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1 Introduction

The strongly singular non-convolution operator was introduced by Alvarez and Milman in
[1], whose properties are similar to those of the Calderén-Zygmund operator, but the ker-
nel is more singular near the diagonal than that of the standard case. Furthermore, follow-
ing a suggestion of Stein, the authors in [1] showed that the pseudo-differential operators
with symbols in the class S;,’g, where 0 < <a <landn(l-«)/2 < B < n/2,areincluded in
the strongly singular Calderén-Zygmund operator. Thus, the strongly singular Calder6n-
Zygmund operator correlates closely with both the theory of Calderén-Zygmund singular
integrals in harmonic analysis and the theory of pseudo-differential operators in PDE.

Definition1.1 Let 7: S — S’ be a bounded linear operator. T is called a strongly singular
Calder6n-Zygmund operator if the following conditions are satisfied.
(1) T can be extended into a continuous operator from L2(R") into itself.
(2) There exists a function K(x,y) continuous away from the diagonal {(x,y) : x = y}
such that

_ 8
|K(x,) = K(%,2)| + |K(y,%) = K(z,%)| < CLZ',S:

|x_z|n+a

if 2|y — 2| < |x —z| for some 0 < § <land 0 <@ < 1. And
(Tf,g) = [[ K(x,)f (y)g(x) dydx, for f,g € S with disjoint supports.
(3) For some n(1 —«)/2 < B <n/2,both T and its conjugate operator T* can be
extended to continuous operators from L7 to L2, where 1/q = 1/2 + B/n.
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Alvarez and Milman [1, 2] discussed the boundedness of the strongly singular Calderén-
Zygmund operator on Lebesgue spaces. Lin [3] proved the boundedness of the strongly
singular Calderén-Zygmund operator on Morrey spaces. Furthermore, Lin and Lu [4]
showed the boundedness of the strongly singular Calderén-Zygmund operator on Herz-
type Hardy spaces.

Suppose that T is a strongly singular Calderén-Zygmund operator and b is a locally inte-
grable function on R”. The commutator [, T'] generated by b and T is defined as follows:

(6, T](f)(x) = b(x) T (f)(x) — T(bf) ().

The authors in [5] obtained the boundedness of the commutators generated by strongly
singular Calderén-Zygmund operators and Lipschitz functions on Lebesgue spaces. Lin
and Lu [4] proved the boundedness of the commutators of strongly singular Calderén-
Zygmund operators on Hardy-type spaces. Moreover, Lin and Lu [3, 6] discussed the
boundedness of the commutator [b, T] on Morrey spaces when b is a BMO function or
a Lipschitz function, respectively.

The classical Morrey space was originally introduced by Morrey in [7] to study the local
behavior of solutions of second order elliptic partial differential equations. For the prop-
erties and applications of classical Morrey spaces, one can refer to [7, 8]. In [9], Chiarenza
and Frasca showed the boundedness of the Hardy-Littlewood maximal operator, the frac-
tional integral operator and the Calderéon-Zygmund singular integral operator on Morrey
spaces. In 2010, Fu and Lu [10] established the boundedness of weighted Hardy operators
and their commutators on Morrey spaces.

In 2009, Komori and Shirai [11] defined the weighted Morrey spaces and studied the
boundedness of the Hardy-Littlewood maximal operator, the fractional integral opera-
tor, and the classical Calderén-Zygmund singular integral operator on these weighted
spaces. In 2012, Wang [12] showed the boundedness of commutators generated by clas-
sical Calder6n-Zygmund operators and weighted BMO functions on weighted Morrey
spaces. In 2013, the authors in [13] proved the boundedness of some sublinear operators
and their commutators on weighted Morrey spaces.

Inspired by the above results, the main purpose of this paper is to overcome the stronger
singularity near the diagonal and establish the boundedness properties of the strongly sin-
gular Calder6n-Zygmund operators and their commutators on weighted Morrey spaces.

Let us first recall some necessary definitions and notations.

Definition 1.2 ([14]) A non-negative measurable function w is said to be in the Mucken-
houpt class A, with 1 < p < oo if for every cube Q in R”, there exists a positive constant C
independent of Q such that

L L 1-p' )p_l
<|Q|/Q“’(")dx)<|o|/Q“’(x) ) =G

where Q denotes a cube in R” with the side parallel to the coordinate axesand 1/p+1/p’ = 1.
When p =1, a non-negative measurable function w is said to belong to A, if there exists a
constant C > 0 such that for any cube Q,

ﬁ ./Qw()/) dy < Cw(x), a.e.x€Q.
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It is well known that if w € A, with 1 < p < 00, then w € A, for all ¥ > p, and w € A, for

somel<g<p.

Definition 1.3 ([15]) A weighted function w belongs to the reverse Holder class RH, if

there exist two constants r > 1 and C > 0 such that the reverse Holder inequality

(6Lw(x)’dx>r §C(6/Qw(x)dx>

holds for every cube Q in R”.

It is well known that if w € A, with 1 < p < 00, then there exists a r > 1 such that w € RH,..
It follows directly from Hélder’s inequality that w € RH, implies w € RH, forall1<s<r.

Definition 1.4 Let 1 < p < 0o and w be a weighted function. A locally integrable function
b is said to be in the weighted BMO space BMO,(w) if

1 1/p
b w) = — b -b i 1—17d ,
1611 BMO () Slép(g)(Q)/Q| (%) = bo|" w(x) x) <00

where b = ‘1@ fQ b(y) dy and the supremum is taken over all cubes Q C R".
Moreover, we denote simply BMO(w) when p = 1.

Definition 1.5 The Hardy-Littlewood maximal operator M is defined by

e e AL
We set M,(f) = M(|f]*)"*, where 0 < s < 0.
The sharp maximal operator M* is defined by

(f)(x)—sup— [f(y fQ|dy~sup1nf V@)—a’dy,

x 1Ql clQ|

where f; = ‘1@ fo(x) dx. We define the ¢-sharp maximal operator M?(f) = MA([f|H)Y,

where 0 <t <1.
Let w be a weight. The weighted maximal operator M,, is defined by

M, (f)(x)

We also set M, (f) = M, (|f|°)*, where 0 < s < cc.

Definition 1.6 ([11]) Let 1 < p < 00, 0 < k <1, and w be a weighted function. Then the
weighted Morrey space LP*(w) is defined by

LPKw) = {f € Lf, (@) ¢ If | k() < 00}
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where

1 » 1/p
I Nl ok (o) ZSZP(TQ)kaV(x)’ w(x) dx) ,

and the supremum is taken over all cubes Q in R".

Definition 1.7 ([11]) Let1 < p < oo and 0 < k < 1. Then for two weighted functions «# and
v, the weighted Morrey space L”X(u,v) is defined by

L"‘k(u, V) = {f € Lﬁ)c(u) : ”f‘”Lp,k(u]v) < oo},

where

1 » 1/p
s =90 557 [l u)ds)

2 Main results

Now we state our main results as follows.

Theorem 2.1 Let T be a strongly singular Calderon-Zygmund operator, and o, B, § be
given in Definition 1.1. If % <p<00,0<k<l,and w e Axgpiina-a)+2p1, then T is
bounded on LP*(w).

Theorem 2.2 Let T be a strongly singular Calderon-Zygmund operator, «, 8, § be given
"a’fﬁ—”ﬁ <p<0o0,0<k<],and we A NRH,

withr > %. Ifb € BMO(w), then [b, T) is bounded from LP*(w) to LP* (', w).

in Definition 1.1 and @ < B < 5. Suppose

If we consider the extreme cases « — 1 and 8 — 0 in Definition 1.1, then the strongly
singular Calder6n-Zygmund operator comes back to the classical Calderén-Zygmund op-
erator. Thus, we get the boundedness of the classical Calderén-Zygmund operator and its
commutator on weighted Morrey spaces as corollaries of Theorem 2.1 and Theorem 2.2.

Corollary 2.1 Let T be a classical Calderon-Zygmund operator. If 1 <p <00, 0 < k<1,
and w € Ay, then T is bounded on LPK (w).

Corollary 2.2 Let T be a classical Calderdn-Zygmund operator,1 < p < 00,0 <k <1 and
w € Ay. If b € BMO(w), then [b, T is bounded from LP*(w) to P (', w).

Remark 2.1 Actually, Corollary 2.1 and Corollary 2.2 have been exactly obtained in [11]
and [12] in the special case § = 1. Thus, from this perspective, Theorem 2.1 and Theo-
rem 2.2 generalized the corresponding results in [11, 12], and the range of the index in
Theorem 2.1 and Theorem 2.2 is reasonable.

3 Preliminaries
Before we give the proofs of our main results, we need some lemmas.

Lemma 3.1 ([1]) If T is a strongly singular Calderén-Zygmund operator, then T can be
defined to be a continuous operator from L*> to BMO.
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Lemma 3.2 ([2]) If T is a strongly singular Calderon-Zygmund operator, then T is of weak
(LY, LY) type.

By Lemma 3.1, Lemma 3.2, Definition 1.1, and interpolation theory, we find that T
is bounded on L?, 1 < p < oco. Besides the (L”,L”)-boundedness, the strongly singu-
lar Calderén-Zygmund operator T still has other kinds of boundedness properties on
Lebesgue spaces. By interpolating between (L2,L7) and (L>, BMO), where g is given in
Definition1l.1and 1/qg+1/q’ =1, T isbounded from L* to L with2 < u < coand v = ”Tq/. Itis
easy to see that 0 < % < « in this situation. Then we interpolate between (L2,qu) and weak

(LY, L) to obtain the boundedness of T from L* to L”, where 1 <y <2 and v = uq'

2q' —uq' +2u-2"
u
v

In this situation, 0 < 2 < « if and only if % < u < 2. In a word, the boundedness

properties of the strongly singular Calder6n-Zygmund operator on Lebesgue spaces can
be summarized as follows.

Remark 3.1 The strongly singular Calderén-Zygmund operator T is bounded on L? for

1<p<o0o.And T is bounded from L* to L, % <wu<ooand 0 < % < a. In particu-

lar, if we restrict 2% < g < 5 in (3) of Definition 1.1, then T is bounded from L" to L",

2
W<u<oo,and0<%<a.

Lemma 3.3 ([16,17]) Let w € A;. Then for any 1 < p < 00, there exists an absolute constant
C > 0 such that || bl smo,() < Cllbllzmo)-

Lemma 3.4 ([11]) If1<p<o00,0<k <1, and w € Ap, then M is bounded on LK (w).

Lemma 3.5 ([12]) Let1<p<00,0<k<1,and w € A, then for any 1 < s < p, we have

”Ms,w(f) ||L!7'k(w) = Cllf llprey-

Lemma 3.6 ([12]) LetO<t<1,1<p<o0,and 0 <k <1.Ifu,v € Ay, then we have
f
|MeO iy = CIMEN 1o

for all functions f such that the left-hand side is finite. In particular, when u = v = @ and
w € Ay, we have

||Mt(f)||mk<w> = C”M?(f)”uak(w)
for all functions f such that the left-hand side is finite.

Lemma 3.7 Given ¢ >0, we have Inx < %xg,for all x > 1.

Let ¢(x) = Inx — %xs, x > 1. The above result comes from the monotone property of the
function ¢.

Lemma 3.8 If T is a strongly singular Calderén-Zygmund operator, o, B, § are given in
Definition 1.1, and 0 < t < 1, then for all % < s < 00, there exists a positive constant
C such that

MATF)(x) < CM,(f)(x), x€R”

for every bounded and compactly supported function f .
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Proof For any ball B = B(x, rg) C R” which contains x, there are two cases.
Casel:rg>1.
We have

<IBI/||T(f)(y)| =T xese) o) |dy>

< (i [1700 -G as)

< (|B| fIT(szB)(y)I dy>w

. N
’ C(ﬁ /BIT(fXOB)f)()/) — T(f x@p)) (%) dy)

= 11 + 12.

For 1, by Holder’s inequality and the L*-boundedness of T, we get

1
h=Co /B |70 32)0)| dy

< C(|IE| /B rT(foBxy)rdy)m
< C(;ﬁfwlf(y)lsdyy/s

< CM,(f)(x).

Since rg > 1 and 2|y — x¢|* < |z — x| for any y € B, z € (2B)¢, by Holder’s inequality and
(2) of Definition 1.1, we have

C
I, < ®/|T(f)((23)f)(3’) = T(f xp) (%0)| dy

|B|// ‘K(y z) — K(x9,z Hfz)’dzdy

|B|//2B - x0| lf(z)|dzdy
< CrSZ/ 78&

+lB\2]B |Z x0|n+—

=eh e g [, el
=G 20 a<|2/+lB|/ raf dz)
j=1
= M ¢ Y (@)
j=1

< CM;(f)(x).
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Case2:0<rg<1.
Denote B = B(xo, rg). There is

1/t

1 . .
(ﬁﬁWWM%memm@

1 . 1/t
< <®/|T(f)(y)— T(f X)) (x0) | dy)

< <|B| /|T(fX23)()’)| dy) N

1/t
<|B| /|T(fx(23 )0) = T(f xpe) o) || dy>

= 111 +112,

% < s < 00, by Remark 3.1, there exists an [ such that T is bounded from L*

into L' and 0 < % < «. It follows from Hoélder’s inequality that

Since

C
= /B IT(F 05| by

1 1/1

< c(E /]; |T(fng)(y)|ldy)
1/s

-1/ Sd

< C|B| (/Zélf(y)\ y)
1/s

_ —n/l+an/s
=¢ (|2B|/W)‘ >

< CM; (f) ().

Since 0 <rp <land 2|y —x9|* <|z—xo|foranyye B,z ¢ (2B), similarly to I, we have

I, < @ﬂT(fX )O) = T(f Xpye) (%0)| dy

= @/B/ﬂgcuqy’z)—K(xo;Z)Hf(z)|dzdy

// |)’ x0| —— lf(Z)|dZdy
|B| 2B) |z — x|t

<CrBZ/ 7512

BB |z - x|

o0
<Y (@)
j=1

i ( |2*1B

Ms(f)(x)~

f(2) o

|2/+IB| oY

I/\

1/s
[f(z)rdz)

2J*1B

I /\

Page 7 of 15
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Therefore, combining the estimates in both cases, there is

METHW ~ sup mf(|B| /||T(f 0’ _a|dy>t < CML()() 0

Lemma 3.9 Let w € Ay and f be a function in BMO(w). Suppose 1 < p < 00, x € R", and

r,1 > 0. Then
1 1
P
(— o) —ﬁg<x,r2>!"w<y>l-de)

|B(x: rl)| B(x,r1)
) <w(B(x, r1))>_
|B(x, 1)

Proof Without loss of generality, we may assume that 0 < r; < r, and omit the case 0 <

1
7

=< Cllif Il smo w(x)<1+l —=

ry < 11 since their similarity. For 0 < r; < ry, there are ki, ky € Z such that 2ki-1 ¢y < 2k
and 2k21 <y, < 2k2 Then k; < k, and

(ky — ki = 1)In2 <In 22 < (ky — ky + 1) In2.
r

Thus, we have

<# F0) —J%<x,r2>|”w<y>l-l’dy)'7

|B(x) r1)| B(x,r1)

1
! / b 1— 2
S Y ) = faeaky | 07 dy
< |B(x) r1)| B(x,rl)lf B(x,2 1)|
+ (Ufsewrs) = faeato)| + Viwto) = foes2y)

1

1 " )p
) (IB(x, )l fB(x,rl)wO]) Y

2" z
< (5 fy i/ Sl o)

ko-1
+ (lfB(x,rz) _fB(x,2k2)| + Z lfB(x,?/"l) —J%(x,w'ﬂ)

j=ki

(e o007
p— w
|B(x: rl)' B(x,r1) 4

1 1
<C 00x)? + | ——— — a
< ClIfllzamow)@ () (|B(x,r2)| /B(x,rz)lf()’) Saeakoy| dy

ko—1

+Z|B(x, / Vo fm“wy)

(o)
|B(x7 7'1)| B(x,r1) ) '

Page 8 of 15
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Write

1

|B(x’ V2)| B(x,r2)

2" , . L
= M (/B(x,ZkZ) V(y) _fB(x,zkz){ a)(y) de)

d p
) (/B(x,ZkZ ) “b) y)

» ©(B(x,2"2))
|B(x, 2k2)]

1 7
X (— lf()/) _ﬁg(x,zkz) |pw(3’)1_p dy)

CL)(B(?C, 2k2 )) B(x,2k2)

V(Y) — St | dy

=

< 2"l Bmo(w) @ ()

and

1
|B(x’ 2J) | B(x,

27 /
<— ) = S+
|B(x, 2/+1)| ( B(x,?/*l)lf B2

()

< 2"|fll Bmo(w) @ ().

) V » —.ﬂa(x,y'ﬂ) dy
2)

1

o) dy)’

=

If1 < p < oo, then by the fact w € A; C Ay, we have

(o [ worra)

IB(x, 7’1)| B(x,r1)

1 Y1955
ALl |
|:<|B(x;rl)|/3(x,r1) v Y

1

1 e
e f o )d)
<|B(x,n)| oy Y

i C(a)(B(x, rl)))_xj’.
|B(x, )|

If p = 1, then the above estimate holds obviously.
Thus,

1

: r
(W F0) = fotur [ 00)' dy>

X, 7'1)| B(x,r1)

1
< Cllf ll sBmo(w)@(x)?
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S =

= w(B(x, 7))\ 7
+ C<2”|lf||BMo<w>w(x) + ZZ”IVIIBMO@)w(x)) <71>

j=ky |B(x; rl)'

1 1
/

= Cllf llsmow) (@(M) + Cllf llsmoey@ () (ka — k1+1)(M) g

|B( X, T 1)| |B(x,r1)
)(w(B(x, rl))>£/
|B(x,r1)|

This completes the proof of Lemma 3.9. O

< ClIfllamow a)(x)<1+ In =

Lemma 3.10 Let T be a strongly singular Calderon-Zygmund operator, o, 8, § be given
in Definition 1.1 and "(1 ) <B<5. Let0O<t<l, %)*2’3 <s< 00, w€ A NRH, with
r> m%, and b € BMO( ), then we have

M; (1B, TIf) (%) < ClIbll o) (@@ Mo (TH) + @M ((%),  ae xR,
Proof For any ball B = B(x, rg) with the center x and radius rg, there are two cases.
Casel:rg>1.
We decompose f = fi +f>, where fi =f x2p and x2p denotes the characteristic function of

2B. Observe that

(6, TN Y)
= (b(y) — bas) T(F)) — T((b — bag)f ) (v)
= (b(y) = bap) T(N) () — T((b - bap)fi) () — T((b - ba)fs) ().

Since 0 < ¢t < 1, we have
1 ¢ , 1t
(35 L1610 - | 7(@- i) |y
1 Ut
< <|B| /|[b T () + T((b - bap)fs) x)| dy)

< <|B| / |(60) - bas) TOYO)|' dy)lu

ro( g [IT@-payol ) :

1/t
+C<|B|/’T (b sz)fZ)O’) (b bZB)fz) x)‘ dy)

= 11 +12 +13.

We are now going to estimate each term, respectively. Since w € A;, it follows from
Holder’s inequality and Lemma 3.3 that

C
h= o /B |(b0) - bas) T dy

T ——

Page 10 of 15
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=< Clibllzmow aﬁ ( /\ o) w(y)dy)m

< ClI16| Bmo(w) @ () M., (T ) ().

Applying Kolmogorov’s inequality [15], Lemma 3.2, Holder’s inequality, and Lemma 3.3,
we get

12 < (lBll t” (b bZB)fl H )l/t

|B|1/t

= @/ZBKb(Y)—sz)fU)WJ’

¢ 1-s " s Vs
|B|( 166) — bas | 0(y) dy) ( /wmm a)(y)dy)
2B 1 1/s
< C||b||BM0(w)%<w(ZB) 2B[f(y)| o(y) dy)
< ClIbll Bmo(w) @ (%)M o (f ) (x

Since rg > 1 and 2|y — x|* < |z — x| for any y € B, z € (2B)¢, by (2) of Definition 1.1, we
have

13<® | T((b - b)) ) — T((b— bag)fs) (x)| dy

< E/B/ZBJKO”Z)_K(x’z)Hb(Z)‘bZBW(z)|dZdJ’

- CZ |B] //;/+13\WB |z - x|”+5 |6(2) = bas||f (2)| dzdy

Y ) 1
= CrBZ( er) ﬁ 5 |2*1B| 2/+13\2/B|b(2) _bZBHf(Z”dZdy

(o]

_3 N-8 1
<yt Y (@) 5 2M|b(z) — by |f (2)| dz.
j=1

Applying Holder’s inequality and Lemma 3.9, we get

, 1/s'
2 : s 1-s'
13 <C |2/+IB| </2j+13’b(z) - b23| w(z) dZ)

1/s
2+1p

> . 1 w(2/+1B) -
]+1 s .
=C) () |2/+1B|| B ||b||BMO(w>Jw(x)< DB )

j=1

1/s
x (./w'+13 If @) w(z) dz)

o] s 1/s
sC||b||BMo<w>w(x)Zi(2’)‘“( T8 Jy, O Z)dZ>

j-1

1
s

Page 11 of 15
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< Cllbllsuow@@M,o (N 3 (2)
j=1

< ClIbll Moy @ (%) My o, (f ) (%).

Case2:0<rg<l1.

Since r> %, that is, % < -, there exists an so such that lgT
80 < - - For the index s whlch we chose, by Remark 3.1, there exists an /, such that T is

bounded from L% to L and 0 < 2 <a. Then we can take a 6 satisfying 0 < 7> <6 <.

Let B = B(x, r). We decomposef =f3 + fa, where f3 = f x,z and x,3 denotes the charac-

teristic function of 2B. Write

(6, T(F)()
= (b)) — bas) T(F)) — T((b — bag)f ) (¥)
= (b)) = bap) T(N) = T((b = baw)fs) ¥) = T((b = bag)fa) ().

Since 0 < t < 1, we have
1t
(5 [ 110060/ - (@ - il )

1/t
<|B| /|[b T1()(y) + T((b - bap)fa) x)| dy)

1/t

1 e 1
< c(ﬁ fB |(b(y)—b23)T(f)(y>|fdy) +C(® fB {T((b—bwm)(dey)
1/t
R c(|B| /yT (6= Ban)fi)0) - T((b  bas)fi) ) dy)
=11 + 115 + I15.
Similarly to estimate I, we have

[11 < C”b”BMO(w)w(x)Ms,w(Tf)(x)

1 1

Since 1 < sg < s < 00, there exists an [ (1 < [/ < 00) such that % = < + 7. By Holder’s in-

s l
equality and the (L%, L*)-boundedness of T, we have

I < % /B IT((b - bos)s) )| dy

< c(é [B IT((b - b)) )| dy);“

1

<clB ( /2 600~ b ] dy) v
< ClB ( /2 600~ bus ) dy)7 ( /2 o) dy);

< CM, () @o(2B)} B </ZE|19(Y) ~ bag|'w(y)s dy) g

)+2B
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(r— 1)(s —50)
s(sp—1) 1’

Applying Holder’s mequahty for po and pj, Lemma 3.9, and noticing that r = —0 i 2 we

(r=1)(s=so0)
rs—(s+r—1)sg

Let po =

we get 1 < pg < 00. So py = and 1 < p; < co.

get

1
Iy = CM,o (@B 1B ( [ 1969 s et dy)
2B

(/ o) dy)
2B
L/

< CM,(N(x)w(2B)* |B] K 12B1%0 [|b]| smow) ()

; 28 1 e e 1
X <1+ In B )(a)( )> 1,70 [<—~ w(y)’dy) ]po |2B|lz}o
rs|)\ 2B 28| )25

< CM,()(x)w(2B)* |B] K 12817 1B 530100 ()

N (1+ n'® rh )( (ZB)> zpo (a)(2B))
rB |2B] |2B|

~ _1 ~
< Clblluoww) @ @M, o () ®)w(2B) s |B 0 |2B]1

(1+(1 6)in _>(”(2B))
2B

H

The 1nequahty0< < 6 implies that & —n( )>0 By Lemma 3.7, we have
E 1,1 1
11, < Clbll pato(e)®@@)Ms,o(f)(x)|B] 0 |2B| 75 1+ 75
1
9
50 10) €1
< ClIbl| smo(w)@(x) M, (f ) (x

= ClbllBrmO(w) @ (%) M, (f) (x).
The fact 6 < o implies that &, := g(a —0)>0.Forany y e Band z € (2B)¢, we have

2y —x|* <2rf < 2r§ < |z—x| since 0 < rg < 1. It follows from (2) of Definition 1.1, Holder’s

inequality, Lemma 3.9, and Lemma 3.7 that

15 < —/|T (b sz)fz;)()’) ((b—sz)ﬂL)(x)|dy

< @/B?/(ZB)JK(%Z)—K(x,z)||b(z)—b23|V(z)|dzdy

o 1 ly -’
<C E — ———|b(z) - b dzd
T4 |B|/B/2I'“B\2/B |z—x|"+%| (@)= basl @] dzdy

o0
<Cr Z(erg)_

j-1

00 1

508 WS 1 / , s
<C § )« _ b(z) - byg|’ I—Sd)
= @) |2/+1B| </y‘+1§| (@ = basf )™ dy

j-1

|2/+1B /;/+1B\2/B|b(z) b23| lf(z)| dz

Page 13 0of 15


http://www.journalofinequalitiesandapplications.com/content/2014/1/519

Lin and Sun Journal of Inequalities and Applications 2014, 2014:519
http://www.journalofinequalitiesandapplications.com/content/2014/1/519

<( [t dy)

eyt

< Cr;
- |21 B|
j=1

1
s

J ||b||BMO yo(x)

(]+(1 6)1n —><L1B)) Ms,a,(f)(x)w(Zj”B)%

[2Z+1B]

<O (@) Wblsmoe w(x)Msw(f)(x)<]+(1 e)m_)

j-1

< Clbl 0@ @M (@ * Z(Z’) (/+ :

j=1

o]

0)-¢2 Z j(zj)‘g

j-1

< Clbllsmow w(x)Msw(f)(x)rB
< C“bHBMO(w)w(x)Ms,w(f)(x)

Combining the estimates in both cases, we have

M ([b, TIf) (%) ~

")

1
1 ¢ t
sup inf / [6, TIOY)| —a d)
rB>I())a€C<|B(xx rB)l B(x,r3)|| (f (y | | 4

< ClIbllaorw) (@) Mo (TF) (%) + ()M o, () (x)). O

4 Proof of the main results
Now we are able to prove our main results.
n(l-a)+28

28
and w € A;. Since

Proof of Theorem 2.1 Since “

such that 1 < /<

n(l-a)+28
2B

and Lemma 3.4, we have

2pB n(l-a)+28
n(l-a)+2p 28
<s <% < p. It follows from £

[T sy = IMATAN sy < CIMETO s
< C[MD] pxio) = CIMAFE) [,
< CIFF ity = CW Nnc

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2 Since r > M that is p >

2Bp-n(l-a)-2p "’
(n(l-a)+2B)(r-1) _ n(l-a)+2p
prna)3f > 2p .Since s >

Applying Lemma 3.6 and Lemma 3.10, we thus have

such thatp > s >

” (6, T1(f) Hl}"k(wl’p,w)
= HMt([b' Tlf) ”l}"k(wl_p,w)

= CIME(, T it 1o,

(n(1-a)+28)(r-1)
2Br-n(l-a)-28 "’
(n(1-a)+28)(r-1)

pron(ia) 25 We have r >

<p <00 and @ € Aygp/ini-a)+28], there exists an [
< '—’ < p, there exists an s such that
>l that w € A, Applylng Lemma 3.6, Lemma 3.8,

O

there exists an s

(n(1-0)+2B)(s-1)
2Bs—n(l-a)-2p °
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S C”b”BMO(a)) (“a)()MS,w(Tf) ||l}”k(u)1’p,w) + || w()Ms,w(f) “Lp,k(wl—p’w))

= C”h”BMO(w)(”Ms,w(Tf)”Uy,k(m) + HMs,a)(f) H[}"k(w))’

Therefore, by using Lemma 3.5 and Theorem 2.1, we obtain

116, TYEO | ok 1p 1y < CNBUBAOW) (1 T |2k () + I k)

= ClIbllBmo) f | Lok w)-

This completes the proof of Theorem 2.2. d
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