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Abstract

In this paper, we study the properties of a bilinear multiplier space. We give a
necessary condition for a continuous bounded function to be a bilinear multiplier on
variable exponent Lebesgue spaces, and we prove the localization theorem of
multipliers on variable exponent Lebesgue spaces. Moreover, we present a
Mihlin-Hérmander type theorem for multilinear Fourier multipliers on weighted
variable Lebesgue spaces and give some applications.
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1 Introduction
Given a non-empty open set Q C R”, we denote by P(£2) the set of exponent functions
p(x) such that

1<p =<pi<oo,

where p_(Q2) := essinf{p(x) : x € 2} and p,(2) := esssup{p(x) : x € Q}.
Let P°(R2) be the set of exponent functions p(x) such that

O<p_<p,<oo.

Given a measurable function f on 2 for 1 < p(-) < 0o, we define the modular functional

associated with p(-) by

posth)= [ O 9] oy

where Q, denotes the set of points in € on which p(x) = co.

The variable exponent Lebesgue space L”)(Q) is defined to be the set of Lebesgue mea-
surable functions f on Q satisfying p,()a(f/1) < oo for some A > 0. The norm of f in the
space is defined by

Ifllp0 =inf{x > 0y a(f/a) <1}.
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In the case that p(-) € P°(R), it is defined to be the set of all functions f satisfying |f(x)[?° €
L1(Q), q(x) = p(x)/po € P(R) for some 0 < po < p_ (see [1]). A quasi-norm in the space is
defined by

1
Vo = (17700

We refer to [2] for an introduction to variable exponent Lebesgue spaces.

Similarly, for p(-) € P°(R2) and a weight function w, the weighted variable exponent
Lebesgue space L7V (2, w) (see [3]) is defined to be the set of Lebesgue measurable func-
tions f on  that satisfies

1l o = inf{,\ >0: / F@) A wix) dx < 1} < 00,
Q

In this paper, we study some properties of the space of bilinear Fourier multipliers and
the Mihlin-H6érmander type theorem for multilinear Fourier multipliers on weighted vari-
able Lebesgue spaces. Specifically, let m satisfy certain conditions. We discuss the N-linear

Fourier multiplier operator T,, defined by

Tonlhs-. ) )
= /H;Nn eZni<§1+...+§N,x>m(§:1, .. .,SN)ﬁ(gl), .. "fN(EN)dé:l e dEy

forx e R", fi,...,fa € S(R") [4].

The multilinear Fourier multipliers have been studied for a long time. In [4], Coifman
and Meyer proved that T, is bounded from L1 (R”) x --- x LPN(R") to LP(R") for all 1 <
Pl PNy P < 00 with pil +oeeet 1% = }9 and m € CS(RN" \ {0}) satisfying

’8;1 . 3;5;/”(51,."’&\[” <Cqy,. “N('éll bt |EN|)*(|011|+4..+\01N|) (1.1)

forall Joq| + - - + |on| <s, where N > 2 is an integer and s is a sufficiently large integer.

Tomita [5] gave a Hormander type theorem for multilinear multipliers. Specifically, T,
is bounded from L1 (R”) x --- x LPN(R") to LP(R”) for all 1 < py,...,pn,p < 00 with pil +
ceet # = }7 and s = A% +1in (1.1). Furthermore, Grafakos and Si studied the case p <1 in
[6]. The boundedness of multilinear Calderén-Zygmund operators with multiple weights
was achieved by Grafakos et al. [7].

Under the Hérmander conditions, Fujita and Tomita [8] obtained some weighted es-
timates of T,, for classical A, weights. Then Li et al. [9] got some weighted results of
multilinear multipliers by considering the end-point cases, using weighted Carleson mea-
sure theory and employing multilinear interpolation theory. In [10], Chen and Lu proved
a Hormander type multilinear theorem on weighted Lebesgue spaces when the Fourier
multipliers were only assumed with limited smoothness. In [11], the boundedness of T,
with multiple weights satisfying condition (1.1) was given by Bui and Duong. In [12], Liand
Sun got some weighted estimates of T, with multiple weights under the Hormander con-
ditions in terms of the Sobolev regularity. Huang and Xu [13] obtained the boundedness

of multilinear Calderén-Zygmund operators on variable exponent Lebesgue spaces.
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In this paper, we study the weighted estimates of T, with nearly the same conditions as
in [12], but on variable exponent Lebesgue spaces.

The theory of bilinear multipliers was first studied by Coifman and Meyer [14]. They
considered the ones with smooth symbols. Then, Muscalu et al. achieved some new results
for non-smooth symbols in [15].

The study of bilinear multipliers has experienced a big progress since Lacey and Thiele
[16, 17] proved that m(&,v) = sign(§é + av) are (p,ps,ps)-multipliers for each triple
(p1,p2,p3) such that 1 < p1,p, < 00, p3s >2/3 and each o € R \ {0,1}. In [18], Kulak and
Girkanl first studied some properties of the bilinear multiplier space. In [19], Fan and
Sato proved the DeLeeuw type theorems for the transference of multilinear operators on
Lebesgue and Hardy spaces from R” to T”. In [20], Blasco gave the transference theorems
from R” to Z". We also refer to [21, 22] for details.

We first give some definitions.

Definition 1.1 ([18]) Let p;(-), pa(-) € P(R2), p3(-) € P°(R), and m(§, n) be abounded func-
tion on R?". Define

B 9w = [ [ F@atme ner e de ay

for all f and g € S(R").

We call m a bilinear multiplier on R*" of type (p1(-), p2(-), p3(-)) if there exists some C > 0
such that ||B,,(f,2)llp3¢) < Cllfllpy)lIgllpy) for all f and g € S(R"), i.e., B,, extends to a
bounded bilinear operator from L10(R") x LP20)(R") to LP30)(R").

We write BM(R?")(p,(-), p2(-), p3(-)) for the space of bilinear multipliers of type (p:(-),

p2(), p3())- Let 17l 1) pa (1930 = 1Bml-
A similar function space is defined in the following.

Definition 1.2 Given a function M on R”, let m(§,n) = M(§ — n). We say that

M e BM(R?) (p1(-), p2(), p3("))

if By (f,2)(x) = fRzn]A’(E)g(n)M(“g‘ —n)e?™i6+1%) de dn for all f and g € S(R”) can be extended
to a bounded bilinear operator from L?\0)(R”) x LP2O)(R") to L30)(R").

Definition 1.3 ([2]) A function p: Q — R! is said to belong to the class LH(2) if

1
[p(x) - p(y)| < w-yl<o, xyeQ

C
~In(lx - y|)’

where C > 0 is independent of x or y.

We simply write LH, instead of LHy(R") if there is no confusion. We also use C(R"”) to
represent the collection of all continuous functions on R”. By C etc., we denote various

positive constants which may have different values even in the same line.
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2 Some results on the space BM(R?")(p;(-), p2(), p3(+))
Some properties of the bilinear multiplier space on variable spaces were given by Kulak
and Giirkanli [18]. Here we give some other properties.

First, we introduce the standard singular kernel.

Definition 2.1 ([2]) Given a function K € L!

loc

(R™\ {0}), it is called a standard singular
kernel if there exists a constant C > 0 such that:

L |K®)| < 2 7 0;

2. |VK(x)| < Ix% x#0;

3. for0<r <R, |f{r<|x|<R} K(x)dx| < C;

4. lim,_¢ f{£<\x\<l}1<(x) dx exists.

Theorem 2.2 (Localization) Suppose that

m e BM(Rzn) (pl(),pZ()rpS()))

Q is a rectangle in R*" and that the Hardy-Littlewood maximal operator M is bounded
on LPiY(R"), where 1 < (p;)- < (pi)+ < 00, i = 1,2. Then

myq € BM(R*)(p1(-), p2(-), p3(-))

and |mxqllp,()p2()p3) < Clllpy(),pa(),p3(), Where C is independent of Q.
Let BM(R")(p(-), p(-)) denote the space of multipliers which correspond to bounded op-
erators from LZO(R") to L¥O)(R?).

To prove Theorem 2.2, we need the following results in the theory of variable Lebesgue

spaces.

Lemma 2.3 ([2, Theorem 5.39]) Let T be a singular integral operator with a standard
singular kernel K. Given p(-) € P(R") such that 1 < p_ < p, < 00, if the Hardy-Littlewood
maximal operator M is bounded on L’V (R"), then for all functions f that are bounded
and have compact support, || If ||,.) < CIfllp), and T extends to a bounded operator on
LP(')(]R").

Theorem 2.4 Suppose that m; € BM(R”)(s1(-), p1(+)), ma € BM(R")(s2(-), p2(+)) and m €
BM(R*")(p1(-), pa(-), p3(-)). Then we have

m(E)m(E,nyma(n) € BM(R) (51(),52(), 3 ().
Proof For any f and g € S(R"), we have
B9 = [ [ F@am@me, nms(o)e= < ds i
R JR7

:/I‘Qn /Rn((Tmlf))A(S)((Tng))/\(n)m(g,7;)627”'<¥+n,x) dt dy

=B (T f> Trnp @) (%).
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Therefore,

||Bm1mm2(f’g)||p3(,) =< ”Bm””Tmlf”pl()”Tng”pz()

< Bl sy (), 1722153 0,00 ) U sy ) 1€ 50 -
Then we get the result. O

The following is an explicit example.

Example 2.5 Suppose that ﬁ + [%O = ﬁ, m; € BMR")(p1(-),p1(-)) and my €
BM(R")(pa(+), p2(-)), where p1(-), p2(-) € P(R") and ps(-) € P°(R”). Then

m(g,n) = my(§)ma(n) € BM(R™) (p1(), p2(-), p3()).

Proof For any f and g € S(R"), we have

Bifow - [ [ e dsay
R JR#
_ / f‘(é)eZni(E,x)g(n)eZTri(n,x) d%. dn
R JRr
= f(x)g(x).
By Holder’s inequality [2], we have
Thus 1 € BMR?*")(p1(-), p2(-), p3(-)). By Theorem 2.4, we have

m(&,n) = my(&)ma(n) € BM(R™) (p1(-), p2(), p3(+)). O

Proof of Theorem 2.2 We only consider the case n = 1. Other cases can be proved similarly.
Suppose that Q = [a,b] x [c,d]. Then, for any f and g € C°(R"),

By (f,8)(x) = /R ) /R nf(é)é(n)WI(é,n)xQ(E,n)ez”“"“””” dé dn

- [ [ F©an @ aatmmte e de di
= Bo((F X)) @X1ea))” ) @)

Note that by (3.9) of [23], we have (f)([ﬂ,b])v = %(M“HM‘“ — MPHM®)f, where M de-
notes the operator M%f (x) = *"**f (x) and H denotes the Hilbert transform operator. Since
the Hilbert transform has a standard singular kernel, by Lemma 2.3 we have

. 1 . .
16 xiam) |y = 5 [ (MHMf = MPHMTS ),

1 _ 1 _
< L]+ ]

< Clf llp0)-

Page 5 of 15
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Xiab] € BM(R") (p1(), p1(0)).
Similarly we can prove that
Xiea) € BM(R") (p2(), p2()).
Hence by Theorem 2.4, we get
myq € BM(R?) (p1(), p2(), p3(-)),

and [[mxqllpy ()52 (0p30) = Clllpy (), () p30)- O

Next we show that the space EK/I(]Rz”)(pl(), p2(+), p3(+)) is invariant under certain oper-
ators.

Theorem 2.6 Given p3(-) € P(R"), ¢ € L'(R"), if

M € BM(R™) (p1(-), p2(), p3()),
then

¢+ M € BM(R™) (p1(-), p2(-), p3()),
and (¢ 5 Mllp,(),p200p3() = ClISILIMIlpy ()p2 (1030
Proof For any f and g € S(R"), we have

Byun(f,8)(x) = sz(é)é(n) ( /R M(E ~n - 0)pu) du) 2 61 g i

< [ TR0 - i d e )

By Minkowski’s inequality,

[Boun1. 0, = € [ [Ba(M 100, 00| s
< ClIMIipy 0203 NS LI oy () 1€ 11 - O

Theorem 2.7 Suppose that p; > 1, M € BM(R*")(p1(-), p2 (), p3) and ¢ € L*(R"). Then

m(E,n) = M(E - n)@(E +n)
€ BM(R*) (p1(), p2(-) p3),

and ||m|p,(),py()ps < NANLIMlpy()po ()5
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Proof For any f and g € S(R"), we have
Butf-00) = [ Femte - n)( [ o0 ay)enicon de

- [ ([ Feraommtc - e az ay )oo)ay
- ¢ Bulf,0)@).

By Young’s inequality, we have

[Batf.0)],, < 9l |Butf. 2,
= @I IBalH Nl py() 1E 1 pa -

Thus, we get the conclusion. O

Finally, we consider the necessary condition of this kind of multipliers. The bilinear clas-
sical counterpart was obtained by Hérmander [24, Theorem 3.1] and Blasco [25]. The mul-
tilinear classical one was proved by Grafakos and Torres, see [26, Proposition 5] and [27,
Proposition 2.1]. And the one for multipliers on Lorentz spaces was given by Villarroya
[28, Proposition 3.1]. Some of their proofs used the translation-invariant property of the
classical spaces, which is, however, no longer valid on L"), In the following, we prove the

variable version of the necessary condition.

Theorem 2.8 (Necessary condition) Suppose that there is a non-zero continuous bounded
function M such that M € BM(R?")(p(-), p2(-), p3(-)). Then

1 1 1
< + .
Ww3): ~ (p1)-  (p2)-

To prove the theorem, we need the following results.

Proposition 2.9 ([2, Corollary 2.22]) Fix Q and 1 < p(-) < oo. If |[fllx) <1, then p(f) <
I lpys if W llpey > 1, then p(f) = (If llpc)-

Proposition 2.10 ([2, Corollary 2.23]) Given Q and 1 < p(-) < 00, suppose || = 0. If
Wfllpey > 1, then

PP < I llp) < PG
IfO<|fllpe) <1, then
PP~ < I o) < ()P

Lemma2.11 LetM € ET\//I(RZ”)(pl(-),pz(-),p3(~)). If}l = ﬁ + ﬁ - @, then there exists
some C > 0 such that

= ClMllpy () pa()p3 ()2 75

% / M) de
Rn

when A is sufficiently large.
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Proof Let A > 0. Define G, by G.(&) = e, By a simple change of variable, one gets that

B (G, G)(@) = / eI Mg - ) dg dy
R4

= 1/ e_}‘zvze_}‘z“zM(v)ezm(”'x> dudv
2 R2n
C x

= _e’”z‘ﬂz/ e M(v) dv, (2.1)
A,n Rn

772 X
where we use the fact that G, (x) = (e"2°¢%)¥ = k%e’T‘ﬂz [29, Example 2.2.9].
Observe that

TR _
P (€ )

2
< )\"/ e_%lulz(pi)’ du = C(pi)f)»n,

D) gy A”/ o lulpiOu) g,

n n

where i =1,2.
Similarly we have

T[2 X
pro(€ ) = Cpp 2" i=1,2,

7T2 X
By Proposition 2.9, we get IIe‘Tlx‘2 lp;¢) > 1, when A is sufficiently large. Thus by Propo-

sition 2.10, we have

1 1
BTN _x2ix)2 AT N
(€)= e TR < pp (€T
So
Cipn, MOV < Gl < Cipy A O, (2:2)

where i =1,2.
Similarly we can get

Lz
)\'n

< Clpy) A0, (23)
p3()

C(pg) 2 (P3)-n <

All the inequalities above are established when the 1 is sufficiently large.

By the assumption, we have
|Bat(G G, ) =< 1M s (1,205 I Gl )1 Gl - (2.4)

Now combining (2.1), (2.2), (2.3) and (2.4), we get

" C 2222
e ™ IE

=

Cloy, M P9~ f € M) de f 7 M(v) dv
R” R”

a

p3()
< || BM(G)u GA) HPB()
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= IMlpi)p200030 1 Gl )1 Gl
n_ o n_,
= CliMllpy().pa(pa (A PP- "2 @D 7,

Hence

< ClIMllpy()pa (o3 ()2 5

AT / 8 M(g) de
Rﬂ

when 1 is sufficiently large. d
We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8 Assume that
that

1 : . .
(pz) <G By a simple calculation, we obtain

w(MPf, M7g) (x) = fR Zn(Myf) &) (M7g)" (M(E - n)e*™ 1) dt dyy
= /R _ T OTgmME - e " dt dn
= |, J©2ME -+ 29) ) dg
=Br,,m(f,2)(),

where T_y,M = M(x +2y). Thus T_5 M € ﬁd(RZ”)(pl('),p2(~),p3(~)). Applying Lemma 2.11
to T_y,M, we get

Q\!

= C||M||P1( )2 (p3 (VAT

x"f -6 (e +2y) dE
]Rn

Observe that (m + (p; (m < 0 and M is continuous. By letting A — 0o, we have

lim
r—00

% / P EM(E +29) ds‘ =8 IM@y)| =
]RVI

Since y is arbitrary, we have M = 0. This is a contradiction. Thus

1 - 1 . 1
3)s ~ (- (p2)- -

3 The Mihlin-Hormander type estimate for multilinear multipliers on weighted
variable exponent Lebesgue spaces

Roughly speaking, in the linear case, by adding the condition that the Hardy-Littlewood
maximal operator is bounded on weighted variable spaces, the results of multipliers on
weighted variable spaces can be derived from the weighted multiplier theorem on classi-
cal Lebesgue spaces and the extrapolation theorem on weighted variable spaces. See, for
example, [3, Theorem 4.5, Theorem 4.7], [30] and [31].

However, in the multilinear case, the method faces some challenges. One problem is
that we have no multilinear extrapolation theorem on spaces with variable exponents yet,
though the counterpart on classical Lebesgue spaces appeared early, see [32].
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We give another way to get the Mihlin-Hormander conditions for multilinear Fourier
multipliers on weighted variable spaces.

First we use Q to denote a cube in R”. Recall that the Hardy-Littlewood maximal oper-
ator is defined by

M) )-sup@/lf(y)!dy

And the sharp maximal function is defined by

M*(f)(x) = sup 1nf {3l / [f(y) - c| dy.

For § > 0, we also define
M(S(f) — M(lflé)l/B and M(g#(f) _ M#(lfla)l/s.

FOf]? =(fi,....fx) and p > 1, we define

”(f)(x)_suPn<|Q| /W” dy’)

sxil

Definition 3.1 ([33]) Given P = (p1,-->pN)Withl1 <py,...,py <ocoand 1/py +---+1/pn =
1/p. Let w = (wy,...,wy). Set

N
/
e
i=1

We say that w satisfies the A3 condition if

1/p N 1 ! 1/p;
(%) d — i Pid, .
S“p(|Q|/V @ x) 1;[<|Q|fQW(") x) =

When p; =1, then (‘la fQ wi(x)"7% dx)"7i is understood as (infqw;)™

We now give a Mihlin-Hérmander type theorem for multilinear Fourier multipliers on
weighted variable exponent Lebesgue spaces.

Theorem 3.2 Suppose that Nn/2 <s < Nn, m € L*°(RN") and

sup|| m(RE) x(1<ie1<2) ”HS(RN”) <00
R>0

Set rg := Nn/s, a series of variable indexes p; (x), ..., pn(x) € P(R"), and p(x) € P°(R"), such

that m + zﬁ +ooet zﬁ = ﬁ’ where (pj)- > ro, j =1,2,...,N. Suppose that there are

O<g<p_,rg<qi< (p,) such that the Hardy—Littlewood maximal operator M is bounded

on L O((wy - - - wy)%'Y) and oz (w; ~aipj0) ), where p(x) = x), pi(x) = @JE 12,...,N.
2

Then there exists some C > 0 such that

N
”Tm(f)HLp(.)(wf(»)mWi[(-)) =< Cl_[ ”fi”Lpi(.)(Wfi(-))'
i=1

Page 10 of 15
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Before proving the theorem, we present some preliminary results. The following in-

equality is a classical result of Fefferman and Stein [34].

Proposition 3.3 ([34]) Let 0 <8 < p < 00 and w € A. Then there exists some constants
Cupsw > 0 such that

| MNP a5 = Copsn [ (M) Pt
R R

The next result comes from Lemma 2.6 in [12]. For our purpose, we restate it in the
proper way.

Proposition 3.4 ([12]) Let 1 < r < min{ (Sfl), 137;} such that po :=rro <qj,j=1,...,N.If0 <
8 < po/N, then under the assumption of Theorem 3.2, there exists some C > 0 such that for

allj’ € Lh(R") x -+« x L'N(R™), po < t,...,En < 00, we have

ME(T,f) < CM,, ().

Proposition 3.5 ([3]) Let X be a metric measure space and Q2 be an open set in X. Assume
that for some pg and q satisfying

0<po<qo<oo, po<p- and ——-—<—,

and for every weight w € A1(S2), there holds the inequality

PO

( / 0 () wix) du(x)> " o ( / W] du(x))
Q Q

for all (f,g) in a given family % . Let the variable exponent q(x) be defined by

11 ( 1 1 )
ax) p&x) \po qo)
Let the exponent p(x) and the weight o satisfy that p € P°(Q) and M is bounded on
LTO(Q, 0707 1)),
Then, for all (f,g) € F withf € Lq(')(Q,Qq(')), the inequality
|lf||Lq(~)(Q,Qq(->) = C||g||uz(-)(g,gp(-))

is valid with a constant C > 0.

Remark 3.6 Note that the condition p € P(£2) in the extrapolation theorem of [3] can be
released to p € P°(Q) with nearly no modification to the proof.

Proposition 3.7 ([11, Proposition 2.3]) Let po > 1 and p; > po fori =1,...,N and 1/p; +
-+ +1/pn =1/p. Then the inequality

N
”Mpo () ”Lp(vw) = Cl_[ Ifill o oy
i-1

holds if and only if w € Ap,, , where Plpo = (p1/pos .., pn/Po).
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Remark 3.8 When N =1, the conclusion above is valid. Specifically, let po > 1 and p > py,
then | Mof llzw) < ClIflrw) holds if and only if w e A,/ .

We are now ready to prove Theorem 3.2

Proof of Theorem 3.2 For any f; € S(R"),j=1,...,N, and v € A, by Proposition 3.3 and
Proposition 3.4, we have

”Tm(}?)”Lq(v) = ||M5 (Tm(}?)) ”Lq(v)
< G | M3 (T ) 100
= C”MPO (}?) HLq(v)' (3.1)
where py is defined as in Proposition 3.4.

Since the maximal operator M is bounded on LFO((wy -+ wy)#'0), by Proposition 3.5,

we have

||Tm(?)||lp(-)(14/1”(')...w/;§')) = C”MPO (]?)HM(')(W‘;(')“.WK;'))‘ (32)
By Holder’s inequality,
R . N
”Mpo (f) ||Lp<-)<wf<'>...m{6‘)) = ||Mpo(f)W1 ’ "WN”m) = H{MPO (ﬂ)Wi}
i=1 §728
= C”MPO (f1)W1 ”Lm(‘) “ Mpo (fN)WN”L[’N(')’ (3.3)

where

1
1 Po
My =sup( o [ 001 )" i1
e« \1Ql Jo
Since py < gj, we can choose u; > 1 such that pou; = g;. Thus by Proposition 3.7, we get that

||MPO () ”Lq/(w) = C|[f||qu(W)

is valid for all w € Ay, f € L% (w). Using the boundedness of M again, we see from Propo-
sition 3.5 that

0, j=1...,N.

M 0,0, < U0,
It follows from (3.3) that

”MPO (f) ||LP(‘)(M/17(')---M/”(‘)) < C”ﬁ”L”l(')(u/fl(‘)) cee ”fN”LpN(')(M/ZN('))‘

N

By (3.2), we obtain the desired conclusion as follows:

||Tm(f)||Lp(.>(M;lz(->mW§]<->) < Cllﬁllm(.)(wfl(-)) e IlfNIILpN(.)(M/Az]N<-))~ O
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As an application of Theorem 3.2, we now consider the case when weight functions are
defined by

ol
j i
w,(x): [1+|x—x0|]ﬁool_[|x_xk|ﬁk; ]:1)"~;N) (34')
k=1

where x; are fixed points in R”, k =1,...,1.

Corollary 3.9 Suppose that Nn/2 <s < Nn, m € L°(RN") and

SUP||m(RE)X{1<\§|<2} HHS(RNn) < 00.
R>0

, ; 1 1 11
Let the variable exponents p(x), . .., pn(x) and p(x) satisfy that aEtmet e = a®

where 1 < p_ < p, <00, 1y := Nn/s < (p;)- < (pj)+ < 00, and p; € LHy(R"). Suppose that
there exists some R > 0 and xy € R" such that pj(x) = (pj)oo = const for x € R" \ B(xo,R),
j=1,...,N, and that

)

n
)2167%)

i n n
<B <min{,—,—}, k=1,...,1,
g i)’ Np'(xc)

!
" g min|
_(p')oo <BL +;,Bk <m1n{ (P‘)QO’NPQO}

] ]

forj=1,...,N. Then T,, is bounded from Lpl(‘)(wfl(')) X oee X L”N(‘)(wf(,N(')) to LP(‘)(wf(') e
wi).

To prove Corollary 3.9, we need to define a class of weight functions, which is a special
case of [3, Definition 2.7].

Definition 3.10 ([3]) Let p(-) € C(R") and there exists R > 0 and x, € R” such that p(x) =
Poo = const for all x € R” \ B(xg, R). A weight function w of the form

!
w=[1+ |x_x0|]ﬂoo1_[|x_xk|ﬁk
k-1

is said to belong to the class V() (R", IT) if

k=1,...,1

n
-—<

,Bk <—
plxr) p'(xk)
and
n ! n
——<,BOO+Z/‘3/(<T.
Poo P P

We first give some lemmas that are needed to prove Corollary 3.9.

Lemma 3.11 ([2, Proposition 2.3]) Given a domain 2, if p, < 0o, then p(-) € LHy(R2) is
equivalent to assuming r(-) = 1/p(-) € LHy(RQ).
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Lemma 3.12 ([3, Remark 2.10]) For every po € (1,p_), there hold the implications
0€ V(1) = o€ Vipy (2, 10),

where p(-) = p—o.
Lemma 3.13 ([3, Theorem 2.10]) Suppose that 2 is an unbounded open set of R". Let
p() € LHy satisfy 1 < p_ < p, < 00, and let there exists some R > 0 and xo € R" such that
P(x) = poo = const for x € Q \ B(xo,R). If 0 € Vyp()(R, 1), then M is bounded on the space

LPO(Q, Qp(')).
Then we have the following lemma.

Lemma 3.14 Let p(-) € LHy satisfy 1 < p_ < p, < 00. Suppose that there exists some R > 0
and xy € R" such that p(x) = p = const for x € R" \ B(xo,R). If 0 € Vy(y(R”, 1), then M
is bounded on the space L?)O (o=@ 0) for all gy € (1,p_), where p(-) = ’%.

Proof If p(-) € LHy, then p(-) € LHy. By Lemma 3.11, we have (p)'(-) € LH,. And since
0 € Vy()(R",II), by Lemma 3.12 we know 0™% € V(5 (,(R", IT). Then it follows from Lem-
ma 3.13 that M is bounded on L&) () (o=90®) (), |

Now we are ready to prove Corollary 3.9.
Proof of Corollary 3.9 Fix some 1< q < p_. Let g;, p(x) and p;(x) be defined as in Theo-

rem 3.2. By the assumption, we have

——< B <——, k=1,...,]
0 <P

j
o <P~ +Zﬂk o

So w; € V,,(R", TT). By Lemma 3.14, M is bounded on LZ#'O(w 7%} Again, by the
] pj(-) Y j g Y

assumption, we get

N
Z <Y Bi< o, k=1...1, (3.5)
Rz P/ (i)

N n

Z ) <Zﬂ’ +Zzﬁ'<— (3.6)
=1 B))oo = k=1 j=1
Note that the left-hand sides of (3.5) and (3.6) are equal to — and S respectively.
Sow:---wy € Vo (R", H).

By Lemma 3.11, we know 7€ LH,. Therefore, () = % +eeet m € LHy. Thus p(-) €

/

LH,. Now by Lemma 3.14, /\/l is bounded on L® O ((w, WN)_q(i’)/(‘)). By Theorem 3.2,
there exists some C > 0 such that

N
||Tm(f)||Lp<.)(Wf(»>__%§->> < C!:l[ |[]§||LP/.<.>(Wf,»<->)~ -
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