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1 Introduction
Throughout this paper, let R = (—00, 00) and N denote the set of all positive integers.
Let us recall some definitions of various convex functions.

Definition 1 A function f:I € R — R is said to be convex if

fOx+ @ =2)y) < Af(x) + A= 1)) (1)

holds for all x,y € I and A € [0, 1]. If the inequality (1) reverses, then f is said to be concave
onl.

Definition 2 [1] A set S C R” is said to be invex with respect to the map n: S x § — R”,
ify+tn(x,y) € S for every x,y € Sand t € [0,1].

It is obvious that every convex set is invex with respect to the map n(x,y) = x — y, but
there exist invex sets which are not convex. See [1], for example.

Definition 3 [1] Let S € R” be an invex set with respect to n: S x § — R”". For every
x,y € S, the n-path Py, joining the points x and v = x + 1(y, %) is defined by

pP,, = {z|z=x+ tn(y,x),t € [0,1]}. 2)

Definition 4 [1] Let S € R” be an invex set with respect to n: S x § - R”. A function
f:S — Ris said to be preinvex with respect to n, if f(y + tn(x,y)) < tf(x) + (1 - t)f (y) for
everyx,y € S and ¢ € [0,1].

Every convex function is preinvex with respect to the map 7n(x,y) = x — y, but not con-
versely. For properties and applications of preinvex functions, please refer to [1-3] and
closely related references therein.
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The most important inequality in the theory of convex functions, the well-known
Hermite-Hadamard’s integral inequality, may be stated as follows. If f is a convex func-
tion on [a, b], then

(450) = 5t [ rmas 2@ 10, ®

If f is concave on [a, b], then the inequality (3) is reversed.
The inequality (3) has been generalized by many mathematicians. Some of them may be
recited as follows.

Theorem 1 [4, Theorem 2.2] Let f:1° € R — R be a differentiable mapping on I° and
a,b e I° witha < b. If|f'(x)| is convex on [a, b), then

b / 1
D01 (" 4 < OO w

8

Theorem 2 [5, Theorem 1] Iff is differentiable on |a, b] such that |f'(x)|? is a convex func-
tion on [a, b] for g > 1, then

f@+f®) 1 [P b—al|f'@7+|f' (b))
2 b a/f(x)dx‘f 4 [ 2 ] '

(5)

Theorem 3 [6, Theorem 2.3] Letf :1 — R be differentiable on I°, a,b € I° with a < b, and
p> LIfIf (x)P'?V is convex on [a,b), then

(557 e

b-a( 4
= %(ﬁ) {[[f( )|P/(p 1)+3lf b)|p/(p 1]1 1/p

+ [3v/(a)|p/(p—l) + V/(b) ’p/(pfl)]lfl/p}. (6)

Theorem 4 [2, Theorem 2.1] Let A C R be an open invex set with respectton : A x A — R
and f : A — R be a differentiable function. If |[f'(x)| is preinvex on A, then for every a,b € A
with n(a,b) # 0

O +fBin@b) 1 e )
OOt L [T el < P ol o

2

Theorem 5 [2, Theorem 4.1] Let A C R be an open invex set with respectton : A x A — R
and n(a,b) #0 for all a # b. Suppose that f : A — R is a twice differentiable function on A.
If |f"(x)| is preinvex on A and f" is integrable on the n-path Py, for c = b + n(a, b), then

(b) (b (@,b) benab) (n(a,b)1* ¢, ,, )
‘f +f(b +n(a, — b)/ f)dx| < 2_4[[,6 @|+f'®[].  ®

Theorem 6 [2, Theorem 4.3] Let A C R be an open invex set with respectton :Ax A — R
and n(a,b) # 0 for all a # b. Suppose that f : A — R is a twice differentiable function on A
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and |f"(x)| is preinvex on A. If ¢ > 1 and f" is integrable on the n-path Py, for c = b + n(a, b),

then
f(b) +f(b+n(a,b)) 1 bn(ab)
‘ 2 - n(a,b) /h Sx)dx
’b 2 1/q
= @ (%) [IF"@|" + " ®)| "] ©)

Recently, some related inequalities for preinvex functions were also obtained in [7, 8].
Some integral inequalities of Hermite-Hadamard type for other kinds of convex functions
were also established in [9-16] and references cited therein.

In this paper, by creating an integral identity involving an n-times differentiable func-
tion, the authors will establish some new Hermite-Hadamard type inequalities for prein-
vex functions and generalize some of the above mentioned results.

2 Alemma
In order to obtain our main results, we need the following lemma.

Lemmal ForneN,let A CR be an open invex set with respect ton:A x A — R and let
a,b e Awithn(a,b) #0 foralla #b. Iff : A — R is an n-times differentiable function on A
and f) is integrable on the n-path Py, for ¢ = b + 1(a, b), then

f)+f(b+n(a,b)) 1 b+1(ab)
2 - n(a, b) /z: flx)dx
n-1 ,b k(1 _
+ Z %[f(k)(m + (CDAf® (b+n(@b)]
k=1
n 1
i % /o (-0 @t 4 n=2) + ()7 Qe =] (b + tn(a b)) dt, (10)

where the above summation is zero for n = 1.

Proof Since a,b € A and A is an invex set with respect to 5, for every ¢ € [0,1], we have
b +tn(a,b) € A. When n =1, integrating by parts in the right-hand side of (1) gives

FB) +fbrn@p) 1 [ran n(a,b)
‘n<a,b>/h flrdr="5

1
2 /0 (2t -1)f (b + tn(a, b)) dz.

Hence, the identity (1) holds for n = 1.
When n =m —1 and m > 2, suppose that the identity (1) is valid.
When n = m, by the hypothesis, we have

[n(a, b)]"
4(m")

_ [n(a, )1
T 4(m)

1

[ Ta=orie e m =2y o= mlr b + onta, ) de
0

{(—1)m1(2 ~m)f" (b +n(a, b)) — (m - 2)f"(b)

1
-m / [(L-6)"2(3 -2t —m) + (=) *(m — 1= 20) [V (b + tn(a, b)) dt}
0
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n (a,b)]’” 12 -m)
B 4(m

N [n(a, )]”“‘] !
4[(m-1)]

+(=t)" 22t = m + D] (b + ty(a, b)) dt

_f(®)+f(b+n(a,b)) 1 bin(a,b)
_ 2 ) e

[f(ml M1fml(b+n(ﬂ b))]

[(1-8" @2t +m-3)

m— 1 1 k) ) ke eth)
+k=1 (k 1)]1 [f (b)+(_1)f (b+77(61,b))]

Therefore, when n = m, the identity (1) holds. By induction, the proof of Lemma 1 is com-
plete. d

Remark 1 When n =1 and #n = 2 in (1), respectively, we obtain the identities

f(b) +f(b+n(a,b)) 1 ben(ab)
2 "N b) / Sl dx

_na,b)

1
/ @t —1)f' (b + tn(a, b)) dt
0

and

fb)+f(b+nla,b)) 1 b+(ab)
2 w0

_ [n(a, b)1

1
5 /0 (1 -t)f" (b +tn(a, b)) dt

which may be found in [2].

3 Hermite-Hadamard type inequalities for preinvex functions
Now we start out to establish some new Hermite-Hadamard type inequalities for n-times
differentiable and preinvex functions.

Theorem 7 For n € N and n > 2, let A C R be an open invex set with respect to n: A x
A — Rand a,b € A with n(a,b) # 0 for all a # b. Suppose that f : A — R is an n-times
differentiable function on A and f" is integrable on the n-path Py, for ¢ = b + n(a,b). If
|f"9 is preinvex on A for q > 1, then

b b ,b b+n(a,b)
SO0 et L[,

-1

YLK
Z U 0 + (0 b + )]

@b -1 n
= Z[(fa + 1)!]}’2,4 +2)lq {[”Lf( )(ﬂ)|q +(n* -2) lf( )(b)|q]l/q

+[(2? = 2)[F" @] + nf )|} (11)
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Proof Since a,b € A and A is an invex set with respect to 5, for every ¢ € [0,1], we have

b+ tn(a,b) € A. Using Lemma 1 and Holder’s inequality yields

f(b) +f(b + }']((,z, b)) 1 b+n(a,b)
‘ 2 - n(a, b) /b f(x)dx

n-1
3 el -l [1(a, b)]*(1 - k)

4[(k + 1)1 [f(k)(b) + (—l)kf(k) (b +1(a, b))]‘

1

k=
In( ,b)|"
T 4(m)

1
+ / " —20)|f" (b + tn(a, b))| dt:|
0

@b [T 1 on e
< 20 {[/0 (1-¢) 1(2t+n—2)dt]

1 1/q
x [ / (- 8y 2t +n=2)(e|fP @) + 1 -)|[f " (B)|") dt]
0

! n-1l¢ i|1_1/q|: ! n-1¢ (n) q
+[/O L - 26) dt /Ot (n = 20) (¢ (@)]

1/q
+1 -9 ®)]") dt} }

In(a, b)|"(n - 1)1 ) )
) :[:1 + 1)!]}/(1;4 +2)Va {[”V( )(d)}q +(n*-2) lf( )(b)‘Q]l/q

+[(7 =2) [ @[+ nlr @)},

1
[ / A -2t +n-2)|f" (b + tn(a, b)) | dt
0

Theorem 7 is thus proved. d

Corollary 1 Under the assumptions of Theorem 7,
1. ifq=1,then

f(b) +f(b + T](ﬂ, b)) 1 b+n(a,b)
2 - n(a, b) /b fx)dx

n-1
[n(a,b)]*(1 - k) (
+ kZE W[f(k)(b) + (C15F 9 (b + 5(a, b))

< (l’l - 1)|TI(¢1, b)ln [lf(n)

4[(n +1) (a)’ "

2. ifqg=1and n=2,then the inequality (8) is valid.

Theorem 8 Forn € N and n > 2, let A C R be an open invex set with respect to n: A x
A — R and a,b € A with n(a,b) # 0 for all a # b. Suppose that f : A — R is an n-times
differentiable function on A and f" is integrable on the n-path Py, for ¢ = b + n(a,b). If
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|f"|9 is preinvex on A for q > 1, then

b b ,b b+n(a,b)
0/ + 1l ))_n(;b) / oy

b k
Z [n(a(k)i 1()1' D 190) + 150 (b + n(a b))]’

n(a, b)|" 4(g-1)7"M
= 16(n)l(q + 1>(q+2>]”q[ ng -1 ]

(
% {[((}’l 2)q+2 Vl 2q 4)nq+1) lf(n)(a)rl
(172 = 1+ 2q + 2)(n = 2)™) [F ()]
+[(n1** = (n + 2 + 2)(n - 2)7*) [f () |*
(

(n—2)1" — (n - 24 - 4)n®™) [f) ()| 1]}, 12)

+

+

Proof For every t € [0,1], we have b + tn(a, b) € A. By Lemma 1 and Hoélder’s inequality, it
follows that

f(b) +f(b + n(a,b)) 1 b+n(a,b)
‘ 2 ~n(a,b) /b flx)d

-1

1b k
Z n(Z[,<)+(11), )f (b)+(—1)kf(k)(b+n(a,b))]‘
k=1

|( ,b)|" el )
<5 |:/0(1 "2t +n=2)|[f" (b + tn(a, b)) | dt

/t” Yn—2t)|[f" (b + tn(a, b))|dti|

|’7”b)|n (n-1)/(g-1) -
= 4G ”/ -t dt]

1/q
[ (2t +n -2 (el @) + [f)(b)|q)dt]

1-1/q 1 Ve
[ tq(n 1)/(g-1) dt:| |:/ (I’l _ 2t)q(tlf(n)(ﬂ)|q + (1 - t) lf(")(b)}q) dti| }
0

) n(a,b)|" 4q-1)7"
) 16<nz>[(q+1><q+2>1“q[ ng -1 }

< A[(0=272 = (=20 - ) O @)
+ (nq+2 —-(n+2q+2)(n- 2)q+1) v(n)(b) |q]1/q
+ [( T2 _(n+2q+2)(n— 2)‘“1) [f(n) a)|q

#(01=2)772 = (1 - 2q - 0t™) [F )]},

Theorem 8 is thus proved. 0
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Theorem 9 For n € N and n > 2, let A C R be an open invex set with respect to n: A x
A — Rand a,b € A with n(a,b) #0 for all a # b. Suppose that f : A — R is an n-times

differentiable function on A and f" is integrable on the n-path Py, for c = b + n(a, b). If
|f"|9 is preinvex on A for q > 1, then

f() +f(b+n(a,b)) 1 bn(a,b)
‘ 2 " n(a,b) / %) dx

n-1
[n(a, b)I*(1 - k) c
+k§ sy V" (b)+(—1)’f(k)(b+'7(ﬂ»b))]’

In(a, b)|"
" 4(m)(ng - q +1)(nq - q +2)]"4

(g - 1)[n2aD/a-0) _ (5 — 2)2a-D/(q-1)] ) 1-Va
X
{ 2(2q-1) }

< A[f @7 + (ng - g + D|f " b)|"]"
+[(ng - g+ D|f@|" + |[f2®)|"]"). (13)

Proof Since a,b € A and A is an invex set with respect to 5, for every ¢ € [0,1], we have
b +tn(a, b) € A. Utilizing Lemma 1 and Hélder’s inequality results in

f(b) + f(b +n(a, b)) 1 ben(a,b)
’ 2 - n(a,b) /b f(x)dx
n-1 1 k) ) K r(0)
+ 4'[(/( + 1), |;f (b) + (_1) f (b + n(a,b))]
k=1

| . :
= n4(n,) [/ A -0 @2t +n-2)|f" (b + tn(a,b))| dt

1
+ / "N - 2¢) [f(") (b +tn(a, b))‘ dt:|
0

| ab)|" . 1-1/q
= "4 {U (2t +n =27 dt]

1/q
x [ / A -1 V(" a)|"+ @ -1) |7 (B)|7) dt]
0
1 1-1/q 1 1/q
+[ f (n-zt)q“ql)dt} [ / 1V (| @)+ @ - 1) |7 (B)]7) dt:| }
0 0

_ In(a, b)|"
4(n")[(ng — g +1)(ng — q + 2)]Va

{ (g - 1)[nCaD/aD) _ (5 — 2)2a-Dl(g-1)] }11/‘I
X

2(2g-1)
< [If"@|" + (nq - g + D] )|*]"
+ [(nq—q+ 1)V(n)(a)|q + V‘(n)(b)|q]1/q}.

The proof of Theorem 9 is complete.

Page 7 of 9
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Theorem 10 For n € N and n > 2, let A C R be an open invex set with respect to n: A x
A — Rand a,b e A with n(a,b) #0 for all a # b. Suppose that f : A — R is an n-times
differentiable function on A and f" is integrable on the n-path Py, for c = b + n(a,b). If
|f"|9 is preinvex on A for q > 1, then

f(b) +f(b +n(a,b)) 1 ben(ab)
‘ 2 “anl, S0

n-1

1 (e, HIF0-K)
D e
=1

&+ 1) [FO®B) + (-1 D (b + n(a, b))]’

_ (@ b)l" [6(61— 1)(nq - 2)(n - 1)]1-“4
24(n!) (ng—1)(nq +q-2)

x {[Bn=2)|f"@)|" + 3n - 4)|f" )| "]
+[Br=a)|f"@)|" + Bn-2)[f" ®)|"]"). (14)

Proof Since a,b € A and A is an invex set with respect to 5, for every ¢ € [0,1], we have
b +tn(a,b) € A. Employing Lemma 1 and Hoélder’s inequality leads to

f(b) +f(b+n(a,b)) 1 bin(ab)
’ 2 “anl, S0

,_‘

n—

@ DFO=R) e
2 ey VO VTG n@D)]

>
I

—

_ In@b)"
4

1
+ / " —20)|f" (b + tn(a, b))| dt}

0

1-1/
_|77(ﬂb {[/ (1= )2-DaD (2 4 — 2)dti| '

1
[ / A -0 2t +n-2)|f" (b + tn(a,b))| dt
0

4(n")

1/q
x [ / @t +n-2)(t|f"@|" + Q- 1)|f"®)]") dt]
0

1 1-1/q 1
q(n-1)/(q-1) (,, _ _ (n) q
+[/0 ¢ (n 2t)dti| [fo (n = 26)(t|f"(a)]

1/q
+1 -9 (B dt} }

_ In@b)I" [ 6(g = D(ng - 2)(n-1)]" (i) (|7
- 24(n) [ (ng-1)(ng +q-2) } {[Bn-2)|f" (@)

+ (3n—4)[f(”)(b)‘q]l/q [(Bn—4) V(”) a){q (Bn-— Z)lf(")(b)|q]l/q}'

The proof of Theorem 10 is complete. O
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