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1 Introduction
The n-dimensional spherical space of curvature 1 is defined as follows (see [1-4]).

Let S,(1) = {x(x1,%0,...,%41) | Zf’:ll x? = 1} be the n-dimensional unit sphere in the
(n+1)-dimensional Euclidean E**L. For any two points x(x1, %2, . . ., %,141), YV1, Y2, -+ -, Yus1) €
S, (1), the spherical distance between points x and y is defined as the smallest non-negative
number xy such that

COSXY =X1)Y1 + X2Y2 + + -+ + Xp41Vn+1-

The n-dimensional unit sphere S,,(1) with the above spherical distance is called the #-
dimensional spherical space of curvature 1. Actually, the spherical space S,,(1) is the bound-
ary of an n-dimensional sphere of radius 1 in the (# + 1)-dimensional Euclidean space E"*!
with geodesic metric (that is, shorter arc).

Let @, be an n-dimensional simplex with vertices P; (i = 1,2,...,n + 1) in the n-
dimensional spherical space S,(1), r and R the in-radius and the circumradius of €2,,, re-
spectively. Let p;; = I/’,\P, (i#J,i,j=1,2,...,n+1) be the edge lengths of the spherical sim-
plex €2, &; the altitude of 2, from vertex P;, i.e. the spherical distance from point P; to
the face f; = {Py - - P;_1 P41 - - - Ppy1} ((n —1)-dimensional spherical simplex) of ©2,,. Let D be
any point inside the simplex €2, and r; be the spherical distance from point D to the face
fiof Q,fori=1,2,...,n+1

For an n-simplex A, in the n-dimensional Euclidean space E”, some important inequal-
ities for the edge lengths of A, and ; (i =1,2,...,n + 1), inequalities for edge lengths and
in-radius, circumradius, and altitudes of A, were established (see [5-10]). But similar in-

equalities for an z-simplex in the spherical space S, (1) have not been established. In this
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paper, we discuss the problems of inequalities for a spherical simplex and obtain some
related inequalities for an n-simplex in the spherical space S,,(1).

2 Inequalities for an n-simplex in the spherical space S,(1)
In this section, we give some inequalities for the distances from an interior point to the
faces of spherical simplex €2, and inequalities for edge lengths and in-radius, circumra-
dius, and altitudes of £2,,. Our main results are the following theorems.

Let ¢y (i #j, i,j = 1,2,...,n + 1) be the dihedral angle formed by two faces f; and f; of an
n-simplex €2, in the spherical space S,(1).

Theorem 1 Let 2, be an n-simplex in the n-dimensional spherical space S,(1) with dihe-
dral angles ¢;; (i #j, i,j = 1,2,...,n + 1), D be any interior point of simplex 2, and r; the
distance from the point D to the face f; of 2, for i =1,2,...,n + 1. For any real numbers
Ai#0(i=1,2,...,n+1), we have

n+l " n+1 2
Acos’r < M+1l) - 222
Soteotne |ty (Sin) - 3

1<i<j<n+1

+ Z A?Ajzcosz ©ij» (1)

1<i<j<mn+l

with equality if and only if the nonzero eigenvalues of matrix G are all equal. Here

)\.1 sin r

_)‘-i)\j COS @ Ao sin ry

G= ’ (2)

Aps1 SINFp4q

|Arsinry Apsinry  --- A1 SinTugg 1
and ;=7 (i=1,2,...,n+1).

Let M = (cos pl-,»);fj*:ll be the edge matrix of an n-simplex €2, in S,(1), then M is a posi-
tive definite symmetric matrix with diagonal entries equal to 1 (see [3, 11]); by the cosine
theorem of a simplex 2, in S,(1) (see [13]), we have

M .
cosj=———— (5,j=1,2,...,n+1). 3)
’ VM VM
Here M;; denotes the cofactor of matrix M corresponding to the (i, j)-entry. From Theo-
rem 1 and (3) we get an inequality for r; (i = 1,2, ..., n +1) and the edge lengths of spherical
simplex €2, as follows.

Theorem 1’ For any interior point D of an n-simplex Q,, in S,(1) and any real numbers
Ai#0(i=1,2,...,n+1), we have
2

n+l " n+l 2 M2
AZcos?r; < A2yl - A222| 4 Y e A
St (S - Z ) X g

1<i<j<n+l 1<i<j<mn+l

with equality if and only if the nonzero eigenvalues of matrix G are all equal.
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If we take A? = Mj; (i=1,2,...,n + 1) in (4), we get the following corollary.

Corollary 1 For any interior point D of an n-simplex 2, in S,(1), we have

n+l n+1 2
2 n 2
;Mﬁ cosr; < L(” ) (;Mﬁ + 1> - Z MiiM//} + Z M. (5)

1<i<j<n+l 1<i<j<n+l

Equality holds if and only if the nonzero eigenvalues of matrix G with A; = /M;; (i =
1,2,...,n+1) are all equal.

If we take the point D to be the in-center of @, thenr; =r (i=1,2,...,n + 1) and from
Theorem 1 and Theorem 1’, we get an inequality for the simplex €2, as follows.

Corollary 2 For an n-simplex Q,, in S,,(1) and real numbers A; 70 (i =1,2,...,n+1), we
have

n+1 " n+1l 2
A2 ) cos?r < A1) - 122
(; z) r= |:2(n+1) <Zl i Z [y

i= 1<i<j<m+l

+ Z )lekf cos” gy, (6)

1<i<j<n+l
or
n+l " n+l 2
2 2 2 242
(in)cmf{m(zwl) S u,}
i=1 i=1 1<i<j<n+1
2
ij

M
+ E 222 . 7
i MM @)

1<i<j<n+l

Equality holds ifand only if the nonzero eigenvalues of matrix Gwithr; =r(i=1,2,...,n+1)
are all equal.

If we take A7 = M; (i=1,2,...,n+1) in (7), we get an inequality for the in-radius and the
edge lengths of a simplex as follows.

Corollary 3 For an n-simplex Q, in S, (1), we have

n+l

2
1 n
2 2
cos™r =< :,:11 ; L(” ) ( ?:1 M;; + 1) - E M;iiMj; + E Mij . (8)

1<i<j<n+1 1<i<j<n+1

Equality holds if and only if the nonzero eigenvalues of matrix G with r; = r and A; = \/M;;
(i=1,2,...,n+1)are all equal.

Put1;=1(i=1,2,...,n+1)in (6) and (7), and we get the following corollary.
Corollary 4 For an n-simplex Q,, in S,(1), we have

) 21n% + 3n 1 M;‘;
cos’r <
MM

e : ©)
= 2
2m+1)? n+1 Vi m
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or

21 +3 1
cos’r < S ron +— Z cos? @ij. (10)

1<i<j<mn+1

Equality holds if and only if the nonzero eigenvalues of matrix G with r; =r and X; = 1
(i=1,2,...,n+1)areall equal.

Besides, we obtain an inequality for the edge lengths and circumradius of an n-simplex
Q, in S,(1) as follows.

Theorem 2 Let p; (i,j =1,2,...,n + 1) and R be the edge lengths and the circumradius of
an n-simplex 2, in S,(1),respectively; let x; >0 (i = 1,2,...,n + 1) be real numbers, then we
have

n+l 2 n+l n+l
Z xx;sin® pyj < {2(71’1 ) (; X+ l) - le} + (Z&) cos?R. (11)

1<i<j<m+l i=1 i=1

Equality holds if and only if the nonzero eigenvalues of matrix B are all equal. Here

{ JxTcosR‘I

B= /%iXj COS pjj : ) (12)
/%41 COSR
JHLCOSR -+ /X1 CcO0SR 1

If take x; =% = - -+ =x,,,1 = 1 in Theorem 2, we get an inequality as follows.

Corollary 5 For an n-simplex Q, in S,(1), we have

>4+2n* -2
Z sin? Py < % +(m+1)cos’R, (13)

1<i<j<n+l

with equality holding if and only if the nonzero eigenvalues of matrix Bwith x, =xy = --- =
%xy:1 =1 are all equal.

Finally, we give an inequality for edge lengths and altitudes of an n-simplex in S,(1) as
follows.

Theorem 3 Let h; (i =1,2,...,n + 1) and M be the altitudes and the edge matrix of an
n-simplex Q,, in S,(1), respectively; let x; >0 (i =1,2,...,n + 1) be real numbers, then we
have

n+l s/ n+l n+l ﬁ ’
Z (Hx,) csc?h; > (n+1) (H xi> - |M|wT, (14)

=1 \j=1 i=1
#

with equality holding if and only if the eigenvalues of matrix Q are all equal. Here

Q = (/& cos plf,«):j:ll, M = (cos py Z;;ll. (15)
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If we take x; = csc? f; (i =1,2,...,7 + 1) in (14), we get the following corollary.

Corollary 6 For an n-simplex 2, in S,(1), we have

n+l . 9 ”T*l

sink; < |M|2 < { sin? } , 16
[Lsinni=imi? < |-ooes >0 sin®py (16)
i=1 1<i<j<n+l

with equality holding if Q,, is regular.
We will prove |M|% < [ﬁ D i<icj<nil sin? o “ and we have equality if 2, is regular
in the next section.

3 Proof of theorems

To prove the theorems in the above section, we need some lemmas.

Lemma 1 Let M = (cos p;; ffj*zll be the edge matrix of an n-simplex Q,, in S,(1), then M is a
positive definite symmetric matrix with diagonal entries equal to 1.

For the proof of Lemma 1 one is referred to [3, 11].

Lemma 2 Let ¢; be the dihedral angle formed by two faces f; and f; of an n-simplex Q,
inS,(1) fori#j,i,j=1,2,...,n+1,and ¢; =7 (i=1,2,...,n + 1), then the Gram matrix

A =(-cos (p,;)ffjill is positive definite symmetric matrix with diagonal entries equal to 1.

For the proof of Lemma 2 one is referred to [1].

Lemma 3 (see [12]) Let i be the set of all points and oriented (n — 1)-dimensional hyper-
planes in the spherical space S,(1). For arbitrary m elements e|, ey, ..., e, of u, define g; as
follows:
(i) if e; and e; are two points, then g; = coséfej (where é?e,- be spherical distance between
e; and e));
(ii) ife; and e; are unit outer normals of two unit outer normal of oriented , then
gi = cosese; (where ege; is dihedral angle formed by e; and e;);

(iii) if either of e; and e; is a point, and another is an outer normal, then g; = sin h;;
(where hyj is the spherical distance with sign based on the direction from the point to
the hyperplane).

Ifm>n+1,then

det(g,»,»):;le =0.

Lemma 4 Let h; be the altitude from vertex P; of an n-simplex Q,, in S,(1) fori=1,2,...,

n+1, and M = (cos p; ffj‘;ll the edge matrix, then we have

M|

i

sin?h; =

(i=1,2,...,n+1). 17)

For the proof of Lemma 4 one is referred to [13].
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Proof of Theorem 1 Let ¢; is the unit outer normal of the oriented f; (i =1,2,...,n + 1) and
the point e,,» = D, such that e/ie\,' =m—@; (i,j=1,2,...,n+1) and the spherical distance with
sign based on the direction from the point e, to the hyperplanee; isr; fori=1,2,...,n+1.
By Lemma 2 we know that the (72+1) x (1 +1)-order matrix (cos &)/ = (~cos @)/ =
A is a positive definite symmetric matrix. Because 1; #0 (i = 1,2,...,n + 1), the matrix
T = (—A;Ajcos wi,)ffj"zll is also a positive definite symmetric matrix.
By Lemma 3 we have

sinr
—COS @ :
B- ~o. (18)
Sin 7,41
sinr;  --- Sin7y,y 1

From (18) and A; #0 (i=1,2,...,n + 1), we get

A sinr

detG - -0 (19

)\n+l S 7y

Asinrg -+ Apy1Sinrg 1

Because the matrix T' = (=A;}; cos ¢ Z;;ll is also a positive definite symmetric matrix and
det G = 0, the matrix G is a semi-positive definite symmetric matrix and the rank of matrix

Gisn+1l.Letu; >0(i=1,2,...,n+1) and u,,, = 0 be the eigenvalues of the matrix G, and

n+2 n+l
o1 = Zui = Zui, Oy = Z uiuj = Z u;u;.
i=1 i=1 1<i<j<mn+2 1<i<j<n+l
Using Maclaurin’s inequality [5], we have
< ! )2 N (20)
o 0.
nel V) = n(n+1) >
Equality holds if and only if uy = uy = - - - = 4,41
By the relation between the eigenvalues and the principal minors of the matrix G, we
have
n+l n+l
o1 = Z)\Lz +1, oy = Z A?A}.z sin® @i + Zkf cos?r;. (21)
i=1 1<i<j<n+l i=1

Substituting (21) into (20), we get inequality (1). It is easy to see that equality holds in (1)
if and only if the nonzero eigenvalues of matrix G are all equal. O

Proof of Theorem 2 Let C be the circumcenter of €2,,, then 6?, =R(i=1,2,...,n+1). For
real numbers x; >0 (i =1,2,...,n + 1), by Lemma 1 we know that the matrix Q in (15) is a

positive definite symmetric matrix. We take pointse; = P; (i=1,2,...,n+ 1) and e,,2 = C,

Page 6 of 9
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and by Lemma 3 we have

CcosR
COSR
CoOsSR --- cosR 1

From thisand x; >0 (i=1,2,...,n + 1), we get

/%1 CosR

det B = V/Xikj COS Pij : -0. (22)
%41 COSR
JELCOSR -+ /X1 C08R 1

Because the matrix Q = (,/%¥; cos p,;)jf;zll is positive definite symmetric and detB = 0,
the matrix B is a semi-positive definite symmetric matrix and its rank is n + 1. Let v; > 0

(i=1,2,...,n+1), v,y = 0 be the eigenvalues of matrix B, and

n+2 n+l
o] = ZV,‘ = Zl/i, Oy = Z Viv; = Z Vivj.
i=1 i=1 1<i<j<n+2 1<i<j<n+1
Using Maclaurin’s inequality [5], we have
() o
—0 —o0y.
nel ') = n(n+1) 2
Equality holds if and only if v; = v = -+ - = v,,41.
By the relation between the eigenvalues and the principal minors of the matrix B, we
have
n+l n+l
o1 = in +1, 09 = Z xiXj sin® P+ Zx,-(l - cos? R). (24)
i=1 1<i<j<mn+l i=1

Substituting (24) into (23), we get inequality (11). It is easy to see that equality holds

in (11) if and only if the nonzero eigenvalues of matrix B are all equal. O

Proof of Theorem 3 From x; >0 (i =1,2,...,n + 1) and the edge matrix M = (cos pi,')f;;ll
of 2, being a positive definite symmetric matrix, we know that the matrix Q in (15) is also
a positive definite symmetric matrix. Let a; >0 (i = 1,2,...,n + 1) be the eigenvalues of the

matrix Q, and

n+l n+l n+l
Oy = E | I a;, Opsl = Hﬂi~
i=1 j=1 i=1

J7i
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By Maclaurin’s inequality [5], we have

1
(120n) 2 . (25)
n+1
Equality holds if and only ifa; = a3 = - - - = ay,41.
By the relation between the eigenvalues and the principal minors of the matrix Q, we
have
n+l nel /nel
aFZQﬁ:Z(Hx,-)Mﬁ (i=1,2,...,n+1), (26)
i=1 i=1 \j=1
Jj#i
n+l
o1 = 1Ql = (Haq) M. (27)
i-1

From (25), (26), and (27), we get

n+l /n+l n+l ﬁ
> (Hx,) M > (n+1) (H x,) M|, (28)
=1 \j=1 i=1

J#i
By Lemma 4 we have

M =|M|csc®h; (i=1,2,...,n+1). (29)

Substituting (29) into (28), we get inequality (14). It is easy to see that equality holds in
(14) if and only if the eigenvalues of matrix Q are all equal.
Finally, we prove that inequality (30) is valid:

n+l
T
E sin? ,ol-,} . (30)

1<i<j<m+l

M =< {n(n +1)

Let b; (i =1,2,...,n+1) be the eigenvalues of the edge matrix M = (cos pi,»)fj*zll. Since the

matrix M is a positive definite symmetric matrix, b; > 0. Let
n+l
0y = Z b;bj, Opsl = Hbi'
1<i<j<n+1 i=1
By Maclaurin’s inequality [5], we have

(-2 ) > (G) . (31)

n(n+1) o

Equality holds if and only if by = by = - - - = b,41.
By the relation between the eigenvalues and the principal minors of the matrix M, we
have

or= Y sinpy o =ML (32)

1<i<j<n+l
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From (31) and (32), we get inequality (30). If ©2,, is a regular simplex in S,(1), then p;; = 7
(i#j,4j=12,...,n+1), M|=1and M; =1 (i=1,2,...,n +1). By (17) we have sin/k; =1
(i=1,2,...,n +1); thus equality holds in (16) if ©,, is a regular simplex. O
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