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Abstract
Since Zellner (Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions,
pp. 377-390, 1994) proposed the balanced loss function, many researchers have been
attracted to the field concerned. In this paper, under a generalized balanced loss
function, we investigate the admissibility of linear estimators of the regression
coefficient in general Gauss-Markov model (GGM) with respect to an inequality
constraint. The necessary and sufficient conditions that the linear estimators of
regression coefficient function are admissible are established, in the class of
homogeneous/inhomogeneous linear estimation, respectively.
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1 Introduction
Throughout this paper, the symbols A′, μ(A), A+, A–, rk(A) and tr(A) stand for the trans-
pose, the range, Moore-Penrose inverse, generalized inverse, rank, and trace of matrix A,
respectively.
Consider the following Gauss-Markov model:

{
y = Xβ + ε,
E(ε) = , Cov(ε) = σ In,

(.)

where y is a n ×  observable random vector. X is an n × p known design matrix and
rk(X) = p, ε is a n×  random error vector. β and σ  are unknown parameters.
Since rk(X) = p, β in model (.) is estimable, i.e., there exists an A, such that E(AY ) = β .

The classic estimator of regression coefficient is the least square estimator β̂ = (X ′X)–X ′y,
which is the value of d that minimizes the following expression:

(y –Xd)′(y –Xd). (.)

It is also the best linear unbiased estimator (BLUE) of β . It indicates some goodness-of-
fit of the model. For any estimator of β , the precision of this estimator is widely used to
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determine it is good or not. That is, under the quadratic loss function

(d – β)′(d – β), (.)

we select the estimate to achieve a minimum of the risk. [] embraced the two standards
above and proposed the concept of balanced loss. The balanced loss function is defined as

L
(
d(y),β ,σ ) = w(y –Xd)′(y –Xd) + ( –w)(d – β)′S(d – β), (.)

where  ≤ w ≤ , S is a known positive definite matrix. The balanced loss function takes
both the precision of the estimator and the goodness-of-fit of the model into account.
Compared to the standards in (.) and (.), it is amore comprehensive one thatmeasures
the estimate.
Much work has been done on the parameter estimation under the balanced loss func-

tion. [–] studied the risk function of some specific estimators. [–] did some work
on the application of the balanced loss function. [–] investigated the goodness of the
estimators under the balanced loss function.
In model (.), the errors have homogeneity of variance and no correlations. But in most

real problems, this condition is not always satisfied. In this case, model (.) is generalized
to the following one:

{
y = Xβ + ε,
E(ε) = , Cov(ε) = σ V .

(.)

For model (.), the BLUE of β is β̂R = (X ′D+X)–X ′D+y. According to Rao’s unified the-
ory of least squares, it is the minimum value d of the following expression:

(y –Xd)′D+(y –Xd),

where D = V + XX ′. We can prove that when V is nonsingular, β̂R = (X ′V–X)–X ′V–y
is a generalized least square estimate. Therefore, the balanced loss function (.) cannot
be applied to this model. Based on [], the idea of balanced loss, we propose a general
balanced loss

L
(
d(y),β ,σ ) = w(y –Xd)′D+(y –Xd) + ( –w)(d – β)′S(d – β), (.)

where  ≤ w≤ , S is a known matrix.
In most cases, we have some prior information in model (.). For example, the param-

eters are constrained to some subset, such as an inequality and ellipsoidal constraints. In
this paper, considering model (.) with the balanced loss (.), we investigate the admis-
sibility of linear estimator of regression coefficient in the linear model with an inequality
constraint. The inequality constraint we will discuss is

T =
{(

β ,σ )|β ∈ C =
{
β : r′β ≥ 

}
,σ  > 

}
, (.)

where r is a known vector. If r = n, then the constraint condition always holds. Thismodel
embraces the unconstraint case.
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Definition . Suppose d(Y ) and d(Y ) are two estimators of β , if for any (β ,σ ), we have

R
(
d,β ,σ ) ≤ R

(
d,β ,σ )

and there exists (β∗,σ ∗ ), such that R(d,β∗,σ ∗ ) > R(d,β∗,σ ∗ ), where the risk function
R(d,β ,σ ) = EL(d,β ,σ ), then d(Y ) is said to be better than d(Y ). If there does not ex-
ist any estimator in set � that is better than d(Y ), where parameters β and σ take values
in T , then d(Y ) is called the admissible estimator of Kβ in the set �. We denote it by
d(Y ) �∼ Kβ[T].

We use the following notations in this paper.

HL = {AY : A is a p× nmatrix},
L =

{
AY + a : A is a p× nmatrix,a ∈ Rp},

where HL is the class of homogeneous linear estimators and L is the class of inhomoge-
neous linear estimators.
The admissibility is the most basic and influential rationality requirement of classical

statistical decision theory. When the parameters are unconstrained, comprehensive re-
sults have been obtained. For instance, [–] etc. studied the admissibility in univari-
ate linear model. As [, ] pointed out, when the parameters are constrained, the least
square estimator may not be admissible. So it is significant to discuss the admissibility
of linear estimator in linear model with some constraints. For the Gauss-Markov model
with constraints, [] developed the admissible estimator. Some other researchers dedi-
cated to this study. [–] studied the admissibility in the linearmodel with an ellipsoidal
constraint. For the linear model with an inequality constraint, [–] studied the admis-
sibility of linear estimator of parameters in the univariate and multivariate linear models
under the quadratic and matrix loss, respectively. However, under the balanced loss, the
model with an inequality constraint has not been considered.

2 Admissibility in the class of homogeneous linear estimators
In this section, we study the admissibility in the class of homogeneous linear estimators.
Let the quadratic loss in model (.) be

(
d(Y ) – g(β)

)′(d(Y ) – g(β)
)
, (.)

where d(Y ) is an estimator of g(β).

Lemma . Consider the model (.) with the loss function (.), AY HL∼ Kβ[T] if and only
if
() AV = AX(X ′D+X)–X ′D+V ;
() AXWX ′A′ ≤ AXWK ′;
() rk(AX –K )WX ′ = rk(AX –K ),

where D = V +XX ′,W = (X′D+X)– – Ip.
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Proof The proof can be obtained from Theorem . in [] and Theorem . in []. �

Lemma . Under model (.) with the loss function (.), suppose AY ∈ HL is an estima-
tor of β , we have

R
(
AY ,β ,σ ) ≥ R

(
APXY ,β ,σ ), (.)

and the equality holds if and only if

AV = APXV , (.)

where PX = X(X ′D+X)–X ′D+.

Proof Since

R
(
AY ,β ,σ )
= E

{
w(Y –XAY )′D+(Y –XAY ) + ( –w)(AY – β)′S(AY – β)

}
= σ [w tr

(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′B

)]
+ β ′(AX – Ip)′B(AX – Ip)β , (.)

where B = wX ′D+X + ( –w)S > . Notice that VD+X = (D–XX′)D+X = X(In –X ′D+X), we
have PXVD+X = VD+X.
Therefore,

R
(
AY ,β ,σ ) – R

(
APXY ,β ,σ )

= σ  tr
[(
AVA′ –APXVP′

XA
′)B]

= σ  tr
[
A(In – PX)V (In – PX)′A′B

]
≥ , (.)

and the equality holds if and only if AV = APXV . �

Remark . This lemma indicates the class of estimators {APXY : A is a p × nmatrix} is
a complete class of HL. That is, for any estimator δ not in {APXY : A is a p × nmatrix},
there exists an estimator δ′ in {APXY : A is a p× nmatrix} such that δ′ is better than δ.

Consider the following linear model:

{
Z = (X ′D+X)β + ε,
E(ε) = , Cov(ε) = σ (X ′D+VD+X).

(.)

Let C = ( –w)B–S, clearly, Cβ is estimable in model (.). We take the loss function

LB
(
d(Z),Cβ ,σ ) = (

d(Z) –Cβ
)′B

(
d(Z) –Cβ

)
. (.)
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Lemma . Under model (.) with the loss function (.), suppose AY ,AY ∈ HL, for any
(β ,σ ) ∈ T , where AY is better than AY if and only if

() tr
(
AXWX ′A′

B
)
– w tr

(
AVD+X

) ≤ tr
(
AXWX ′A′B

)
– w tr

(
AVD+X

)
(.)

() β ′(AX – Ip)′B(AX – Ip)β ≤ β ′(AX – Ip)′B(AX – Ip)β . (.)

Proof The lemma can easily be verified from (.). �

Lemma . Consider the model (.) with the loss function (.), suppose AY ∈ HL, then
APXY

HL∼ β if and only if ÃZ HL∼ Cβ in model (.) with the loss function (.), where Ã =
AX(X ′D+X)– –wB–.

Proof Since PXV = PXVP′
X = XWX ′, we have

R
(
APXY ,β ,σ )
= EL

(
APXY ,β ,σ )

= E
{
w(Y –XAPXY )′D+(Y –XAPXY ) + ( –w)(APXY – β)′S(APXY – β)

}
= σ [w tr

(
VD+) – w tr

(
AVD+X

)
+ tr

(
AXWX ′A′B

)]
+ β ′(AX – Ip)′B(AX – Ip)β . (.)

Notice that

Ã
(
X ′D+VD+X

)
Ã′ = AXWX ′A′ + wAVD+XB– +wB–X ′D+VD+XB–,

Ã
(
X ′D+X

)
–C = AX – Ip.

Therefore,

ELB
(
ÃZ,Cβ ,σ )

= E(ÃZ –Cβ)′B(ÃZ –Cβ)

= σ [tr(ÃX ′D+VD+X
)
tr
(
Ã′B

)]
+ β ′[Ã(

X ′D+X
)
–C

]′B
[
Ã

(
X ′D+X

)
–C

]
β

= σ [w tr
(
B–X ′D+VD+X

)
– w tr

(
AVD+X

)
+ tr

(
AXWX ′A′B

)]
+ β ′(AX – Ip)′B(AX – Ip)β . (.)

Equations (.), (.) and Lemma . indicate that if there exists an estimator of β ,
APXY is better than APXY , then Ã′Z, the estimator of Cβ , is better than ÃZ. �

Lemma . Consider the model (.) with the loss function (.), AZ ∼ C� holds if and
only if under the quadratic loss, AZ ∼ C� holds.

Proof The proof is straightforward. We omit the details. �
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Theorem . Consider the model (.) with the loss function (.), AY HL∼ Sβ(T) if and
only if AY HL∼ Sβ .

Proof The necessity is trivial. We only need to prove the sufficiency. For any (β ,σ ) ∈ T , if
there exists AY that is better than AY , by Lemma ., for any β ∈ C, (.) and (.) hold.
Notice that (.) still holds if replacing β by –β . In other words, for any β ∈ C̃ = {β : –β ∈
C}, (.) holds. Since C ∪ C̃ = RP , thus, for any (β ,σ ), (.) and (.) hold. It contradicts
with AY HL∼ Sβ . �

Theorem . Consider the model (.) with the loss function (.), AY HL∼ β(T) if and only
if
() AV = APXV ;
() ĀXWX ′Ā′ ≤ ( –w)ĀXWNB–;
() rk[(AX – Ip)W ] = rk(AX – Ip),

where Ā = A –wB–X ′D+.

Proof By Lemma ., () holds. Further, AY HL∼ β(T) is equivalent to APXY
HL∼ β . By

Lemma ., in the model (.) with the loss (.), AY HL∼ β(T) holds if and only if ÃZ HL∼ Cβ

in model (.) with the loss (.), where Ã = AX(X ′D+X)– – wB–. It is also equivalent
to ÃZ HL∼ Cβ in model (.) with the loss (.) by Lemma .. Therefore, when the condi-
tion () is satisfied, according to Lemma . and simple computations, we haveAY HL∼ β(T)
holds if and only if () and () are satisfied. �

Remark . The following example indicates that the conditions in the above theorem
can be satisfied.
Consider the following example: we take X = S = I , V =

(  
 

)
, then D =

(  
 

)
,W =

(  
 

)
.

Also let w = ., then the loss function is

L
(
d(y),β ,σ ) = 


[
(y – d)′(y – d) + (d – β)′(d – β)

]
.

For the diagonal matrix A =
( a 
 b

)
, we consider the admissibility of Ay. The condition ()

in Theorem . is satisfied. Theorem .() implies that b = . Theorem .() implies that

 ≤ a≤ . Thus, only if b =  and 

 ≤ a ≤ , Ay is an admissible estimate of β .

3 Admissibility in the class of inhomogeneous linear estimators
In this section, we study the admissibility in the class of inhomogeneous linear estimators.

Lemma . Let C be a cone in RP . For any vector b and real number d,

β ′b + d ≤ , ∀β ∈ C (.)

if and only if b ∈ C∗ and d ≤ , where C∗ = {α : α′β ≤ ,∀β ∈ C} is the dual cone of C.

Proof This lemma can be found in []. �

Theorem . Consider the model (.) with the loss function (.), if AY +a L∼ β(T), then
() a ∈ μ(AX – Ip);

http://www.journalofinequalitiesandapplications.com/content/2014/1/70
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() α′(AX – Ip)+a ≥ , ∀α ∈ μ((AX – Ip)′)∩C∗;
() AY HL∼ β(T).

Proof () Let P be an orthogonal projectionmatrix onμ(B 
 (AX – Ip)). Take b = B– 

 PB 
 a,

then b ∈ μ(AX – Ip). Since

R
(
AY + a,β ,σ ) = σ [w tr

(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′B

)]
+

[
(AX – Ip)β + a

]′B
[
(AX – Ip)β + a

]
. (.)

Therefore,

R
(
AY + a,β ,σ ) – R

(
AY + b,β ,σ )

=
[
(AX – Ip)β + a

]′B
[
(AX – Ip)β + a

]
–

[
(AX – Ip)β + b

]′B
[
(AX – Ip)β + b

]
= a′Ba – b′Bb

= a′B

 (IP – P)B


 a

≥ , (.)

and the equality holds if and only if B 
 a = PB 

 a, a = B– 
 PB 

 a = b. This means if a /∈
μ(AX – Ip), then AY + b is better than AY + a. It is a contradiction.
() Assume there exists α ∈ μ((AX – Ip)′)∩C∗, such that α′(AX – Ip)+a ≤ . Then there

exists α, such that α = (AX – Ip)′α. Take b = a+λB–α, where λ > . For any (β ,σ ) ∈ T ,
we have

R
(
AY + b,β ,σ ) – R

(
AY + a,β ,σ ) = λα′β + λα′(AX – Ip)+a + λα′

B
–α.

According to Lemma ., for any λ small enough and any (β ,σ ) ∈ T ,

R
(
AY + b,β ,σ ) – R

(
AY + a,β ,σ ) ≤ .

AY + b is better than AY + a, which contradicts AY + a L∼ β(T).
() By (), there exists a such that a = (AX – IP)a. Suppose AY is as good as AY , thus,

for any (β ,σ ) ∈ T ,

R
(
AY ,β ,σ ) ≤ R

(
AY ,β ,σ ).

By Lemma ., (.) and (.) hold. Notice that for any β ∈ C̃ = {β : –β ∈ C}, (.) still
holds and C ∪ C̃ = RP , and therefore (.) is equivalent to

(AX – Ip)′B(AX – Ip) ≤ (AX – Ip)′B(AX – Ip). (.)

We obtain, from (.) and (.), for any (β ,σ ) ∈ T ,

σ [w tr
(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′

B
)]

+ (β + a)′(AX – Ip)′B(AX – Ip)(β + a)

http://www.journalofinequalitiesandapplications.com/content/2014/1/70
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≤ σ [w tr
(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′B

)]
+ (β + a)′(AX – Ip)′B(AX – Ip)(β + a). (.)

That is,

R
(
AY + (AX – Ip)a,β ,σ ) ≤ R

(
AY + a,β ,σ ). (.)

Since AY HL∼ β(T), thus, the equality in (.) holds if and only if the equality in (.) holds.
Notice that for (β ,σ ) ∈ T and any λ > , we have (λβ ,σ ) ∈ T . Therefore,

R
(
AY ,β ,σ )
= σ [w tr

(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′

B
)]

+ β ′(AX – Ip)′B(AX – Ip)β

= σ [w tr
(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′B

)]
+ β ′(AX – Ip)′B(AX – Ip)β

= R
(
AY ,β ,σ ).

It implies that no estimator is better than AY . Thus, AY HL∼ β(T). �

In fact, the converse part of Theorem . is also true. We present this in the following
theorem.

Theorem . Consider the model (.) with the loss function (.), AY + a L∼ β(T) holds if
and only if
() a ∈ μ(AX – Ip);
() α′(AX – Ip)+a ≥ , ∀α ∈ μ((AX – Ip)′)∩C∗;
() AY HL∼ β(T).

Proof By the proof of () in Theorem ., we need to prove that there does not exist p× n
matrix A and b ∈ RP such that AY + (AX – Ip)b is better than AY + (AX – Ip)a, where
(AX – Ip)a = a.
Suppose AY + (AX – Ip)b is as good as AY + (AX – Ip)a, then for any (β ,σ ) ∈ T ,

R
(
AY + (AX – Ip)b,β ,σ ) ≤ R

(
AY + (AX – Ip)a,β ,σ ).

Hence,

σ [w tr
(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′

B
)]

+ (β + b)′(AX – Ip)′B(AX – Ip)(β + b)

≤ σ [w tr
(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′B

)]
+ (β + a)′(AX – Ip)′B(AX – Ip)(β + a). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/70
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Notice that for any k > , (β ,kσ ) ∈ T , plug it in (.) and let k go to∞ and  respectively,
we have

tr
(
AXWX ′A′

B
)
– w tr

(
AVD+X

) ≤ tr
(
AXWX ′A′B

)
– w tr

(
AVD+X

)

and

(β + b)′(AX – Ip)′B(AX – Ip)(β + b)

≤ (β + a)′(AX – Ip)′B(AX – Ip)(β + a). (.)

Similarly, replacing β with λβ in (.) and let λ go to ∞, we have

β ′(AX – Ip)′B(AX – Ip)β ≤ β ′(AX – Ip)′B(AX – Ip)β .

Therefore, R(AY ,β ,σ ) ≤ R(AY ,β ,σ ). Since AY HL∼ β(T), we get

σ [w tr
(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′

B
)]
+ β ′(AX – Ip)′B(AX – Ip)β

= σ [w tr
(
VD+) – w tr

(
AVD+X

)
+ tr

(
AVA′B

)]
+ β ′(AX – Ip)′B(AX – Ip)β .

Using the same technique, for any (β ,σ ) ∈ T , we have

tr
(
AXWX ′A′

B
)
– w tr

(
AVD+X

)
= tr

(
AXWX ′A′B

)
– w tr

(
AVD+X

)
, (.)

(AX – Ip)′B(AX – Ip) = (AX – Ip)′B(AX – Ip). (.)

From (.), (.), and (.), we get, for any (β ,σ ) ∈ T ,

β ′(AX – Ip)′B(AX – Ip)b + b′(AX – Ip)′B(AX – Ip)b

≤ β ′(AX – Ip)′B(AX – Ip)a + a′
(AX – Ip)′B(AX – Ip)a.

Hence,

β ′(AX – Ip)′B(AX – Ip)
[
b – (AX – Ip)+a

]
+ b′(AX – Ip)′B(AX – Ip)b – a′Ba≤ .

From Lemma .,

b′(AX – Ip)′B(AX – Ip)b – a′Ba≤ , (.)

(AX – Ip)′B(AX – Ip)
[
b – (AX – Ip)+a

] ∈ C∗. (.)

This together with the condition () implies that

[
b – (AX – IP)+a

]′(AX – Ip)′B(AX – Ip)(AX – IP)+a

= b′(AX – IP)′Ba – a′Ba≥ .
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Hence,

b′(AX – IP)′Ba≥ a′Ba. (.)

From (.) and (.), we have [(AX – IP)b– a]′B[(AX – IP)b– a]≤ . Thus, [(AX – IP)b–
a]′B[(AX – IP)b – a] = .

B(AX – IP)b = Ba = B(AX – IP)a. (.)

Plug (.), (.), and (.) into (.) and we find that the equality in (.) holds. It means
there does not exist an estimator that is better than AY + a. Therefore, AY + a L∼ β(T)
holds. �

We summarize Theorem . and Theorem . in the following theorem.

Theorem . Consider the model (.) with the loss function (.), AY + a L∼ β(T) holds if
and only if
() a ∈ μ(AX – Ip);
() α′(AX – Ip)+a ≥ , ∀α ∈ μ((AX – Ip)′)∩C∗;
() AV = APXV ;
() ĀXWX ′Ā′ ≤ ( –w)ĀXWSB–;
() rk[(AX – Ip)W ] = rk(AX – Ip).

Conclusion
In this paper, under a generalized balanced loss function, we study the admissibility of
linear estimators of the regression coefficient in general Gauss-Markov model with re-
spect to an inequality constraint. The necessary and sufficient conditions that the linear
estimators of regression coefficient function are admissible are obtained, in the class of
homogeneous and inhomogeneous linear estimation, respectively.
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