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Abstract

Recently, some (common) multidimensional fixed theorems in partially ordered
complete metric spaces have appeared as a generalization of existing (usual) fixed
point results. Unexpectedly, we realized that most of such (common) coupled fixed
theorems are either weaker or equivalent to existing fixed point results in the
literature. In particular, we prove that the results included in the very recent paper
(Charoensawan and Thangthong in Fixed Point Theory Appl. 2014:245, 2014) can be
considered as a consequence of existing fixed point theorems on the topic in the
literature.
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1 Introduction and preliminaries

Multidimensional fixed point theory was initiated in 2006 by Gnana Bhaskar and Lak-
shmikantham [1]. In fact, the authors [1] investigated the existence and uniqueness of a
coupled fixed point of certain operators in the context of a partially ordered set to solve
a periodic boundary value problem. Since then, multidimensional fixed point theorems
have been investigated heavily by several authors; see, e.g., [1-29] and related references
therein.

In this short note, we underline the fact that most of the multidimensional fixed point
theorems can be derived from the existing (uni-dimensional) fixed point results in the
literature. In particular, we shall show that the result in the recent report [6] can be con-
sidered in this frame.

For the sake of completeness, we recollect some basic definitions, notations and results
on the topic in the literature. Throughout the paper, let X be a nonempty set. Given a
positive integer #, let X” be the product space X x X x M x X.LetN={0,1,2,...} be the
set of all nonnegative integers. In the sequel, 7, m and k will be used to denote nonnegative
integers. Unless otherwise stated, ‘for all #»” will mean ‘for all n > 0’

Definition 1.1 (Rolddn and Karapinar [22]) A preorder (or a quasiorder) < on X is a bi-
nary relation on X that is reflexive (i.e., x < x for all x € X) and transitive (if x, y, z € X verify
x < yand y X z, then x < z). In such a case, we say that (X, x) is a preordered space (or a
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preordered set). If a preorder < is also antisymmetric (x < y and y < x imply x = y), then
< is called a partial order.

Throughout this manuscript, let (X, d) be a metric space, and let < be a preorder (or a
partial order) on X. In the sequel, 7,g : X — X and F : X" — X will denote mappings.

Definition 1.2 A point (x1,x,...,%,) € X" is:
« a coupled coincidence point of F and g if n = 2,

F(x1,x0) =gx1  and  F(xy,%1) = gx2;
« atripled coincidence point of F and g if n = 3,

F(x1,%2,%3) = g1, F(xg,x1,%2) =gx2  and  F(x3,x2,%1) = gxs;
» aquadrupled coincidence point of F and g if n = 4,

F(xl)x21x3’x4) = gx1, F(x2)x3;x4’x1) =gx2,

F(x3,%4,%1,%2) = gx3  and  F(xa,%1,%2,%3) = gX4.

Notice that when we take g as the identity mapping on X, then a point verifying the
related conditions above is a coupled (respectively, tripled, quadrupled) fixed point of F
due to Gnana Bhaskar and Lakshmikantham [1] (respectively, Berinde and Borcut [9],
Karapinar [13]).

Definition 1.3 (Al-Mezel et al. [21]) If (X, <) is a preordered space and T,g : X — X are
two mappings, we will say that T is a (g, x)-nondecreasing mapping if Tx < Ty for allx,y €
X such that gx < gy. If g is the identity mapping on X, T is <-nondecreasing.

In [28], (g, <)-nondecreasing mappings were called g-isotone mappings (in particular,
when X is a product space X").

Definition 1.4 A fixed point of a self-mapping T : X — X is a pointx € X such that Tx = x.
A coincidence point between two mappings 7,¢ : X — X isa point x € X such that Tx = gx.
A common fixed point of T,g : X — X is a point x € X such that Tx = gx = x.

Definition 1.5 We will say that 7 and g are commuting if gTx = Tgx for all x € X, and
we will say that F and g are commuting if gF(x1,%2,...,%,) = F(gx1,8%2,...,9%,) for all
Xiyevor Xy €X.

Remark 1.1 If 7,g: X — X are commuting and x, € X is a coincidence point of 7 and g,
then Tk, is also a coincidence point of 7" and g.

In 2003, Ran and Reurings characterized the Banach contraction mapping principle in
the context of partially ordered metric space.

Theorem 1.1 (Ran and Reurings [20]) Let (X, <) be an ordered set endowed with a metric
dand T : X — X be a given mapping. Suppose that the following conditions hold:
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(a) (X,d) is complete.

(b) T is x-nondecreasing.

(¢) T is continuous.

(d) There exists xg € X such that xq < Txo.

(e) There exists a constant k € (0,1) such that d(Tx, Ty) < kd(x,y) for all x,y € X with

X =Y.

Then T has a fixed point. Moreover, if for all (x,y) € X? there exists z € X such that x < z

and y < z, we obtain uniqueness of the fixed point.

After Ran and Reurings’ result, fixed point theorems have been investigated heavily. One
of the interesting results in this direction was reported by Nieto and Rodriguez-Lépez in
[19], who slightly modified the hypothesis of the previous result swapping condition (c)
with the fact that (X, d, <) is nondecreasing-regular as follows.

Definition 1.6 Let (X,<) be an ordered set endowed with a metric d. We will say
that (X,d, <) is nondecreasing-regular (respectively, nonincreasing-regular) if any <-
nondecreasing (respectively, <-nonincreasing) sequence {x,,} is d-convergent to x € X,
we have that x,, < x (respectively, x,, = x) for all m. And (X,d, <) is regular if it is both

nondecreasing-regular and nonincreasing-regular.

Inspired by Boyd and Wong’s theorem [10], Mukherjea [18] introduced the following
kind of control functions:

o= {go :[0,00) = [0,00) : p(t) < t and rlir% @(r) < t for each ¢ > 0},

and proved a version of the following result in which the space is not necessarily endowed
with a partial order (but the contractivity condition holds over all pairs of points of the

space).

Theorem 1.2 Let (X, <) be an ordered set endowed with a metricd and T : X — X be a
given mapping. Suppose that the following conditions hold:

(a) (X,d) is complete.

(b) T is x-nondecreasing.

(c) Either T is continuous or (X, d, X) is nondecreasing-regular.

(d) There exists xq € X such that xy < Txg.

(e) There exists ¢ € ® such that d(Tx, Ty) < ¢(d(x,y)) for all x,y € X with x = y.

Then T has a fixed point. Moreover, if for all (x,y) € X? there exists z € X such that x < z
and y < z, we obtain uniqueness of the fixed point.

A partial order < on X can be extended to a partial order T on X" defining, for all
Y= ()’1»)/2, e ;J/n); V= (Vll V2seees Vn) € Xn,

if Vi Vi i=13,5,...,

YoV
%?W: i:2,4,6,....

@

An interesting generalization of the previous result was given by Wang in [28] using this
extended partial order on X”.
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Theorem 1.3 (Wang [28], Theorem 3.4) Let (X, %) be a partially ordered set and suppose
that there is a metric d on X such that (X,d) is a complete metric space. Let G : X" — X"
and T : X" — X" be a G-isotone mapping for which there exists ¢ € ® such that for all
Y e X", V e X" with G(V) C G(Y),

pa(T(Y), T(V)) < 0(pa(G(Y), G(V))),

where p,, is defined, for all Y = (y1,¥2,...,9n), V = (vi,v2,...,v,) € X", by

pu(Y, V) = [dln, ) + s, v2) -+ )]

Suppose T(X") C G(X") and also suppose either

(@) T is continuous, G is continuous and commutes with T, or

(b) (X,d, <) is regular and G(X") is closed.

If there exists Yo € X" such that G(Yy) and T(Yy) are T-comparable, then T and G have
a coincidence point.

For further generalizations of the previous result, we refer readers to papers of Roma-
guera [25] and in Al-Mezel et al. [21].
Gnana Bhaskar and Lakshmikantham introduced the following condition in order to

guarantee the existence of coupled fixed points

Definition 1.7 (Gnana Bhaskar and Lakshmikantham [1]) Let (X, <) be a partially or-
dered set and F: X x X — X. We say that F has the mixed monotone property if F(x,y) is

monotone nondecreasing in x and is monotone nonincreasing in y, that is, for any x, y € X,

x,€X, x<sS% =  Flx,y) < Flx,9),

yuyeX, <y = Flen)=Flxy).

On the other hand, Samet and Vetro [26] succeeded in proving some results in which

the mapping F did not necessarily have the mixed monotone property.

Definition 1.8 (Samet and Vetro [26]) Let (X, d) be a metric space and F: X x X —> X
be a given mapping. Let M be a nonempty subset of X*. We say that M is an F-invariant
subset of X* if, for all x,y,z,w € X,

(i) (y,z,w) e M < (W,z,y,x) € M;

(i) (x,9,z,w) e M = (F(x,), F(y,x), F(z,w), F(w,2)) € M.

The following theorem is the main result in [26].

Theorem 1.4 (Samet and Vetro [26]) Let (X, d) be a complete metric space, F: X x X — X
be a continuous mapping and M be a nonempty subset of X*. We assume that

(i) M is F-invariant;

(ii) there exists (xo,Y0) € X2 such that (F(xo,y0), F(¥0,%0), %0, ¥0) € M;


http://www.journalofinequalitiesandapplications.com/content/2014/1/522

Karapinar and Roldan-Lépez-de-Hierro Journal of Inequalities and Applications 2014, 2014:522 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/522

(iii) for all (x,y,u,v) € M, we have

d(F(x,y), F(u,v))

=

d(x,F(x,)) +d(y, F(y,%))]

N R
—

+ [d(u, F(u, V)) + d(V, F(v, u))] + [d(x, F(u, v)) + d(y,F(v, u))]

[dx,u) +d(y,v)],

+

NI N[
N> o]

[d(u, Fx,9) +d(v,F(3,x))] +

where a, 8,0, v, § are nonnegative constants such thato + B+0 +y +§ < 1.
Then F has a coupled fixed point, i.e., there exists (x,y) € X x X such that F(x,y) = x and

F()’»x) =Y.

Furthermore, Sintunavarat et al. [27] introduced the notion of transitive property to re-

consider the Lakshmikantham and Ciri¢’s theorem (see [17]) without the mixed monotone

property.

Definition 1.9 (Sintunavarat et al. [27]) Let (X, d) be a metric space and M be a subset of
X*. We say that M satisfies the transitive property if, for all x,y,z,w,a,b € X,

wy,zzw)eM and (z,w,a,b)eM = (x,y,a,b)e M.

Then they proved the following result.

Theorem 1.5 (Sintunavarat et al. [27]) Let (X,d) be a complete metric space and M be
a nonempty subset of X*. Assume that there is a function ¢ : [0,00) — [0,00) with 0 =
©(0) < @(t) < t and lim,_, 4+ ¢(r) < t for each t > 0, and also suppose that F: X x X — X isa
mapping such that

(2)

dx,u) +d(y,v)
)

d(F(x,9), F(u,v)) < §0(

for all (x,y,u,v) € M. Suppose that either
(a) F is continuous or

(b) if for any two sequences {xy,}, {ym} With (Xps1, Vim+1> Xm> Ym) € M,
{%m} = x, {ym} =y,

for all m > 1, then (%, ¥, %y Ym) € M for all m > 1.
If there exists (x0,Y0) € X X X such that (F(xo,0), F(¥0,%0),%0,Y0) € M and M is an F-
invariant set which satisfies the transitive property, then there exist x,y € X such that x =
F(x,y) and y = F(y,x), that is, F has a coupled fixed point.

Recently, Charoensawan [11], based on Batra and Vashistha’s results, introduced the

tripled case as follows.
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Definition 1.10 (Charoensawan [11]) Let (X, <) be a metric space and F: X3 — X be a
given mapping. Let M be a nonempty subset of X°. We say that M is an F-invariant subset
of X® if and only if, for all %, y,z,u, v,w € X,

x,9,z,u,v,w) € M

= (F(%9,2),F(y%,9),F(z,9,%), F(u,v,w), F(v,u,v), F(w, v, u)) € M.
The following concept is an extension of Definition 1.9.

Definition 1.11 (Charoensawan [11]) Let (X, <) be a metric space and M be a subset of X°.
We say that M satisfies the transitive property if and only if, for all x, y,z,u,v,w,a,b,c € X,

wy,z,u,v,weM and (u,v,w,a,b,c)eM — (x,9,z,a,b,c)€ M.

Definition 1.12 (Charoensawan [11]) Let (X, <) be a metric space and F: X3 — X, g
X — X be given mappings. Let M be a nonempty subset of X°. We say that M is an (F, g)-
invariant subset of X° if and only if, for all x,y,z, u,v,w € X,

(g, gy, g2, gu, gv,gw) € M
= (F(x,5,2),F(,%9),F(z,%), F(u,v,w), F(v,u,v), F(w,v,u)) € M.

In the previous definitions, it is not necessary to consider either a metric or a partial
order on X.

Theorem 1.6 (Charoensawan [11], Theorem 3.7) Let (X, <) be a complete metric space
and M be a nonempty subset of X°. Assume that there is a function ¢ : [0, +00) — [0, +00)
with 0 = 9(0) < ¢(t) < t and lim,_, s+ (r) < t foreach t > 0, and also suppose that F : X> — X
and g: X — X are two continuous functions such that

d(F(x,9,2), F(u,v,w)) + d(F(y,%,9), F(v,u,v)) + d(F(z,5, %), F(w, v, u))

<30 (d(gx,gu) + d(g);gv) + d(gz,gw))

forallx,y,z,u,v,w € X with (gx, gy, gz, gu, gv,gw) € M or (gu, gv,gw, gx, gy, gz) € M. Suppose
that F(X?) C gX, g commutes with F.
If there exists (xo,y0,20) € X> such that

(F(xo,yo,zo),F()/o,xo,yo),F(Zoyyo;xo)ygxo»gyo,gzo) GM

and M is an (F,g)-invariant set which satisfies the transitive property, then there exist
x,9,z € X such that

gx=F(x,9,2), gy=F(y,x,y) and gz=F(z,y,x).

Meanwhile, Kutbi et al. [16] used a bidimensional extension of an F-invariant subset as
follows.
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Definition 1.13 (Kutbi et al. [16]) We say that M is an F-closed subset of X* if, for all
x99, u,veEX,

@yuv)VeM = (F(x,y),F(y, x), F(u,v), F(v, u)) e M.
The following one is the main result of Kutbi et al. [16].

Theorem 1.7 (Kutbi et al. [16]) Let (X,d) be a complete metric space, let F: X x X — X
be a continuous mapping, and let M be a subset of X*. Assume that:
(i) M is F-closed,
(i) there exists (xo,%0) € X such that (F(xo,%0), F(¥o,%0), %0, ¥0) € M;
(ili) there exists k € [0,1) such that for all (x,y,u,v) € M, we have

d(F(x,y),F(u, V)) + d(F(y,x),F(V, u)) < k(d(x, u) +d(y, v)).
Then F has a coupled fixed point.

2 Main results
In this section we shall indicate our main result. Before stating the main theorem, we give
necessary remarks. First of all, we consider the following family:

P = [go:[O,oo)—> [0,00):0 = ¢(0) < p(¢) < tand lirggo(r) <tf0reacht>0].

Notice that this family of control functions was employed by Sintunavarat et al. in Theo-
rem 1.5 and by Charoensawan in Theorem 1.6. Here, we should mention that it is not as
general as Wang’s family & since the value ¢(0) is not necessarily determined if ¢ € ®.
Thus, we have @’ C @ in this sense.

Secondly, we pay attention to the following fact: Charoensawan’s notion of F-invariant
set is similar to Kutbi et al.’s notion of F-closed set, but it is different from Samet and Vetro’s
original concept because property (i) in Definition 1.8 is not imposed. Then, coherently
with Definition 1.13, we prefer calling these subsets employing the term F-closed.

Definition 2.1 Let T,g: X — X be two mappings and let M C X? be a subset. We will say
that M is:

+ (T,g)-closed if (Tx, Ty) € M for all x,y € X such that (gx, gy) € M;

o (T,g)-compatible if Tx = Ty for all x,y € X such that gx = gy.

Definition 2.2 ([29]) We will say that a subset M C X? is transitive if (x,y),(y,z) € M
implies that (x,z) € M.

Definition 2.3 ([29]) Let (X,d) be a metric space and let M € X? be a subset. We will say
that (X, d, M) is regular if for all sequence {x,,} € X such that {x,,} — x and (x,,,, x,,1) € M
for all 7, we have that (x,,,x) € M for all m.

Definition 2.4 Let (X,d) be a metric space and let M C X? be a subset. Two mappings
T,g:X — X are said to be (O, M)-compatible if

lim d(gTx,,, Tgx,,) =0

m— 00
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provided that {x,,} is a sequence in X such that (gx,,, gx,,,1) € M for all m > 0 and

lim Tx,, = lim gx,, € X.
m—0o0

m— 00

Remark 2.1 If T and g are commuting, then they are also (O, M)-compatible, whatever M.
The main result in [29], using the previous notions, is the following one.

Theorem 2.1 (Karapinar et al. [29]) Let (X, d) be a complete metric space,let T,g: X — X
be two mappings such that TX C gX, and let M C X? be a (T, g)-compatible, (T, g)-closed,
transitive subset. Assume that there exists ¢ € ® such that

d(Tx, Ty) < (p(d(gx,gy)) Sforall x,y € X such that (gx,gy) € M.

Also assume that, at least, one of the following conditions holds:

(a) T and g are M-continuous and (O, M)-compatible;

(b) T and g are continuous and commuting;

(o) (X,d, M) is regular and gX is closed.

If there exists a point xo € X such that (gxo, Txo) € M, then T and g have, at least, a co-
incidence point.

The following one is the main result of [6].

Theorem 2.2 (Charoensawan and Thangthong [6], Theorem 3.1) Let (X, X) be a partially
ordered set and M be a nonempty subset of X°, and let d be a metric on X such that (X, d)
is a complete metric space. Assume that F,G : X x X x X — X are two generalized com-
patible mappings such that G is continuous, and for any x,y,z € X, there exist u,v,w € X
such that F(x,y,z) = G(u,v,w), F(y,z,x) = G(v, w,u), and F(z,x,y) = G(w, u,v). Suppose that
there exists ¢ € ® such that the following holds:

d(F(x,5,2), F(u,v,w)) + d(F(y,2,%), F(v,w, ) + d(F(z,%,5), F(w,u,v))

< ¢9(d(G(x,9,2), G(u,v,w)) + d(G(y,2,%), G(v, w,u)) + d(G(z,%,%), Gw,u,v))) (3)
forall x,y,z,u,v,w € X with
(G(x,y, 2), G(y, z,x), G(z,%,9), G(u, v, w), G(v, w, u), G(W, u, v)) e M.

Also suppose that either
(a) F is continuous or
(b) for any three sequences {x,}, {yn} and {z,} with

(G(xn)ym Zn)r G(y;«n Zy, xn): G(zm xn;yn);

G(xwrl;ywrlr ZVI+1)) G(ynﬂ; Zp+1s xn+1), G(Znﬂ; xn+1,yn+l)) eM

and

{Gemymz)} =% {GUwzwx)} =2 {Gwxwmyn)} =2

Page 8 of 12
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for all n> 1 implies
(G Y 21) GWs Zns %), G(2s X0y Yin), %,9,2) €M forall n > 1.
If there exist xo,yo,20 € X X X such that

(G(xO:yO:ZO)) G()/o,Zo,xo), G(Zo,xo,yo),F(WOIQ’O,ZO),F()’O,ZO»?CO),F(Zo,xo,yo)) GM

and M is an (G, F)-closed, then there exist (x,y,z) € X x X X X such that G(x,y,z) =
F(x,9,2), G(y,z,%x) = F(y,z,%), and G(z,x,y) = F(z,%,y), that is, F and G have a tripled point
of coincidence.

The following remarks must be done in order to clarify some facts stated in [6] to the
reader.
« In the previous theorem, the authors assumed that (X, <) is a partially ordered set.
Clearly, it is a superfluous hypothesis.
« We understand that ‘x9,¥0,z0 € X x X’ is an erratum and that it must be replaced by
‘%0,%0,20 € X"
« In [6], Example 3.2 is invalid since G(x,y,z) = x + y + z does not necessarily belong to
X =1[0,1] when x,y,z € X are arbitrary.
Let Y = X x X x X. It is easy to show that the mappings ,§: Y x ¥ — [0, 00), defined
by

n((x,y, 2), (1, v, w)) =d(x,u)+d(y,v)+d(z,w) and
8((x,9,2), (u,v,w)) = max{d(x,u),d(y,v),d(z,w)}

for all (x,y,2), (u,v,w) € Y, are metrics on Y.
Now, given a mapping F : X x X x X — X, let us define the mapping Tr: Y — Y by

Tr(x,y,2) = (F(x,9,2), F(3,2,%),F(z,,9)) forall (x,,2) €Y.
It is simple to show the following properties.

Lemma 2.1 (see, e.g, [7]) The following properties hold:

(1) (X,d) is complete if and only if (Y,n) (and (Y, 5)) is complete;

(2) F has the mixed monotone property if and only if Tr is monotone nondecreasing with
respect to <;

(3) (%,9,2) € X x X x X is a tripled fixed point of F if and only if (x,y,z) is a fixed point
of Tr.

(4) x,9,2) € X x X x X is a tripled coincidence point of F and G if and only if (x,y,z) is
a coincidence point of Tp and Tg.

(5) (%,9,2) € X x X x X is a tripled common fixed point of F and G if and only if (x,,z)
is a common fixed point of Tp and Tg.

As a consequence of the previous facts, next we show that Theorem 2.2 is not a true
extension: indeed, it can be seen as a simple corollary of Theorem 2.1.

Page 9 of 12
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Theorem 2.3 Theorem 2.2 follows from Theorem 2.1.

Proof Notice that condition (3) is equivalent to

U(TF(x)y) z), Tr(u, v, W)) = w(U(TG(x:)’: z), Ta(u, v, W)))

forall (x, y, z), (u, v, w) € Y such that (T¢(x, y, z), Tg(u, v, w)) € M (notice that M C X° = Y?),
By Lemma 2.1, all conditions of Theorem 2.1 are satisfied. O

3 Final remarks

In this section, we underline that the common/coincidence point theorem in [6] can be
concluded as a fixed point theorem. For this purpose, we first recall the following crucial
lemma.

Lemma 3.1 ([30]) Let X be a nonempty set and T : X — X be a function. Then there exists
a subset E C X such that T(E) = T(X) and T : E — X is one-to-one.

Theorem 3.1 Let (X, d) be a complete metric space, let T : X — X be a mapping, and let
M C X? be a T-closed, transitive subset. Assume that there exists ¢ € ® such that

d(Tx, Ty) < <p(d(x,y)) for all x,y € X such that (x,y) € M.

Assume that either

(a) T is continuous, or

(b) (X,d, M) is regular.

If there exists a point xo € X such that (xo, Txo) € M, then T and g have, at least, a fixed
point.

We skip the proof of this theorem since it can be considered as a special case of The-
orem 2.1. Indeed, if we take g as the identity map on X, we conclude the result. On the
other hand, by the following lemma, we shall show that Theorem 2.1 can be derived from
Theorem 3.1.

Theorem 3.2 Theorem 2.1 is a consequence of Theorem 3.1.
Proof By Lemma 3.1, there exists E C X such that g(E) = g(X) and g : E — X is one-to-one.

Define a map /1 : g(E) — g(E) by h(gx) = T(x). Since g is one-to-one on g(E), we conclude
that % is well defined. Note that

d(Tx, Ty) = d(h(gx), h(gy)) < 9(d(x,7)) (4)

for all gx, gy € g(E). Since g(E) = g(X) is complete, by using Theorem 3.1, there exists xy € X
such that &(gxo) = gxo. Hence, T and g have a point of coincidence. It is clear that 7 and g
have a unique common fixed point whenever T" and g are weakly compatible. d

From Theorem 2.3 and Theorem 3.2 we conclude the following result.

Theorem 3.3 Theorem 2.2 is a consequence of Theorem 3.1.
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