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1 Introduction
Consider the following system of exponents:

{
eiλnt

}
n∈Z , ()

where {λn} ⊂ R is a sequence of real numbers, Z is a set of integer numbers. It is the aim of
this paper to investigate basis properties (basicity, completeness, and minimality) of the
system () in Lebesgue space Lpt with variable summability index p(t), when {λn} has the
asymptotics

λn = n – α signn +O
(|n|–β

)
, n→ ∞, ()

where α,β ∈ R are some parameters.
Many authors have investigated the basicity properties of system of exponents of the

form (), beginning with the well-known result of Paley and Wiener [] on Riesz basicity.
Some of the results in this direction have been obtained by Young []. The criterion of
basicity of the system () in Lp ≡ Lp(–π ,π ),  < p < +∞, when λn = n – α signn, has been
obtained earlier in [, ].
Recently in connection with consideration of some specific problems of mechanics and

mathematical physics [, ], interest in the study of the various questions connected with
Lebesgue Lpt and Sobolev Wk

pt spaces with variable summability index p(t) has increased
[–].
Many questions of the theory of operators (for example, theory of singular operators,

theory of potentials and etc.) are studied in spaces Lpt []. These investigations have al-
lowed one to consider questions of basicity of some system of functions (for example, the
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classical system of exponents {eint}n∈Z) in Lpt . In [] the basicity of system {eint}n∈N in Lpt
has been established. The special case of the system () is considered in [–], when
λn = n – α signn, n ∈ Z.
In this paper basis properties of the system () in Lpt spaces are investigated. Under cer-

tain conditions on the parameters α and β equivalence of the basis properties (complete-
ness, minimality, ω-linearly independence, basicity) of the system () in Lpt are proved.

2 Necessary notion and facts
Let p : [–π ,π ] → [, +∞) be a Lebesgue measurable function. By L we denote the class
of all functions measurable on [–π ,π ] with respect to Lebesgue measure. We choose the
notation

Ip(f )
def≡

∫ π

–π

∣∣f (t)∣∣p(t) dt.
Let L ≡ {f ∈ L : Ip(f ) < +∞}. Let p– = inf vrai[–π ,π ] p(t), p+ = supvrai[–π ,π ] p(t). For p+ <

+∞, with respect to ordinary linear operations of addition of functions andmultiplication
by number, L turns into a linear space. If we define in Lpt the norm

‖f ‖pt def≡ inf

{
λ >  : Ip

(
f
λ

)
≤ 

}
,

then L is a Banach space and we denote it by Lpt . Denote

H ln def≡
{
p : p(π ) = p(–π ) and ∃C > ,∀t, t ∈ [–π ,π ], |t – t| ≤ 



⇒ ∣∣p(t) – p(t)
∣∣ ≤ C

– ln |t – t|
}
.

Throughout this paper, q(t) denotes the function conjugate to function p(t), that is, 
p(t) +


q(t) ≡ .
We have Hölder’s generalized inequality,

∫ π

–π

∣∣f (t)g(t)∣∣dt ≤ C
(
p–;p+

)‖f ‖pt‖g‖qt ,
where C(p–;p+) =  + 

p– – 
p+ .

For our investigation we need some basic concepts of the theory of close bases, given as
follows.
We adopt the standard notation: B-space is a Banach space; X∗ is the conjugate to

space X; f (x), f ∈ X∗, and x ∈ X means the value of functional f on x; L[M] is a linear
span of a set M. The system {xn}n∈N ⊂ X is called ω-linear independent in B-space X, if∑∞

n= αnxn =  true for αn = , ∀n ∈ N .
The following lemma is true.

Lemma  Let X be a Banach space with basis {xn}n∈N ⊂ X and F : X → X be a Fredholm
operator. Then the following properties of the system {yn = Fxn}n∈N in X are equivalent:
() {yn}n∈N is complete;
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() {yn}n∈N is minimal;
() {yn}n∈N is ω-linear independent;
() {yn}n∈N is isomorphic to {xn}n∈N basis.

We also need the following easily provable lemma.

Lemma  Let X be a Banach space with basis {xn}n∈N and {yn}n∈N ⊂ X : card{n : xn 
= yn} <
+∞. Then the expression

Fx =
∞∑
n=

x∗
n(x)yn

generates the Fredholm operator F : X → X, where {x∗
n}n∈N ⊂ X∗ is conjugate to {xn}n∈N

system.

The following lemma is also true.

Lemma  Let {xn}n∈N be complete and minimal in B-space X and {yn}n∈N ⊂ X : card{n :
xn 
= yn} < +∞. Then the following properties of system {yn}n∈N in X are equivalent:
() {yn}n∈N is complete;
() {yn}n∈N is minimal.

These and other results are obtained in [, ].
We will use the following statement, which has a proof similar to the proof of Levinson

[].

Statement  Let system {eiλnt}n∈Z be complete in Lpt . If from the system we remove n any
functions and add instead of them n other functions eiμjt , j = , . . . ,n, where μ, . . . ,μn are
any, mutually different complex numbers not equal to any of numbers λk , then the new
system will be complete.

We shall also need the following theorem of Krein-Milman-Rutman.

Theorem  (Krein-Milman-Rutman []) Let X be a Banach space with norm ‖ · ‖,
{xn}n∈N ⊂ X be normed basis in X (i.e. ‖xn‖ = , ∀n ∈ N ) with conjugate system {x∗

n}n∈N ⊂
X∗, and {yn}n∈N ⊂ X be a system satisfying the inequality

∞∑
n=

‖xn – yn‖ < γ –,

where γ = supn ‖x∗
n‖. Then {yn}n∈N also forms a basis isomorphic to the basis {xn}n∈N in X.

3 Basic results
Before giving the basic results we will prove the following auxiliary theorem.

Theorem  Let p ∈H ln and p– > . If the system

{
ei(n–α signn)t}

n∈Z , ()
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forms a basis in Lpt ≡ Lpt (–π ,π ), then this system is isomorphic to the classical system of
exponents {eint}n∈Z , where the isomorphism is given by

Sf = e–iαt
∞∑


(
f , einx

)
eint + eiαt

∞∑


(
f , e–inx

)
e–int , ()

where

(f , g) =

π

∫ π

–π

f (t)g(t)dt.

Proof Consider the operator (). From the basicity of system {eint}n∈Z in Lpt it follows that
S is a bounded operator on Lpt into itself. It is easy to see thatKerS = . Actually, let Sf = .
From the basicity of the system () in Lpt and from () we obtain (f , einx) = , ∀n ∈ Z. Also,
from the basicity of system {eint}n∈Z in Lpt it follows that f = .We show that for all g ∈ Lpt ,
the equation Sf = g in Lpt is solved. Let us assume that

f =
∑
n∈Z

gneint ,

where {gn}n∈Z are the biorthogonal coefficients of the function g by the system ().
It is clear that f ∈ Lpt , and so

Sf = e–iαt
∞∑
n=

(
f , einx

)
eint + eiαt

∞∑
n=

(
f , e–inx

)
e–int

= e–iαt
∞∑
n=

gneint + eiαt
∞∑
n=

g–ne–int = g,

as by the condition of the theorem, the system () forms a basis in Lpt .
This means that for all g ∈ Lpt the equation Sf = g is solved in Lpt . Then by the Banach

theorem the operator S has a bounded inverse. It is obvious that S[eint] = A(t)eint , n ≥ ,
and S[e–int] = B(t)e–int , n≥ . This completes the proof. �

Now we study some basis properties of the system (). Firstly, we recall the following
theorem.

Theorem ([]) Let p ∈H ln and p– > . If parameter α ∈ R satisfies the condition – 
p(π ) <

α < 
q(π ) , then the system {eiμnt} forms a basis in Lpt .

Let the asymptotics () occur. Let us assume μn = n – α signn and δn = λn –μn, ∀n ∈ Z.
It is easy to see that the inequality

∣∣eiλnt – eiμnt
∣∣ ≤ c|n|–β , ∀n 
= , ()

is fulfilled, where c is some constant. Let us assume that the following inequalities are
satisfied:

–


p(π )
< α <


q(π )

, β >

p̃
, ()
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where p̃ =min{p–; }. Then, from Theorem , the system of exponents {eiμnt}n∈Z forms a
basis in Lpt . By Theorem , it is isomorphic to the classical system of exponents {eint}n∈Z
in Lpt . Therefore the spaces of coefficients of the bases {eiμnt}n∈Z and {eint}n∈Z coincide.
Let T : Lpt → Lpt be a natural automorphism

T
[
eiμnt

]
= eint , ∀n ∈ Z.

For all f ∈ Lpt , let {fn}n∈Z be biorthogonal coefficients of f by the system {eiμnt}n∈Z , and
let g = Tf . Therefore, {fn}n∈Z are the Fourier coefficients of the function g by the system
{eint}n∈Z . From () and (), it directly follows that

∑
n∈Z

∥∥eiλnt – eiμnt
∥∥p̃
pt
< +∞.

Consider the following expression:

∑
n

(
eiλnt – eiμnt

)
fn.

We have∥∥∥∥∑
n∈Z

(
eiλnt – eiμnt

)
fn

∥∥∥∥
pt

≤
∑
n∈Z

∥∥eiλnt – eiμnt
∥∥|fn|

≤
(∑

n

∥∥eiλnt – eiμnt
∥∥p̃
pt

)/p̃(∑
n

|fn|q̃
)/q̃

,

where 
p̃ +


q̃ = . By the Hausdorff-Young theorem [], we have

(∑
n

|fn|q̃
)/q̃

≤m‖g‖p̃,

where m is some constant. From p̃ ≤ p– and the continuous embedding Lpt ⊂ Lp̃, it fol-
lows that, ∃m > ,

‖g‖p̃ ≤m‖g‖pt ≤m‖T‖‖f ‖pt .

As a result, we obtain

∥∥∥∥∑
n

(
eiλnt – eiμnt

)
fn

∥∥∥∥
pt

≤mm‖T‖
(∑

n

∥∥eiλnt – eiμnt
∥∥p̃
pt

)/p̃

‖f ‖pt . ()

Let us take n ∈N such that

δ =mm‖T‖
( ∑

|n|>n

∥∥eiλnt – eiμnt
∥∥p̃
pt

)/p̃

< .

Assume that

ωn =

{
λn, |n| > n,
μn, |n| ≤ n.
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It is clear that the following inequality is satisfied:

∥∥∥∥∑
n

(
eiωnt – eiμnt

)
fn

∥∥∥∥
pt

≤ δ‖f ‖pt . ()

It follows immediately from () that the expression
∑

n(eiωnt – eiμnt)fn represents a func-
tion from Lpt and it can be denoted by Tf . Drawing attention to () we obtain ‖T‖ ≤
δ < . Thus, the operator F = I + T is invertible, and it is easy to see that F[eiμnt] = eiωnt ,
∀n ∈ Z. Hence, the system {eiωnt}n∈Z forms a basis in Lpt isomorphic to {eiμnt}n∈Z . Systems
{eiλnt}n∈Z and {eiωnt}n∈Z differ in a finite number of elements. Therefore, by Statement ,
the system {eiλnt}n∈Z is complete in Lpt , if λi 
= λj for i 
= j. In the following it is necessary to
apply Lemmas  and .
As a result we obtain the following theorem.

Theorem  Let the asymptotics () occur and the inequalities

–


p(π )
< α <


q(π )

, β >

p̃
, ()

be fulfilled, where p̃ =min{p–; }. Then the following properties of the system () are equiv-
alent in Lpt :
() the system () is complete;
() the system () is minimal;
() the system () is ω-linear independent;
() the system () is isomorphic to {eint}n∈N basis;
() λi 
= λj for i 
= j.

Let us consider the case α = – 
p(π ) . In this case, by the results of [], the system {eiμnt}n∈Z

is complete and minimal in Lpt , but it does not form a basis in it. Then from the previous
considerations it follows that the system () cannot form a basis in Lpt . Because otherwise,
by Theorem , it will be isomorphic to system {eint}n∈Z in Lpt , and as a result the system
{eiμnt}n∈Z should form a basis in Lpt . This gives a contradiction.
By {vn}n∈Z ⊂ Lqt we denote the system biorthogonal to {eiμnt}n∈Z . It is clear that using

the estimates from [], for vn, n ∈ Z, we establish that the following relation is true:

γ = sup
n

‖vn‖qt < +∞.

Let β > . Then it is clear that the following inequality is satisfied:

∑
n

∥∥eiλnt – eiμnt
∥∥
pt
< +∞.

Similarly to the previous case, we can show that the operator

T̃ f =
∑
n

vn(f )
(
eiλnt – eiμnt

)
, ∀f ∈ Lpt ,

is bounded in Lpt . Introducing the new system {eiωnt}n∈Z in the same manner we establish
the completeness of the system () in Lpt , if λi 
= λj for i 
= j. Minimality of the system ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/495
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in Lpt follows from Lemma . Thus, if λi 
= λj for i 
= j and β > , then the system () is
complete and minimal in Lpt if the condition – 

p(π ) ≤ α < 
q(π ) is satisfied.

Consider the case α /∈ [– 
p(π ) ,


q(π ) ). Let, for example, α ∈ [ 

q(π ) ,


q(π ) +

 ). Multiplica-

tion of each member of the system () by ei t does not affect its basis properties in Lpt .
After appropriate transformations we obtain the system

ei[α̃+α̃]t
⋃{

eiλ̃nt
}
n∈Z , ()

where α̃ = α – 
 and

λ̃n = n – α̃ signn +O
(|n|–β

)
, n→ ∞.

Denote by α̃ the member of O(|n|–β ) in (), corresponding to n = . It is easy to see that
condition λi 
= λj is equivalent to λ̃i 
= λ̃j. It is clear that – 

p(π ) ≤ α̃ < 
q(π ) . Then, by the

previous results, the system {eiλ̃nt}n∈Z is complete and minimal in Lpt , and therefore the
system (), and at the same time the system (), is complete, but it is not minimal in Lpt .
Continuing this process we find that the system () is not complete, but it is minimal for
α < – 

p(π ) ; and the system () is complete, but it is not minimal in Lpt for α ≥ 
q(π ) . Thus,

the following theorem is proved.

Theorem  We have:
(I) Let the asymptotics () occur and the inequalities () be fulfilled, where

p̃ =min{p–; }. Then the following properties of the system () are equivalent in Lpt :
(.) the system () is complete;
(.) the system () is minimal;
(.) the system () is ω-linear independent;
(.) the system () is isomorphic to {eint}n∈N basis;
(.) λi 
= λj for i 
= j.

(II) Let β >  and α = – 
p(π ) . Then the following properties of the system () in Lpt are

equivalent:
(.) the system () is complete;
(.) the system () is minimal;
(.) λi 
= λj, for i 
= j.
Moreover, in this case the system () does not form a basis in Lpt .

(III) Let β >  and λi 
= λj, for i 
= j. Then the system () is complete and minimal in Lpt for
– 

p(π ) ≤ α < 
q(π ) , and for α < – 

π it is not complete, but it is minimal; and for
α ≥ 

q(π ) it is complete, but it is not minimal in Lpt .

Competing interests
The author declares that they have no competing interests.

Acknowledgements
I wish to expresses my thanks to Prof. Bilal T Bilalov, Institute of Mathematics and Mechanics of National Academy of
Sciences, Baku, Azerbaijan, for his kind help, careful reading, and making useful comments on the earlier version of the
paper.

Received: 26 September 2014 Accepted: 26 November 2014 Published: 12 Dec 2014

http://www.journalofinequalitiesandapplications.com/content/2014/1/495


Muradov Journal of Inequalities and Applications 2014, 2014:495 Page 8 of 8
http://www.journalofinequalitiesandapplications.com/content/2014/1/495

References
1. Paley, R, Wiener, N: Fourier Transforms in the Complex Domain. Am. Math. Soc., Providence (1934)
2. Young, RM: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)
3. Sedletskii, AM: Biorthogonal expansions in series of exponents on intervals of the real axis. Usp. Mat. Nauk 37(5(227)),

51-95 (1982)
4. Moiseev, EI: Basicity of system of exponents, cosines and sines in Lp . Dokl. Akad. Nauk SSSR 275(4), 794-798 (1984)
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