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Abstract
In this paper, we introduce a new kind of modification of q-Stancu-Beta operators
which preserve x2 based on the concept of q-integer. We investigate the moments
and central moments of the operators by computation, obtain a local approximation
theorem, and get the pointwise convergence rate theorem and also a weighted
approximation theorem.
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1 Introduction
In , Aral and Gupta [] introduced the q analog of Stancu-Beta operators as

L∗
n,q(f ;x) =

K (A; [n]qx)
Bq([n]qx; [n]q + )

∫ ∞/A



u[n]qx–

( + u)[n]qx+[n]q+q
f
(
q[n]qxu

)
dqu, ()

for every n ∈ N, q ∈ (, ), x ∈ [,∞). They estimated moments, established direct result
in terms of modulus of continuity and present an asymptotic formula.
Since the types of operators which preserve x are important in approximation theory,

in this paper, we will introduce a modification of q-Stancu-Beta operators which will be
defined in (). The advantage of these new operators is that they reproduce not only con-
stant functions but also x.
Firstly, we recall some concepts of q-calculus. All of the results can be found in []. For

any fixed real number  < q ≤  and each nonnegative integer k, we denote q-integers by
[k]q, where

[k]q =

{
–qk
–q , q �= ;
k, q = .

Also the q-factorial and q-binomial coefficients are defined as follows:

[k]q! =

{
[k]q[k – ]q · · · []q, k = , , . . . ;
, k = 
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and

[
n
k

]
q

=
[n]q!

[k]q![n – k]q!
(n≥ k ≥ ).

The q-improper integrals are defined as

∫ ∞/A


f (x)dqx = ( – q)

∞∑
–∞

f
(
qn

A

)
qn

A
, A > , ()

provided the sums converge absolutely.
The q-Beta integral is defined as

Bq(t; s) = K(A; t)
∫ ∞/A



xt–

( + x)t+sq
dqx, ()

where K (x; t) = 
x+x

t( + 
x )

t
q( + x)–tq , and ( + x)τq =

(+x)(+qx)(+qx)···
(+qτ x)(+qτ+x)(+qτ+x)··· , τ >  (τ = t + s).

In particular for any positive integer n,

K (x;n) = q
n(n–)

 , K (x; ) =  and Bq(t; s) =
Γq(t)Γq(s)
Γq(t + s)

. ()

For f ∈ C[,∞), q ∈ (, ), and n ∈N, we introduce the newmodification of q-Stancu-Beta
operators Ln,q(f ,x) as

Ln,q(f ;x) =
K (A; [n]qvn(x))

Bq([n]qvn(x); [n]q + )

∫ ∞/A



u[n]qvn(x)–

( + u)[n]qvn(x)+[n]q+q
f
(
q[n]qvn(x)u

)
dqu, ()

where

vn(x) =

√
q[n]q – q

[n]q
x +


[n]q

–


[n]q
. ()

2 Some preliminary results
In this section we give the following lemmas, which we need to prove our theorems.

Lemma  (see [, Lemma ]) The following equalities hold:

L∗
n,q(;x) = , L∗

n,q(t;x) = x, L∗
n,q

(
t;x

)
=
([n]qx + )x
q([n]q – )

.

Lemma  Let q ∈ (, ), x ∈ [,∞), we have

Ln,q(;x) = , Ln,q(t;x) =

√
q[n]q – q

[n]q
x +


[n]q

–


[n]q
, Ln,q

(
t;x

)
= x. ()
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Proof From Lemma , we get Ln,q(;x) =  and Ln,q(t;x) =
√

q[n]q–q
[n]q x + 

[n]q
– 

[n]q easily.
Finally, we have

Ln,q
(
t;x

)
=
([n]qvn(x) + )vn(x)

q([n]q – )

=
[n]q

q[n]q – q

(


[n]q
+
q[n]q – q

[n]q
x +


[n]q

–


[n]q

√
q[n]q – q

[n]q
x +


[n]q

)

+


q[n]q – q

(√
q[n]q – q

[n]q
x +


[n]q

–


[n]q

)
= x.

Lemma  is proved. �

Remark  Let n ∈ N and x ∈ [,∞), then for every q ∈ (, ), by Lemma , we have

Ln,q
(
 + t;x

)
=  + x. ()

Lemma  For every q ∈ (, ) and x ∈ [,∞), we have

Ln,q
(
(t – x);x

)
= x – x

√
q[n]q – q

[n]q
x +


[n]q

+
x

[n]q
. ()

Proof Since Ln,q((t – x);x) = Ln,q(t;x) – xLn,q(t;x) + x and from Lemma , we get Lem-
ma  easily. �

Remark  Let the sequence q = {qn} satisfy that qn ∈ (, ) and qn →  as n → ∞, then
for any fixed x ∈ [,∞), by Lemma , we have

lim
n→∞Ln,qn

(
(t – x);x

)
= . ()

3 Local approximation
In this section we establish direct local approximation theorem in connection with the
operators Ln,q(f ;x).
We denote the space of all real valued continuous bounded functions f defined on the in-

terval [,∞) byCB[,∞). The norm ‖·‖ on the spaceCB[,∞) is given by ‖f ‖ = sup{|f (x)| :
x ∈ [,∞)}.
Further let us consider Peetre’s K-functional:

K(f ; δ) = inf
g∈W

{‖f – g‖ + δ
∥∥g ′′∥∥}

,

where δ >  andW  = {g ∈ CB[,∞) : g ′, g ′′ ∈ CB[,∞)}.
For f ∈ CB[,∞), the modulus of continuity of second order is defined by

ω(f ; δ) = sup
<h≤δ

sup
x∈[,∞)

∣∣f (x + h) – f (x + h) + f (x)
∣∣,
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by [, p.] there exists an absolute constant C >  such that

K(f ; δ) ≤ Cω(f ;
√

δ), δ > . ()

For f ∈ CB[,∞), the modulus of continuity is defined by

ω(f ; δ) = sup
<h≤δ

sup
x∈[,∞)

∣∣f (x + h) – f (x)
∣∣.

Our first result is a direct local approximation theorem for the operators Ln,q(f ;x).

Theorem  For q ∈ (, ), x ∈ [,∞), n ∈N, and f ∈ CB[,∞), we have

∣∣Ln,q(f ,x) – f (x)
∣∣

≤ Cω

(
f ;

√√√√x – x

√
q[n]q – q

[n]q
x +


[n]q

+
x

[n]q
+

(
x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

))

+ω

(
f ;x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

)
. ()

Proof For x ∈ (,∞], we define the auxiliary operators Ln,q(f ;x)

Ln,q(f ;x) = Ln,q(f ;x) – f
(√

q[n]q – q
[n]q

x +


[n]q
–


[n]q

)
+ f (x). ()

Obviously, we have

Ln,q(t – x;x) = . ()

Let g ∈W , by Taylor’s expansion, we have

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u)du, x, t ∈ [,∞).

Using (), we get

Ln,q(g;x) = g(x) + Ln,q
(∫ t

x
(t – u)g ′′(u)du;x

)
,

hence, by Lemma , we have

∣∣Ln,q(g;x) – g(x)
∣∣

=
∣∣∣∣Ln,q

(∫ t

x
(t – u)g ′′(u)du;x

)∣∣∣∣
+

∣∣∣∣
∫ x√

q[n]q–q
[n]q x+ 

[n]q
– 
[n]q

[
u –

(√
q[n]q – q

[n]q
x +


[n]q

–


[n]q

)]
g ′′(u)du

∣∣∣∣
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≤ Ln,q
(∣∣∣∣

∫ t

x
(t – u)

∣∣g ′′(u)
∣∣du∣∣∣∣;x

)

+
∫ x√

q[n]q–q
[n]q x+ 

[n]q
– 
[n]q

∣∣∣∣u –
(√

q[n]q – q
[n]q

x +


[n]q
–


[n]q

)∣∣∣∣∣∣g ′′(u)
∣∣du

≤
[
x – x

√
q[n]q – q

[n]q
x +


[n]q

+
x

[n]q

+
(
x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

)]∥∥g ′′∥∥.

On the other hand, using () and Lemma , we have

∣∣Ln,q(f ;x)∣∣ ≤ ∣∣Ln,q(f ;x)∣∣ + ‖f ‖
≤ ‖f ‖Ln,q(;x) + ‖f ‖
≤ ‖f ‖. ()

Thus,

∣∣Ln,q(f ;x) – f (x)
∣∣

≤ ∣∣Ln,q(f – g;x) – (f – g)(x)
∣∣ + ∣∣Ln,q(g;x) – g(x)

∣∣
+

∣∣∣∣f
(√

q[n]q – q
[n]q

x +


[n]q
–


[n]q

)
– f (x)

∣∣∣∣
≤ ‖f – g‖ +

∣∣∣∣f
(√

q[n]q – q
[n]q

x +


[n]q
–


[n]q

)
– f (x)

∣∣∣∣
+

[
x – x

√
q[n]q – q

[n]q
x +


[n]q

+
x

[n]q

+
(
x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

)]∥∥g ′′∥∥.

Hence taking the infimum on the right-hand side over all g ∈W , we get

∣∣Ln,q(f ;x) – f (x)
∣∣

≤ K

(
f ; x – x

√
q[n]q – q

[n]q
x +


[n]q

+
x

[n]q

+
(
x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

))

+ω

(
f ;x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

)
.
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By (), for every q ∈ (, ), we have

∣∣Ln,q(f ,x) – f (x)
∣∣

≤ Cω

(
f ;

√√√√x – x

√
q[n]q – q

[n]q
x +


[n]q

+
x

[n]q
+

(
x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

))

+ω

(
f ;x +


[n]q

–

√
q[n]q – q

[n]q
x +


[n]q

)
.

This completes the proof of Theorem . �

4 Rate of convergence
Let Bx [,∞) be the set of all functions f defined on [,∞) satisfying the condition
|f (x)| ≤ Mf ( + x), where Mf is a constant depending only on f . We denote the subspace
of all continuous functions belonging to Bx [,∞) by Cx [,∞). Also, let C∗

x [,∞) be
the subspace of all functions f ∈ Cx [,∞) for which limx→∞ f (x)

+x is finite. The norm on
C∗
x [,∞) is ‖f ‖x = supx∈[,∞)

|f (x)|
+x . We denote the usual modulus of continuity of f on the

closed interval [,a] (a > ) by

ωa(f , δ) = sup
|t–x|≤δ

sup
x,t∈[,a]

∣∣f (t) – f (x)
∣∣.

Obviously, for a function f ∈ Cx [,∞), the modulus of continuity ωa(f , δ) tends to zero
as δ → .

Theorem  Let f ∈ Cx [,∞), q ∈ (, ) and ωa+(f , δ) be the modulus of continuity on the
finite interval [,a + ] ⊂ [,∞), where a > . Then we have

∥∥Ln,q(f ) – f
∥∥
C[,a] ≤ Mf

(
 + a

)(
a – a

√
q[n]q – q

[n]q
a +


[n]q

+
a

[n]q

)

+ ωa+

(
f ;

√√√√a – a

√
q[n]q – q

[n]q
a +


[n]q

+
a

[n]q

)
. ()

Proof For x ∈ [,a] and t > a+, we have t–x ≥ t–a > . Hence (t–x) > . Thus +x +
(t–x) ≤ (+x)(t–x) +(t–x) = (+x)(t–x) ≤ (+a)(t–x) ≤ (+a)(t–x).
Hence, we obtain

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + a

)
(t – x). ()

For x ∈ [,a] and t ≤ a + , we have

∣∣f (t) – f (x)
∣∣ ≤ ωa+

(
f ; |t – x|) ≤

(
 +

|t – x|
δ

)
ωa+(f ; δ), δ > . ()

From () and (), we get

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + a

)
(t – x) +

(
 +

|t – x|
δ

)
ωa+(f ; δ). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/505
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For x ∈ [,a] and t ≥ , by Schwarz’s inequality, Lemma , and Lemma , we have

∣∣Ln,q(f ;x) – f (x)
∣∣

≤ Ln,q
(∣∣f (t) – f (x)

∣∣;x)
≤ Mf

(
 + a

)
Ln,q

(
(t – x);x

)
+ωa+(f ; δ)

(
 +


δ

√
Ln,q

(
(t – x);x

))

≤ Mf
(
 + a

)(
a – a

√
q[n]q – q

[n]q
a +


[n]q

+
a

[n]q

)

+ωa+(f , δ)
(
 +


δ

√√√√a – a

√
q[n]q – q

[n]q
a +


[n]q

+
a

[n]q

)
.

By taking δ =
√
a – a

√
q[n]q–q
[n]q a + 

[n]q +
a

[n]q , we get the assertion of Theorem . �

5 Weighted approximation
Now we will discuss the weighted approximation theorems.

Theorem  Let the sequence {qn} satisfy  < qn <  and qn →  as n → ∞, for f ∈
C∗
x [,∞), we have

lim
n→∞

∥∥Ln,qn (f ) – f
∥∥
x = . ()

Proof By using the Korovkin theorem in [], we see that it is sufficient to verify the fol-
lowing three conditions:

lim
n→∞

∥∥Ln,qn(tv;x) – xv
∥∥
x , v = , , . ()

Since Ln,qn (;x) =  and Ln,qn (t;x) = x (see Lemma ), () holds true for v =  and v = .
Finally, for v = , we have

∥∥Ln,qn (t;x) – x
∥∥
x = sup

x∈[,∞)

|Ln,qn (t;x) – x|
 + x

≤
(
 –

√
q[n]q – q

[n]q

)
sup

x∈[,∞)

x
 + x

+


[n]q
sup

x∈[,∞)


 + x

≤  –

√
q[n]q – q

[n]q
+


[n]q

,

since limn→∞ qn = , we get limn→∞( –
√

q[n]q–q
[n]q ) =  and limn→∞ 

[n]q = , so the second
condition of () holds for v =  as n→ ∞, then the proof of Theorem  is completed. �
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