen-spaces corresponding to distinct eigenvalues of T are mutually orthogonal,
the nonzero points of its approximate point spectrum and joint approximate point
spectrum are identical; secondly we consider the tensor products for k-quasi-class
A(n) operators, giving a necessary and sufficient condition for T ⊗ S to be a
k-quasi-class A(n) operator when T and S are both nonzero operators.
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1 Introduction
LetH be a separable complexHilbert space and C be the set of complex numbers. Let B(H)
denote the C∗-algebra of all bounded linear operators acting onH. Recall that T ∈ B(H) is
called p-hyponormal for p >  if (T∗T)p – (TT∗)p ≥  []; when p = , T is called hyponor-
mal. T is called paranormal if ‖Tx‖ ≤ ‖Tx‖‖x‖ for all x ∈H [, ]. T is called normaloid
if ‖Tn‖ = ‖T‖n for all n ∈ N (equivalently, ‖T‖ = r(T), the spectral radius of T ). In or-
der to discuss the relations between paranormal and p-hyponormal and log-hyponormal
operators (T is invertible and logT∗T ≥ logTT∗), Furuta et al. [] introduced a very in-
teresting class of operators: class A defined by |T|– |T | ≥ , where |T | = (T∗T)  , which
is called the absolute value of T and they showed that class A is a subclass of paranormal
and contains p-hyponormal and log-hyponormal operators. Recently Yuan and Gao []
introduced class A(n) (i.e., |T +n| 

+n ≥ |T |) operators and n-paranormal operators (i.e.,
‖T+nx‖ 

+n ≥ ‖Tx‖ for every unit vector x ∈ H) for some positive integer n. For more in-
teresting properties on class A(n) and n-paranormal operators, see [–].
Let H, K be complex Hilbert spaces and H ⊗ K the tensor product of H, K; i.e., the

completion of the algebraic tensor product of H, K with the inner product 〈x ⊗ y,x ⊗
y〉 = 〈x,x〉〈y, y〉 for x,x ∈H, y, y ∈K. Let T ∈ B(H) and S ∈ B(K).T ⊗S ∈ B(H⊗K)
denotes the tensor product of T and S; i.e., (T ⊗ S)(x⊗ y) = Tx⊗ Sy for x ∈H, y ∈K.

Definition . T ∈ B(H) is called a k-quasi-classA(n) operator for positive integers n and
k if

T∗k(∣∣T +n∣∣ 
+n – |T |)Tk ≥ .
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In general, the following implications hold:

p-hyponormal ⊆ class A⊆ class A(n)⊆ k-quasi-class A(n).

In this paper, firstly we prove some basic structural properties of this class of opera-
tors, showing that if T is a k-quasi-class A(n) operator, then the nonzero points of its
point spectrum and joint point spectrum are identical, the eigen-spaces corresponding
to distinct eigenvalues of T are mutually orthogonal, the nonzero points of its approx-
imate point spectrum and joint approximate point spectrum are identical; secondly we
consider the tensor products for k-quasi-class A(n) operators, giving a necessary and suf-
ficient condition for T ⊗ S to be a k-quasi-class A(n) operator when T and S are both
nonzero operators.

2 The basic properties for k-quasi-class A(n) operators
In the following lemma, we study the matrix representation of a k-quasi-class A(n) oper-
ator with respect to the direct sum of ran(Tk) and its orthogonal complement.

Lemma . Let T ∈ B(H) be a k-quasi-class A(n) operator for positive integers n and k,
and let T =

( T T
 T

)
on H = ran(Tk) ⊕ kerT∗k be  ×  matrix expression. Assume that

ranTk is not dense, then T is a class A(n) operator on ran(Tk) and Tk
 = . Furthermore,

σ (T) = σ (T)∪ {}.

Proof Consider the matrix representation of T with respect to the decomposition H =
ran(Tk)⊕kerT∗k : T =

( T T
 T

)
. Let P be the orthogonal projection ofH onto ran(Tk). Then

T = TP = PTP. Since T is a k-quasi-class A(n) operator, we have

P
(∣∣T+n∣∣ 

+n – |T |)P ≥ .

Then

∣∣T +n


∣∣ 
+n =

(
(TP)∗(+n)(TP)(+n)

) 
+n =

(
P
∣∣T +n∣∣P) 

+n ≥ P
∣∣T +n∣∣ 

+n P

by Hansen’s inequality []. On the other hand

|T| = T∗
 T = PT∗TP = P|T |P ≤ P

∣∣T +n∣∣ 
+n P.

Hence

∣∣T +n


∣∣ 
+n ≥ |T|.

That is, T is a class A(n) operator on ran(Tk).
For any x = (x,x) ∈H,

〈
Tk
x,x

〉
=

〈
Tk(I – P)x, (I – P)x

〉
=

〈
(I – P)x,T∗k(I – P)x

〉
= ,

which implies Tk
 = .
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Since σ (T)∪G = σ (T)∪σ (T), whereG is the union of the holes in σ (T), which happen
to be a subset of σ (T) ∩ σ (T) by [, Corollary ], σ (T) = , and σ (T) ∩ σ (T) has no
interior points, we have σ (T) = σ (T)∪ {}.
In [], Yuan and Ji introduced (n,k)-quasiparanormal operators. T ∈ B(H) is called a

(n,k)-quasiparanormal operator for positive integers n and k if

∥∥T +n(Tkx
)∥∥ 

+n
∥∥Tkx

∥∥ n
+n ≥ ∥∥T(

Tkx
)∥∥

for x ∈H. �

In the following we give the relations between (n,k)-quasiparanormal and k-quasi-class
A(n) operators.

Theorem . Let T be a k-quasi-class A(n) operator for positive integers n and k. Then T
is a (n,k)-quasiparanormal operator.

To give a proof of Theorem ., the following famous inequality is needed.

Lemma . (Hölder-McCarthy’s inequality []) Let A ≥ . Then the following assertions
hold:
() 〈Arx,x〉 ≥ 〈Ax,x〉r‖x‖(–r) for r >  and all x ∈H.
() 〈Arx,x〉 ≤ 〈Ax,x〉r‖x ‖(–r) for r ∈ [, ] and all x ∈H.

Proof of Theorem . Suppose that T is k-quasi-class A(n) operator. Then

T∗k(∣∣T +n∣∣ 
+n – |T |)Tk ≥ .

Let x ∈H. Then by Hölder-McCarthy’s inequality, we have

∥∥Tk+x
∥∥ =

〈
T∗k|T |Tkx,x

〉
≤ 〈

T∗k∣∣T +n∣∣ 
+n Tkx,x

〉
=

〈(
T∗(+n)T +n) 

+n Tkx,Tkx
〉

≤ 〈
T∗(+n)T +nTkx,Tkx

〉 
+n

∥∥Tkx
∥∥(– 

+n )

=
∥∥T +n(Tkx

)∥∥ 
+n

∥∥Tkx
∥∥ n

n+ .

So we have

∥∥Tk+x
∥∥ ≤ ∥∥T +n(Tkx

)∥∥ 
+n

∥∥Tkx
∥∥ n

n+ ,

hence T is a (n,k)-quasiparanormal operator. �

Remark We give an example which is (n,k)-quasiparanormal, but not k-quasi-class A(n).

Example . LetT =
(  
 

) ∈ B(l⊕ l). ThenT is (n,k)-quasiparanormal, but not k-quasi-
class A(n).

http://www.journalofinequalitiesandapplications.com/content/2014/1/91


Li and Gao Journal of Inequalities and Applications 2014, 2014:91 Page 4 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/91

By simple calculation we have

T∗k∣∣T +n∣∣ 
+n Tk =

(
 

+n 
 

)
and T∗k|T |Tk =

(
 
 

)
.

Hence T is not k-quasi-class A(n). However, for all μ > ,

T∗k(T∗(+n)T +n – ( + n)μnT∗T + nμ+n)Tk =

(
[ – ( + n)μn + nμ+n] 

 

)
.

By arithmetic-geometric mean inequality, we have

 – ( + n)μn + nμ+n ≥  (.)

for all μ > . Therefore T is (n,k)-quasiparanormal by [, Lemma .].

Theorem . Let T ∈ B(H) be a k-quasi-class A(n) operator for positive integers k and n.
If M ⊂ H is an invariant subspace of T , then the restriction T |M is also a k-quasi-class
A(n) operator.

Proof Let P be the orthogonal projection of H onto M, and let T = T |M. Then TkP =
PTkP and T = PTP|M. Since T is a k-quasi-class A(n) operator, we have

PT∗k∣∣Tn+∣∣ 
n+TkP ≥ PT∗k|T |TkP.

Since

PT∗k∣∣Tn+∣∣ 
n+TkP = PT∗kP

∣∣Tn+∣∣ 
n+ PTkP

= PT∗kP
(
T∗(n+)Tn+) 

n+ PTkP

≤ PT∗k(PT∗(n+)Tn+P
) 
n+TkP

= PT∗k((PT∗P
)n+(PTP)n+) 

n+TkP

=

(
T∗k
 |Tn+

 | 
n+Tk

 
 

)

by Hansen’s inequality and

PT∗k|T |TkP = PT∗kPT∗TPTkP =

(
T∗k
 |T|Tk

 
 

)
,

we have
(
T∗k
 |Tn+

 | 
n+Tk

 
 

)
≥ PT∗k∣∣Tn+∣∣ 

n+TkP ≥ PT∗k|T |TkP =

(
T∗k
 |T|Tk

 
 

)
,

that is, T is also a k-quasi-class A(n) operator. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/91


Li and Gao Journal of Inequalities and Applications 2014, 2014:91 Page 5 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/91

In the following, we shall show that ifT is a k-quasi-classA(n) operator, then the nonzero
points of its point spectrum and joint point spectrum are identical, the eigen-spaces cor-
responding to distinct eigenvalues of T are mutually orthogonal, the nonzero points of its
approximate point spectrum and joint approximate point spectrum are identical.

Theorem . Let T ∈ B(H) be a k-quasi-class A(n) operator for positive integers n and k.
If λ �=  and (T – λ)x =  for some x ∈H, then (T – λ)∗x = .

Proof We may assume that x �= . Let M be a span of {x}. ThenM is an invariant sub-
space of T and

T =

(
λ T

 T

)
onH =M ⊕M⊥

 . (.)

Let P be the orthogonal projection ofH ontoM. It suffices to show that T =  in (.).
Since T is a k-quasi-class A(n) operator and x = Tk( x

λk
) ∈ ran(Tk), we have

P
(∣∣Tn+∣∣ 

n+ – |T |)P ≥ . (.)

We remark

P
∣∣T∣∣P = PT∗T∗TTP = PT∗PT∗TPTP =

(
|λ| 
 

)
.

Then by Hansen’s inequality and (.), we have
(

|λ| 
 

)
=

(
P
(∣∣Tn+∣∣ 

n+
)n+P) 

n+ ≥ P
∣∣Tn+∣∣ 

n+ P ≥ P|T |P = PT∗TP =

(
|λ| 
 

)
.

Hence we may write

∣∣Tn+∣∣ 
n+ =

(
|λ| A
A∗ B

)
.

We have(
|λ| 
 

)
=

(
P
∣∣Tn+∣∣P) 

n+ ≥ P
∣∣Tn+∣∣ 

n+
∣∣Tn+∣∣ 

n+ P

=

(
 
 

)(
|λ| A
A∗ B

)(
|λ| A
A∗ B

)(
 
 

)

=

(
|λ| +AA∗ 

 

)
.

This implies A =  and |Tn+| = ( |λ|(n+) 
 Bn+

)
. On the other hand, by simple calculation

we have

∣∣Tn+∣∣ =
(

|λ|(n+) λ
n+ ∑n

i= λiTTn–i


λn+(
∑n

i= λiTTn–i
 )∗ |∑n

i= λiTTn–i
 | + |Tn+

 |
)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/91


Li and Gao Journal of Inequalities and Applications 2014, 2014:91 Page 6 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/91

Hence

n∑
i=

λiTTn–i
 =  (.)

and

B =
∣∣Tn+


∣∣ 
n+ .

Since T is a k-quasi-class A(n) operator, by simple calculation we have

 ≤ T∗k(∣∣Tn+∣∣ 
n+ – |T |)Tk

=

(
 –λ

k+TTk


–λk+T∗k
 T∗

 D

)
,

whereD = –λT∗k
 T∗

 (
∑k–

i= λiTTk––i
 ) + [–λ(

∑k–
i= λiTTk––i

 )∗T +T∗k
 (|Tn+

 | 
n+ – |T| –

|T|)]Tk
 is a positive operator. Recall that

( X Y
Y∗ Z

) ≥  if and only if X,Z ≥  and Y =
X 

WZ 
 for some contractionW . Thus we have

TTk
 =  (.)

by λ �= . By (.) and (.), we have T = . This completes the proof. �

Corollary . Let T ∈ B(H) be a k-quasi-class A(n) operator for positive integers n and k.
Then the following assertions hold:
() σjp(T)\{} = σp(T)\{}.
() If (T – λ)x = , (T –μ)y = , and λ �= μ, then 〈x, y〉 = .

Proof () Clearly by Theorem ..
() Without loss of generality, we assume μ �= . Then we have (T – μ)∗y =  by Theo-

rem ..
Thus we have μ〈x, y〉 = 〈x,T∗y〉 = 〈Tx, y〉 = λ〈x, y〉. Since λ �= μ, 〈x, y〉 = . �

Theorem . Let T ∈ B(H) be a k-quasi-class A(n) operator for positive integers n and k.
Then σja(T)\{} = σa(T)\{}.

To prove Theorem ., we need the following auxiliary results.

Lemma . (see []) LetH be a complex Hilbert space. Then there exists a Hilbert space
K such thatH ⊂K and a map ϕ : B(H) −→ B(K) such that:
() ϕ is a faithful ∗-representation of the algebra B(H) on K.
() ϕ(A) ≥  for any A≥  in B(H).
() σa(T) = σa(ϕ(T)) = σp(ϕ(T)) for any T ∈ B(H).

Lemma . (see []) Let ϕ : B(H) −→ B(K) be Berberian’s faithful ∗-representation.
Then σja(T) = σjp(ϕ(T)).

http://www.journalofinequalitiesandapplications.com/content/2014/1/91
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Proof of Theorem . Let ϕ : B(H) −→ B(K) be Berberian’s faithful ∗-representation of
Lemma .. In the following, we shall show that ϕ(T) is also a k-quasi-class A(n) operator
for positive integers n and k. In fact, since T is a k-quasi-class A(n) operator, we have

(
ϕ(T)

)∗k(∣∣(ϕ(T))n+∣∣ 
n+ –

∣∣ϕ(T)∣∣)(ϕ(T))k
= ϕ

(
T∗k(∣∣Tn+∣∣ 

n+ – |T |)Tk) by Lemma .()

≥  by Lemma .().

Hence we have

σa(T)\{} = σa
(
ϕ(T)

)\{} by Lemma .()

= σp
(
ϕ(T)

)\{} by Lemma .()

= σjp
(
ϕ(T)

)\{} by Corollary .()

= σja(T)\{} by Lemma ..

The proof is complete. �

Lemma . (see [, ]) If T satisfies ker(T – λ) ⊆ ker(T – λ)∗ for some complex λ, then
ker(T – λ) = ker(T – λ)n for any positive integer n.

An operator is said to have finite ascent if kerTn = kerTn+ for some positive integer n.

Theorem. Let T ∈ B(H) be a k-quasi-class A(n) operator for positive integers n and k.
Then T – λ has finite ascent for all complex number λ.

Proof By Theorem ., we see that T is a (n,k)-quasiparanormal operator. So T – λ has
finite ascent for all complex number λ by [, Theorem .]. �

3 Tensor products for k-quasi-class A(n) operators
Let T ⊗ S denote the tensor product on the product space H ⊗K for nonzero T ∈ B(H)
and S ∈ B(K). The operation of taking tensor products T ⊗ S preserves many properties
of T ∈ B(H) and S ∈ B(K), but by no means all of them. For example the normaloid prop-
erty is invariant under tensor products, the spectraloid property is not (see [, pp.
and ]); and T ⊗ S is normal if and only if T and S are normal [, ]; however, there
exist paranormal operators T ∈ B(H) and S ∈ B(K) such that T ⊗S is not paranormal [].
Duggal [] showed that for nonzero T ∈ B(H) and S ∈ B(K),T⊗S is p-hyponormal if and
only if T , S are p-hyponormal. This result was extended to p-quasihyponormal operators,
class A operators, ∗-class A operators, log-hyponormal operators and class A(s, t) opera-
tors ((|T∗|t|T |s|T∗|t) t

s+t ≥ |T∗|t , s, t > ) in [–], respectively. The following theorem
gives a necessary and sufficient condition for T ⊗ S to be a k-quasi-class A(n) operator
when T and S are both nonzero operators.

Theorem . Let T ∈ B(H) and S ∈ B(K) be nonzero operators. Then T ⊗ S ∈ B(H ⊗K)
is a k-quasi-class A(n) operator if and only if one of the following assertions holds:

http://www.journalofinequalitiesandapplications.com/content/2014/1/91
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() Tk+ =  or Sk+ = .
() T and S are k-quasi-class A(n) operators.

Proof It is clear that T ⊗ S is a k-quasi-class A(n) operator if and only if

(T ⊗ S)∗k
(∣∣(T ⊗ S)+n

∣∣ 
+n – |T ⊗ S|)(T ⊗ S)k ≥ 

⇐⇒ T∗k(∣∣T +n∣∣ 
+n – |T |)Tk ⊗ S∗k∣∣S+n∣∣ 

+n Sk

+ T∗k|T |Tk ⊗ S∗k(∣∣S+n∣∣ 
+n – |S|)Sk ≥ 

⇐⇒ T∗k∣∣T +n∣∣ 
+n Tk ⊗ S∗k(∣∣S+n∣∣ 

+n – |S|)Sk
+ T∗k(∣∣T +n∣∣ 

+n – |T |)Tk ⊗ S∗k|S|Sk ≥ .

Therefore the sufficiency is clear.
To prove the necessary. Suppose that T ⊗ S is a k-quasi-class A(n) operator. Let x ∈ H

and y ∈K be arbitrary. Then we have

〈
T∗k(∣∣T +n∣∣ 

+n – |T |)Tkx,x
〉〈
S∗k∣∣S+n∣∣ 

+n Sky, y
〉

+
〈
T∗k|T |Tkx,x

〉〈
S∗k(∣∣S+n∣∣ 

+n – |S|)Sky, y〉 ≥ . (.)

It suffices to prove that if () does not hold, then () holds. Suppose that Tk+ �=  and
Sk+ �= . To the contrary, assume that T is not a k-quasi-class A(n) operator, then there
exists x ∈H such that

〈
T∗k(∣∣T +n∣∣ 

+n – |T |)Tkx,x
〉
= α < 

and

〈
T∗k|T |Tkx,x

〉
= β > .

From (.) we have

α
〈
S∗k∣∣S+n∣∣ 

+n Sky, y
〉
+ β

〈
S∗k(∣∣S+n∣∣ 

+n – |S|)Sky, y〉 ≥ 

for all y ∈K, that is,

(α + β)
〈
S∗k∣∣S+n∣∣ 

+n Sky, y
〉 ≥ β

〈
S∗k|S|Sky, y〉 (.)

for all y ∈K. Therefore S is a k-quasi-classA(n) operator. FromLemma.we canwrite S =( S S
 S

)
on K = ran(Sk)⊕ kerS∗k , where S is a class A(n) operator. Let P be the orthogonal

projection of K onto ran(Sk). By the proof of Lemma ., we have

(
|S+n | 

+n 
 

)
=

(
(SP)∗(+n)(SP)(+n)

) 
+n =

(
P
∣∣S+n∣∣P) 

+n ≥ P
∣∣S+n∣∣ 

+n P.

http://www.journalofinequalitiesandapplications.com/content/2014/1/91


Li and Gao Journal of Inequalities and Applications 2014, 2014:91 Page 9 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/91

So we have

(α + β)
〈
S∗k∣∣S+n

∣∣ 
+n Sky, y

〉 ≥ (α + β)
〈
S∗k∣∣S+n∣∣ 

+n Sky, y
〉 ≥ β

〈
S∗k|S|Sky, y〉

for all y ∈K by (.). Hence,

(α + β)
〈∣∣S+n

∣∣ 
+n η,η

〉 ≥ β
〈|S|η,η〉

= β
〈|S|η,η〉

(.)

for all η ∈ ran(Sk).
Taking the supremum over all η ∈ ran(Sk), we have

(α + β)
∥∥∣∣S+n

∣∣ 
+n

∥∥ ≥ β‖S‖ (.)

by (.). Since self-adjoint operators are normaloid, we have

∥∥∣∣S+n
∣∣ 
+n

∥∥+n =
∥∥(∣∣S+n

∣∣ 
+n

)+n∥∥ =
∥∥S+n

∥∥ ≤ ‖S‖+n. (.)

Hence we have

∥∥∣∣S+n
∣∣ 
+n

∥∥ ≤ ‖S‖. (.)

By (.) and (.) we have

(α + β)‖S‖ ≥ β‖S‖.

This implies that S = . Since Sk+y = SSky =  for all y ∈H, we have Sk+ = . This con-
tradicts the assumption Sk+ �= . Hence T must be a k-quasi-classA(n) operator. A similar
argument shows that S is also a k-quasi-class A(n) operator. The proof is complete. �
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