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Abstract
We consider the boundary value problem (BVP) for the discrete Dirac equations

@ _ 2 M — %M

St 7 P )‘y(”z)' neZ={0+1,+2..) =0,
Yoo =Yn' anYy 7)‘yn '

where (p,) and (gn), n € Z are real sequences, and A is an eigenparameter. We find a
polynomial type Jost solution of this BVP. Then we investigate the analytical
properties and asymptotic behavior of the Jost solution. Using the Weyl compact
perturbation theorem, we prove that a self-adjoint discrete Dirac system has a
continuous spectrum filling the segment [-2, 2]. We also prove that the Dirac system
has a finite number of real eigenvalues.

1 Introduction

Let us consider the BVP generated by the Sturm-Liouville equation,
- +q(x)y=2"y, xeR,=[0,00), (1)
and the boundary condition

y(0) =0, )

where ¢ is a real valued function and A is a spectral parameter. The bounded solution of

(1) satisfying the condition
lim y(x,\)e ™ =1, AreC,:={reC:Imr >0} (3)
xX—> 00

will be denoted by e(x, 1). The solution e(x, 1) satisfies the integral equation

e(x,\) = e™ 4 f ” Wq(t)e(t,k)dt. (4)
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It has been shown that, under the condition

o0
/ x|gq(x)| dx < oo, (5)
0
the solution e(x, 1) has the integral representation

e(x, A) =™ + / K(x,t)e*dt, »eC,, (6)

X

where the function K(x, £) is defined by g. The function e(x, ) is analytic with respect to
Ain C, :={A € C:ImA > 0}, continuous in C,, and

e(x,\) = ei’\”[l + 0(1)], reC,,x— 00 (7)

holds [1].

The functions e(x, A) and e()) := e(0, A) are called the Jost solution and Jost function of
the BVP (1) and (2), respectively. These functions play an important role in the solution
of inverse problems of the quantum scattering theory [1-4]. In particular, the scattering
data of the BVP (1) and (2) is defined in terms of Jost solution and Jost function.

Let us consider the system

anyn + bay + puyy) = 2y,
o) ) o @ "Eh (8)
An1Yyl1 + buyn’ + quyn =My,

)
where {(yfqz))} are vector sequences, {a,}necz, {bulnezs {Pnlnez, and {g,}uez are real se-
quences, a, #0, b, #0 for all n € Z, and A is a spectral parameter.
Ifforalln € Z, a, =1 and b, = -1, then the system (8) reduces to

2 1 1
AyEh + by =,
—AY +au) = 097,

n-1

nez, )

where A is the forward difference operator, i.e.,
AUy, = Uy — Uy,.

The system (9) is the discrete analogue of the well-known Dirac system

0 1) (n),(pw) O ) _, [
-1 0/ \y 0 g/ \» Y2

([5], Chapter 2). Therefore the system (9) is called a discrete Dirac system.
Various problems of spectral analysis of self-adjoint difference equations have been in-
vestigated in detail [6, 7]. But all of them give an exponential type Jost solution of the

difference equations. In this paper, we find a polynomial type Jost solution of (9) with the
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boundary condition

which is analytic in D := {z : |z| < 1}\{0}.

2 Jost solutions of (9)
We will assume that the real sequences {p, },cz, {gn}nez satisty

> " 1nl(1pal + 1qal) < 0. (11)

nez

If p, =g, =0forall » € Z and
A=—iz— (i)},
from (9), we get

-2 = [ciz- G

(1) (1) . N-17,/(2) (12)
Y1 = Vn = [—iZ—(lZ)_ ]yn .
It is clear that
(1)
ey (2) Z\ oy
en(z) = (eﬁ?(z)) = (_i)z , HeEZ, (13)
and
HP@\  (=i\ o
ha(z) = (hE?)(z)) = (Z)z M. pel, (14)

are the solutions of (9).

(1) (1)
Now we find the solutions f,(z) = (;’fz)), n € 7Z, and g,(z) = (jf’z)), neZ, of (9) for A =

—iz — (iz) ™}, satisfying the condition

Su@ =[1+0M)]en(2), |2zl =1,n— oo, (15)
and

8u2) = [I+0oW](@), Izl =1,n— —o0, (16)

respectively, where I = ((1) ?)

Theorem 1 Under the condition (11) for A = —iz — (iz) ™! and |z| = 1, (9) has the solutions
1

) w
ful2) = {(;Zz)) }neZ and g,(z) = {(j}(’:z)) }nEZ having the representations

f(l) oo z
ful2) = Q;@) = [1 + ;Knmzm} (_i)zzn, ne’, (17)
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g(l) —o0 _i
gn(z) = <g;(12)> = |:I + Banij| (Z )ZZn, nez, (18)
n m=—1

oo
@) =2+ (Ko 22— iKE2 ™), (19)
m=1

where

o= (K Ko
K2 K2

and

Ay
" \en, B

Proof Substituting the vector-valued functions f and g defined by (17) and (18) in (9),

taking A = —iz — (iz) 7}, |z| = 1, we get

oo
K== (e +a0),

k=n+1

00
K=Y pikjs,
k=n+1

00
K =Kl = ) Ky
k=n

oo
K2 = K3 +pakoy + > [aukE + piky ),

k=n+1
00
KE == Y [pekdh + i),
k=n+1

00
Ky ==Kty + ) [pekis - aki ],
k=n+1

o0
K23 =—Ky + Z[pkK;g - K],
k=n

o0
K3 =K+ [Pk + qenKih o ),

k=n

and

-0
Bl =- Z (Px + qi)s

k=n-1

-0
22 _ 21
B, = Z qkBi_1»
k=n-1

Page 4 of 9
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-0
11 21
B, 1= quBk,—l’

k=n
-0 —00
12 11 22
Bn,—l = Z (P + qi) + Z[pk—lBk_l,_l + quk,—l]’
k=n-1 k=n
—00
21 _ 11 22
B, 5=~ Z (PkBk,-l + quk,—l)’
k=n-1
—00
22 11 21 12
Bn,—2 = _Bn—l,—l - Z [quk,—Z —PkBk,_l],
k=n-1
—00
11 22 21 12
Bn,—Z = _Bn,—l + Z[quk,fz _pk—lBk,L,l];
k=n

-0
12 _ p21 11 22
Bn,—2 = Bn,—2 + Z [pkBk,_Q + qk+lBk+1,_2],
k=n-1

where n € Z. For m > 3 and n € Z, we obtain
o0

12 21 22 11
I<nm = I<n+l,m—2 - Z [qkl(k,m—l +pk1<k,m—l]’
k=n+1

)
Ko ==Kt + ) (PR, — kK]
k=n+1

)
I<r%r2n == (;,lm—l + Z[pqugn - qk+11<1341-1,m—1]’
k=n

o0
Ko = Koy 4 a3 (41K + pik, ]

k=n+1

Also for m < -3 and n € Z, we get

—00
21 _ 21 11 12
Bnm - Z [quk,m+1 +p]<Bk,m+l] + Bn—l,m+2’
k=n-1
—00
22 _ pll 21 12
Bnm - _Bn—l,m+1 + Z[qukm _pkBk,rrHl]’
k=n
—00
11 _ 22 21 12
Bnm = _Bn,m+1 + Z[qukm _pk—lBk—l,m+l]’
k=n
—00
12 21 11 21
Bnm = Bn+1,m—2 + Z[pkBk,m—l + quk,m—l]'
k=n

Due to the condition (11), the series in the definition of K,?m and Bzm (i,j =1,2) are abso-
lutely convergent. Therefore, K, Zm and BZm (i,j = 1,2) can uniquely be defined by p,, and g,
(n € 7), i.e., the system (9) for A = —iz — (iz) ™}, |z| = 1, have the solutions f,(z) given by (17)
and g,(z) given by (18). O
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The solutions f and g are called Jost solutions of (9). Using the equalities for Kgm and
By, (i,j = 1,2) given in Theorem 1, we find

oo

(K| < C Z (Ipxl +1axl),  6j=1,2, (20)
k=n+% |

and

—00

Bl <C > (el +lal), ij=12, (21)
k=n+ % |+1

by induction, where | 7] is the integer part of % and C > 0 is a constant.

Using (20), (21), and the definitions of f and g, we obtain (15) and (16). Also the Jost
solutions have an analytic continuation from {z: |z| = 1} to D := {z: |z| < 1}\{0}. Because
of (11) and (20), we see that the series Y o | K,,,z*" and Y o | mK,,,,z*"" are uniformly
convergent in D. Similarly from (11) and (21), we see that the series > ™ | B,,,z*" and

> mBy,z > ! are uniformly convergent in D.

Theorem 2 The following asymptotics hold:

(1)
6() [I+o(1)]<_l> 7", zeD:={z:]z] <1}\{0},n — oo, (22)

n

(j” ) £+ 0(1)]<Z'> e, zeDyn— o, (23)

Proof From (17), we obtain
@ =1+ K 2" - ZKU 2l zeD. (24)
m=1
Using (20) and (24), we get
o0 [o¢]
@z <1+ Y K|+ K
m=1 m=1

§1+2CZ Z (x| + k1)

m=1 k=n+| % |

o0
<1+42C ) (k—n)(Ipxl + laxl)
k=n+1
<1+2C ) k(lpel +lgxl), (25)
k=n+1

where C is constant. So we have by (25)

frfl)(z) = p2nl (1 + 0(1)), zeD,n— oo. (26)
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In a manner similar to (26), we obtain
fP) =-iz""(1 +0(1)), zeD,n— cc. (27)

From (26) and (27), we get (22). Also from (18), we obtain

igW(2)z" =1+ Z B 272" 4 Z B2 721 zeD. (28)

m=—1

Using (21) and (28), we have
—-00 -00
gD @2 <1+ Y |Bh, |+ > |B2,
m=-1 m=-1
<1+2CZ Z (Il + lax)

m==1f=n+| G |+1
<1+2C ) —k(Ipx! + laxl), (29)
k=n

where C is constant. So, we get by (29)

gV (z) =~z (1+0(1)), ze€D,n— —oo. (30)
Similarly, we can obtain

g2@) =z (1+0(1)), zeDn— . (31)
From (30) and (31), we obtain (23). (I

3 Continuous and discrete spectrum of the BVP (9)

Let [,(Z, C?) denote the Hilbert space of all complex vector sequences

= Fe.

with the norm

Iyl =3y @) + [y,

nez

We also define the operator L generated in ¢5(Z, C2) by (9). The operator L is self-adjoint.

Theorem 3 If the condition (11) holds, then o.(L) = [-2,2], where o.(L) denotes the con-

tinuous spectrum of L.
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Proof Let Lo denote the operator generated in £5(Z, C?) by the BVP

Ay =y,
~Vo =1y,
1

% =0.

We also define the operator L; in £,(Z, C2) by the following;

(7Y (e 0N () ()
2) | = 2) | = 2) |-
” 0 ) \5) \aw?
It is clear that Lo = Ljj, L = Lo + L; and we can easily prove that

o(Lo) = 0c(Lo) = [-2,2].

It follows from (11) that the operator L; is compact in £5(Z, C?) [8].
By the Weyl Theorem [9] of a compact perturbation, we get

0c(L) = 0c(Lo) = [-2,2]. O

The Wronskian of the solutions

uy _{v
Uni= 1\ @ o Vel e
" nez " nez

of (8) is defined by

W[Un, Vn] =a, [U(l) V(Q) _ U(2)1 V(l)

n n+l n+l ' n ]

If we define F(z) = W(f,(2),g.(2)], then F is analytic in D. Since the operator L is self-
adjoint, the eigenvalues of L is real. From the definition of the eigenvalues we obtain

o4(L) = {r:x=—iz-(iz),iz € (-1,0) U (0,1), F(z) = 0}, (32)
where 0,4(L) denotes the set of all eigenvalues of L.

Definition1 The multiplicity of a zero of the function F(z) is called the multiplicity of the
corresponding eigenvalue of L.

Theorem 4 Under the condition (11) the operator L has a finite number of real eigenvalues
in D.

Proof To prove the theorem, we have to show that the function F(z) has a finite number
of real zeros in D. The cluster points of the zeros of the analytic function F could be —i, 0
and i. Since L is a self-adjoint bounded operator its eigenvalues should be different from
infinity and as z is ‘0; the eigenvalue X is infinity, we cannot consider ‘0’ as a zero of the

Page 8 of 9
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function F. Also, for z is £i, the eigenvalue A is £2 and D is bounded. But, as we know, +2
are elements of the continuous spectrum of the operator L. On the other hand from the
operator theory, the eigenvalues of the self-adjoint operator are not the elements of the
continuous spectrum of that operator. Therefore, from the Bolzano Weierstrass Theorem
the set of zeros of the function F in D are finite i.e., the operator L has a finite number of
eigenvalues. O
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