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Abstract

In this paper, we present the extended Mittag-Leffler functions by using the extended
Beta functions (Chaudhry et al. in Appl. Math. Comput. 159:589-602, 2004) and obtain
some integral representations of them. The Mellin transform of these functions is
given in terms of generalized Wright hypergeometric functions. Furthermore, we
show that the extended fractional derivative (Ozarslan and Ozergin in Math. Comput.
Model. 52:1825-1833, 2010) of the usual Mittag-Leffler function gives the extended
Mittag-Leffler function. Finally, we present some relationships between these
functions and the Laguerre polynomials and Whittaker functions.
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1 Introduction
Fractional differential equations have been an active research area during the past few
decades and they occur in many applications of physics and engineering. The Mittag-
Leffler function appears as the solution of fractional order differential equations and frac-
tional order integral equations. Some applications of the Mittag-Leffler function are as
follows: studies of the kinetic equation, the telegraph equation [1], random walks, Levy
flights, superdiffuse transport, and complex systems. Besides this, the Mittag-Leffler func-
tion appears in the solution of certain boundary value problems involving fractional
integro-differential equations of Volterra type [2]. It has applications in applied problems,
such as fluid flow, rheology, diffusive transport akin to diffusion, electric networks, proba-
bility, and statistical distribution theory. Various properties of the Mittag-Leffler functions
were presented and surveyed in [3]. Furthermore, a different variant of the Mittag-Leffler
function has been investigated in [4].

Let us start with giving the historical background of the Mittag-Leffler functions. The

function E,(z),

00 k
z
Ey(2) = ; m’ 1

was defined and studied by Mittag-Leffler in the year 1903 in [5-7]. It is a direct general-
ization of the exponential series, since, for « = 1, we have the exponential function. The
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function defined by
0 k
z
E, = E _— 2
@) = C(ak + B) @

gives a generalization of equation (1). This generalization was studied by Wiman in 1905
[8, 9], Agarwal in 1953, and Humbert and Agarwal [10, 11] in 1953. Afterward, Prabhakar
[12] introduced the generalized Mittag-Leffler function by

n

5 L = (8)n z
By (@)= HZO: C(Bn+y)n’

3)
where 8,y,8 € C with 9(B) > 0. For § =1, it reduces to the Mittag-Leffler function given
in equation (2). Some of the properties of the generalized Mittag-Leffler function such as
the Mellin transform, the inverse Mellin transform, and differentiation were given in [13].
On the other hand, monotony of the Mittag-Leffler function was given in [14].

In this paper, we extend the Mittag-Leffler function E}, 5(2) in the following way. Since

o0

y _ (y)k %i
Eaple) = kXO: T(ak+ B) (o) kK’

using the fact that

() _Bly +kc-y)
@k  Bly,ce-y)

we extend the Mittag-Leffler function as follows:

E(y;c)(z;p) = Z Bp()’ +kc—y) Ok Z

“ = Blyc-y) Tlek+p)k

(p = 0;Re(c) >Re(y) > 0), (4)

where for B, (x,y) we have

1 p
B,(x,y) = /0 F1 -t le 1D dt (Re(p) > 0,Re(x) > 0,Re(y) > 0), (5)

the extended Euler’s Beta function defined in [15] (see also [16]).

The organization of the paper is as follows: In Section 2, we give an integral representa-
tions of the extended Mittag-Leffler function in terms of Prabhakar’s Mittag-Leffler func-
tion and in terms of known elementary functions. The Mellin transform of the extended
Mittag-Leffler function is obtained by means of the generalized Wright hypergeometric
function [17]. In Section 3, we obtain fractional derivative representations of the extended
Mittag-Leffler function and give some derivative formulas. In Section 4, we obtain the re-
lationship between the extended Mittag-Leffler function and simple Laguerre polynomials
and Whittaker’s functions.
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2 Some properties of the extended Mittag-Leffler function
We begin with the following theorem, which gives the integral representation of the ex-
tended Mittag-Leftler function.

Theorem 1 (Integral representation) For the extended Mittag-Leffler function, we have
EVOp) = f 1 - e e E (1) di (©)
Zp)= ———— - e - z) dt,
op B(y,c-y) Jo p

where p > 0, Re(c) > Re(y) > 0, Re(a) > 0, Re(B) > 0.

Proof Using equation (5) in equation (4), we get

E()/;C) (Z;[J) _ i /1 ty+k—1(1 _ t)c—y—le—t(lp%t) dt (C)k Zk ) (7)
P —~Jo B(y,c—y) T'(ak + B)k!

Interchanging the order of summation and integration in equation (7), which is guaranteed
under the assumptions given in the statement of the theorem, we get

Ey(@p)
! R )" (t2)*
— t}’—l (1 _ t)c_y_le_m dt. (8)
/0 ;B(%c—y) [ (ak + k!
Using equation (3) in equation (8), we get the desired result. O

Corollary 2 Note that, taking t = 1 in Theorem 1, we get

EJ5@p)
e / YT o (82 g, )
Bly,c-v)Jo (u+1) P\ 1+ u

Corollary3 Takingt = sin® 6 in the Theorem 1, we get the following integral representation:

EVD(zp)
1 7 _ p
= —-7 |:2/ sin?’ 10 cos? 21 ge sinzecos29]
B(y,c-=v)L Jo
x E) (zsin?6) do. (10)

Now, using the definition of Prabhakar’s Mittag-Leftler’s function, Bayram and Kurulay
obtained the recurrence formula [13]

C C d C
Eéy)ﬂ(tz) = ,BE(()[J%l(tz) + azd_zE‘E")ﬂ*l(tz)’

Inserting the above recurrence relation into equation (6), we get the following recurrence
relation for the extended Mittag-Leffler’s function.
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Corollary 4 (Recurrence relation) For the extended Mittag-Leffler function, we get

, , d .
ELP @0 = BELEh @) v az Bl @)
where p > 0, Re(c) > Re(y) > 0, Re(x) > 0, Re(B8) > 0.

In the next theorem, we give the Mellin transform of the extended Mittag-Leffler func-
tion in terms of the Wright generalized hypergeometric function. Note that the Wright
generalized hypergeometric function is defined by [17]

(a1,A1), (a2, A3),..., (ﬂp’Ap) :|

W,(2) = , ¥ ’
Pt =y q[(bLBl),(bz,Bz),--~,<bw3q)

i le F(d]‘ +A]‘/() Zk

> [12, T (5 + Bk kv’

k=0

(11)

where the coefficients A; (i =1,...,p) and B; (j = 1,...,q) are positive real numbers such
that

Theorem 5 (Mellin transform) The Mellin transform of the extended Mittag-Leffler func-
tion is given by

EV9(zp)s) = ’
./\/l{ B (zp) S} C(y)Cc-y) (B,y), (c+2s,1)

(p > 0,Re(c) > Re(y) > 0,Re(a) > 0,Re(s) > 0,Re(B) > 0), (12)

CE)c+s—y) |: (¢, 1), (y+s,1) i|
=—"5\U, z

where 3V, is the Wright generalized hypergeometric function.

Proof Taking the Mellin transform of the extended Mittag-Leffler function, we have
M(EV (@ p);s) = / PEY Dz p) dp. (13)
0
Using equation (6) in equation (13), we get
MUESS esp)
1 ° al [t w2
= 7/ P |:/ A=) f(“):|Eaﬁ(tz) dtdp. (14)
B(y,c—v) Jo 0 ’

Interchanging the order of integrals in equation (14), which is valid because of the condi-
tions in the statement of the Theorem 5, we get

MIE] @ p)ss)

1 1 o0 »
- | [ -0 EY (12) f $Le” 0 dp dt. (15)
B(J/,c—y)/o[ #9)] o ¥ v
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in equation (15) and using the fact that I'(s) = f ue " du, we get

; _p
Now taking u = P

M{E;m(z;p);s}

= / 31— )Y, (t2) dit. (16)
B(y,c— y) “

Using the definition of Prabhakar’s generalized Mittag-Leffler function E((f)ﬂ (¢z) in equation
(16), we get

M{Eiyjf)(zm)%s}
— +s-1 cts—y—-1 = (C)k(tz)k
Bly,c- y) / FEA-gT XO: Flak + ki o0 (17)

Interchanging the order of summation and integration, which is valid for Re(c) > Re(y) >
0, Re(s) >0, Re(c— y +5) >0, Re(x) > 0, Re(B) > 0, we get

M {Efjf;f) (zp);s}

0 k 1
y) Z F(agfﬁ)k' / oo 18)

B(y,c—
Using the Beta function in equation (18), we have

M{E] @ p)s)

Cs)C(c+s-vy) i (c)r* Ty +k+s)I'(y +s)

= . 19
B(y,c—y) pry I'(ak + B)KIT(y +s)'(c + k + 2s) 19)
Considering that (¢)x = ”k ,B(y,c—y) = %, and inserting equation (11) into equa-
tion (19), we get the result
. C()M(c+s-y) — z I'(y +k+s)I'(c+k)
E(Vv ) : ; —
MiEqs @ p)s) B(y,c—)C(0) Z T(ak+ Bk T(c+k+2s)
Cs)C(c+s-vy) (1), (y+s1)
=— VW ,Z |-

T(y)L(c-v) (B,a), (c+25,1) 0

Corollary 6 Taking s =1 in Theorem 5, we get

” _Tlerl-y) [ r+1D
/o 7 e dp F(y)Cc-y)° \p2|:(ﬁ,oz), (c+2,1) ’Z]'

Corollary 7 Taking the inverse Mellin transform on both sides of equation (12), we get the
elegant complex integral representation

i, 1 e _ D), (+sD) |
B 6P = ey o TOTES V)Z%[(ﬁ,a), <c+2s,1)’z]’” &

where v > 0.
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3 Derivative properties of the extended Mittag-Leffler function
The classical Riemann-Liouville fractional derivative of order u is usually defined by

Dif(2)} = /f(t)(z £ 'dt, Re(u)<O0,

where the integration path is a line from 0 to z in the complex ¢-plane. For the case m—1 <

Re(u) <m (m=1,2,3,...), it is defined by

Di{f(@) = D)

_ dm +m-1
_dz—m{ir‘( " ff(t)(z £+ dt}

The extended Riemann-Liouville fractional derivative operator was defined by Ozarslan

and Ozergin as follows.

Definition 8 ([18]) The extended Riemann-Liouville fractional derivative is defined as

2

D’”’{f(z) )/ft)(z t)” “lexp< (p ))dt Re(u) <0,Re(p) >0 (20)

and for m—1<Re(u) <m (m=1,2,3,...)

Derlf@) = 4 peri)

_ a ‘ —pAm-1 _pZZ
_—{F(—M+m)/<;f(t)(z_t)u exp(t(z—t))dt}’

dz"

where the path of integration is a line from O to z in the complex ¢-plane. For the case
p =0, we obtain the classical Riemann-Liouville fractional derivative operator.

We begin by the following theorem.
Theorem 9 Let p > 0, Re(i) > Re(A) > 0, Re(x) > 0, Re(8) > 0. Then

Z*B(L,c— A
Dy ES @)} = Tk (( 3 EC ),
, -

Proof Replacing i by A — u in the definition of the extended fractional derivative operator

(20), we get

D E ()

2

1 R tp-1 { —pz }
= — t*E H(z—-t) " ex dt

7 M-l z e o t —At+p-1 _pz2
= — E9M(1-= dt. 21
Fu—1) Jo ﬂ()( z) exP{t(z—t)} 21)



http://www.journalofinequalitiesandapplications.com/content/2014/1/85

Ozarslan and Yilmaz Journal of Inequalities and Applications 2014, 2014:85 Page 7 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/85

Taking u = £ in equation (21), we get

D P {2 ES) (2))

-1

z" fl A1 —Atp-1 { P } (©
=— | v Q-u)""ex E. s(uz)du. (22)
(1) Jo P ’

Comparing this result with equation (6), we get

_ ZM_IB()" c-1) (Asp)

—p,p [ A—1 () .
Dz Ea’ﬁ(z)}_ TR (z;p).

Whence the result. O

In the following theorem, we give the derivative properties of the extended Mittag-
Leffler function.

Theorem 10 For the extended Mittag-Leffler function, we have the following derivative
formula:

d" HY n;c+n
B @) = @ @p), neN, (23)

o,B+no

Proof Taking the derivative with respect to z in equation (6), we get

d . .
TE @p) = @), (24)

Again taking the derivative with respect to z in equation (24), we get

d2

I E @)} = cle+ DEL 5 @) (25)
Continuing the repetition of this procedure # times, we get the desired result. O

Theorem 11 For the extended Mittag-Leffler function, the following differentiation for-
mula holds:

d" ) ,
o {z’S _IEL)};C) (Az%p) } =7 ‘"_IES,’/’SCEH (Az%p).
Proof In equation (23), replace z by Az% and multiply z#~!, then taking the z-derivative #

times, we get the result. O
Theorem 12 For the extended Mittag-Leffler function, the following differentiation for-

mula holds:

dn
dp”

F(V - I’I)F(C il n)F(C) (y—n;c—2n)

(vic)(,,. = (=1)"
{Eep @P)) = (D) C(c-2mI(y)Lc-y) **

(zp).

Proof Taking the p-derivative # times in equation (6), we get the result. O
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4 Relations between the extended Mittag-Leffler function with Laguerre
polynomial and Whittaker function

In this section, we give a representation of the extended Mittag-Leffler function in terms

of Laguerre polynomials and Whittaker’s function.

Theorem 13 For the extended Mittag-Leffler function, we have

eXp(2p)ELy,§) (zp)

L)L) ()
”’C"’) Xk:o T(aks gk = Bm+key+lnte—y+1),

where Re(c) > Re(y) > 0, Re(x) > 0, Re(B) > 0.

Proof We start by recalling the useful identity used in [18]

eXp(t(l_ij t)) = exp(-2p) Z Ly(p)Ln(p)t™' A=) 0<t<l. (26)

m,n=0

Using equation (26) in equation (6), we get
E(Vﬂc)(z,p) — ; /1 t}/—l(l _ t)C—V—l exp(_zp)
B(y,c-v) Jo

X Z L,(p)L.(p)t"™ (1 - t)"*lEgyﬂ(tz) dt. (27)

m,n=0

Now, taking into account the series expansion of Prabhakar’s generalized Mittag-Leftler’s
function E¢ ﬁ(tz) in equation (27), we have

(v¢) exp(=2p) ! -1 c—y-1
E/;(zp) = ————= Q-0
b B(y,c-y) Jo

. m+1 n+l = (C)k(tz)k
xm;OLn@>Lm@>t a-9 ;Th B dt

_ eXP(—ZP) ! y=1¢1 _ pe-y-1
_B(%C—V)/o oD

S DL i g, o9

I'(ak + B)k!

m,n,k=0

Interchanging the order of integration and summation in equation (28), which can be done
under the assumptions of the theorem, we have

(V5O (. o\ _ exp(-2p) . Lu(p)Lin(p) ()i k
Eoc,ﬂ (Z,P) = B()/,C—)/) m%(:zo F(O{k+,3)k‘

xXBm+k+y+Ln+c—y+1). (29)

Multiplying both sides of equation (29) by exp(2p), we get the result. O
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In the following theorem, we give the extended Mittag-Leftler function in terms of
Whittaker’s function.

Theorem 14 For the extended Mittag-Leffler function we have

3_]9 (r30) . F(C -yt 1) m(p)(C)k m+k+y 1
eXp( 2 >Eot,f5 (le) B(')/,C—)/) Z O[k‘l’,B)k' Wy 2c—m 1 m+k+y (p)

Proof Considering the following equality:

oo (i) = (i) ool T)
P ta-¢) " Pl )P

and using the generating function of the Laguerre polynomials, we get

Xp(t(l_ b t)) =exp(-p )exp( )(1 t)ZLm(p)rm (30)

Taking equation (30) into account in equation (6), we have

. 1 1 _r
E@p) = g / (1~ £y e T EY, (t2) dt
«r S Blye—v) Jo b
1 1 -p
=—— | 7 1-17" " exp(-p)ex (-)
B(V,C—y)/o PPy 7
X (1=1) Y Lu(p)t"ES), (t2) dt. (31)

By use of Prabhakar’s generalized Mittag-Leffler function Eg‘)ﬂ(tz) in equation (31), we get

EVY(zp)
__exp(-p) o e O (o)ptkk

Interchanging the order of summation and integration in equation (32), we get

EfxyﬁC)(Z»P)
__expl WO [N (o
V’C—V) Z F((xk+ﬂ)k!/(; (- 1) Vexp<7) dt. (33)

Finally, using the following integral representation [19]:
f #1(1 = )" 1exp< ) dt=T(W)p'T xp(1> Wi u(p)
0 2 2 2
(Re(v) > 0,Re(p) > 0),

in equation (33), we get the result. O
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