RESEARCH Open Access

On bases from perturbed system of exponents in Lebesgue spaces with variable summability exponent

Togrul Muradov*

*Correspondence: togrulmuradov@gmail.com Department of Non-harmonic Analysis, Institute of Mathematics and Mechanics of NAS of Azerbaijan, 9 B. Vahabzadeh Str., Baku, Azerbaijan

Abstract

In this paper the perturbed system of exponents with some asymptotics is considered. Basis properties of this system in Lebesgue spaces with variable summability exponent are investigated.

Keywords: system of exponents; perturbation; generalized Lebesgue space; variable exponent

1 Introduction

Consider the following system of exponents:

$$\left\{e^{i\lambda_n t}\right\}_{n\in Z},\tag{1}$$

where $\{\lambda_n\}\subset R$ is a sequence of real numbers, Z is a set of integer numbers. It is the aim of this paper to investigate basis properties (basicity, completeness, and minimality) of the system (1) in Lebesgue space L_{p_t} with variable summability index p(t), when $\{\lambda_n\}$ has the asymptotics

$$\lambda_n = n - \alpha \operatorname{sign} n + O(|n|^{-\beta}), \quad n \to \infty,$$
 (2)

where α , $\beta \in R$ are some parameters.

Many authors have investigated the basicity properties of system of exponents of the form (1), beginning with the well-known result of Paley and Wiener [1] on Riesz basicity. Some of the results in this direction have been obtained by Young [2]. The criterion of basicity of the system (1) in $L_p \equiv L_p(-\pi,\pi)$, $1 , when <math>\lambda_n = n - \alpha \operatorname{sign} n$, has been obtained earlier in [3, 4].

Recently in connection with consideration of some specific problems of mechanics and mathematical physics [5, 6], interest in the study of the various questions connected with Lebesgue L_{p_t} and Sobolev $W_{p_t}^k$ spaces with variable summability index p(t) has increased [5–9].

Many questions of the theory of operators (for example, theory of singular operators, theory of potentials and etc.) are studied in spaces L_{p_t} [7]. These investigations have allowed one to consider questions of basicity of some system of functions (for example, the

classical system of exponents $\{e^{int}\}_{n\in Z}$) in L_{p_t} . In [9] the basicity of system $\{e^{int}\}_{n\in N}$ in L_{p_t} has been established. The special case of the system (1) is considered in [10–12], when $\lambda_n = n - \alpha \operatorname{sign} n, n \in Z$.

In this paper basis properties of the system (1) in L_{p_t} spaces are investigated. Under certain conditions on the parameters α and β equivalence of the basis properties (completeness, minimality, ω -linearly independence, basicity) of the system (2) in L_{p_t} are proved.

2 Necessary notion and facts

Let $p:[-\pi,\pi]\to[1,+\infty)$ be a Lebesgue measurable function. By L_0 we denote the class of all functions measurable on $[-\pi,\pi]$ with respect to Lebesgue measure. We choose the notation

$$I_p(f) \stackrel{\mathrm{def}}{=} \int_{-\pi}^{\pi} |f(t)|^{p(t)} dt.$$

Let $L \equiv \{f \in L_0 : I_p(f) < +\infty\}$. Let $p^- = \inf \operatorname{vrai}_{[-\pi,\pi]} p(t)$, $p^+ = \sup \operatorname{vrai}_{[-\pi,\pi]} p(t)$. For $p^+ < +\infty$, with respect to ordinary linear operations of addition of functions and multiplication by number, L turns into a linear space. If we define in L_{p_t} the norm

$$||f||_{p_t} \stackrel{\text{def}}{=} \inf \left\{ \lambda > 0 : I_p\left(\frac{f}{\lambda}\right) \le 1 \right\},$$

then L is a Banach space and we denote it by L_{p_t} . Denote

$$H^{\ln \frac{\det}{def}} \left\{ p : p(\pi) = p(-\pi) \text{ and } \exists C > 0, \forall t_1, t_2 \in [-\pi, \pi], |t_1 - t_2| \le \frac{1}{2} \right\}$$
$$\Rightarrow \left| p(t_1) - p(t_2) \right| \le \frac{C}{-\ln|t_1 - t_2|} \right\}.$$

Throughout this paper, q(t) denotes the function conjugate to function p(t), that is, $\frac{1}{p(t)} + \frac{1}{q(t)} \equiv 1$.

We have Hölder's generalized inequality,

$$\int_{-\pi}^{\pi} |f(t)g(t)| dt \leq C(p^{-}; p^{+}) ||f||_{p_{t}} ||g||_{q_{t}},$$

where
$$C(p^-; p^+) = 1 + \frac{1}{p^-} - \frac{1}{p^+}$$
.

For our investigation we need some basic concepts of the theory of close bases, given as follows.

We adopt the standard notation: *B*-space is a Banach space; X^* is the conjugate to space X; f(x), $f \in X^*$, and $x \in X$ means the value of functional f on x; L[M] is a linear span of a set M. The system $\{x_n\}_{n\in N}\subset X$ is called ω -linear independent in B-space X, if $\sum_{n=1}^{\infty}\alpha_nx_n=0$ true for $\alpha_n=0$, $\forall n\in N$.

The following lemma is true.

Lemma 1 Let X be a Banach space with basis $\{x_n\}_{n\in\mathbb{N}}\subset X$ and $F:X\to X$ be a Fredholm operator. Then the following properties of the system $\{y_n=Fx_n\}_{n\in\mathbb{N}}$ in X are equivalent:

(1) $\{y_n\}_{n\in\mathbb{N}}$ is complete;

- (2) $\{y_n\}_{n\in\mathbb{N}}$ is minimal;
- (3) $\{y_n\}_{n\in\mathbb{N}}$ is ω -linear independent;
- (4) $\{y_n\}_{n\in\mathbb{N}}$ is isomorphic to $\{x_n\}_{n\in\mathbb{N}}$ basis.

We also need the following easily provable lemma.

Lemma 2 Let X be a Banach space with basis $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}\subset X$: card $\{n:x_n\neq y_n\}<+\infty$. Then the expression

$$Fx = \sum_{n=1}^{\infty} x_n^*(x) y_n$$

generates the Fredholm operator $F: X \to X$, where $\{x_n^*\}_{n \in \mathbb{N}} \subset X^*$ is conjugate to $\{x_n\}_{n \in \mathbb{N}}$ system.

The following lemma is also true.

Lemma 3 Let $\{x_n\}_{n\in\mathbb{N}}$ be complete and minimal in B-space X and $\{y_n\}_{n\in\mathbb{N}}\subset X$: card $\{n:x_n\neq y_n\}<+\infty$. Then the following properties of system $\{y_n\}_{n\in\mathbb{N}}$ in X are equivalent:

- (1) $\{y_n\}_{n\in\mathbb{N}}$ is complete;
- (2) $\{y_n\}_{n\in\mathbb{N}}$ is minimal.

These and other results are obtained in [13, 14].

We will use the following statement, which has a proof similar to the proof of Levinson [15].

Statement 1 Let system $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ be complete in L_{p_t} . If from the system we remove n any functions and add instead of them n other functions $e^{i\mu_j t}$, $j=1,\ldots,n$, where μ_1,\ldots,μ_n are any, mutually different complex numbers not equal to any of numbers λ_k , then the new system will be complete.

We shall also need the following theorem of Krein-Milman-Rutman.

Theorem 1 (Krein-Milman-Rutman [13]) Let X be a Banach space with norm $\|\cdot\|$, $\{x_n\}_{n\in\mathbb{N}}\subset X$ be normed basis in X (i.e. $\|x_n\|=1$, $\forall n\in\mathbb{N}$) with conjugate system $\{x_n^*\}_{n\in\mathbb{N}}\subset X^*$, and $\{y_n\}_{n\in\mathbb{N}}\subset X$ be a system satisfying the inequality

$$\sum_{n=1}^{\infty} \|x_n - y_n\| < \gamma^{-1},$$

where $\gamma = \sup_n ||x_n^*||$. Then $\{y_n\}_{n \in \mathbb{N}}$ also forms a basis isomorphic to the basis $\{x_n\}_{n \in \mathbb{N}}$ in X.

3 Basic results

Before giving the basic results we will prove the following auxiliary theorem.

Theorem 2 Let $p \in H^{\ln}$ and $p^- > 1$. If the system

$$\left\{e^{i(n-\alpha\operatorname{sign} n)t}\right\}_{n\in Z'}\tag{3}$$

forms a basis in $L_{p_t} \equiv L_{p_t}(-\pi,\pi)$, then this system is isomorphic to the classical system of exponents $\{e^{int}\}_{n\in\mathbb{Z}}$, where the isomorphism is given by

$$Sf = e^{-i\alpha t} \sum_{0}^{\infty} (f, e^{inx}) e^{int} + e^{i\alpha t} \sum_{1}^{\infty} (f, e^{-inx}) e^{-int}, \tag{4}$$

where

$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt.$$

Proof Consider the operator (4). From the basicity of system $\{e^{int}\}_{n\in Z}$ in L_{p_t} it follows that S is a bounded operator on L_{p_t} into itself. It is easy to see that $\operatorname{Ker} S=0$. Actually, let Sf=0. From the basicity of the system (3) in L_{p_t} and from (4) we obtain $(f,e^{inx})=0$, $\forall n\in Z$. Also, from the basicity of system $\{e^{int}\}_{n\in Z}$ in L_{p_t} it follows that f=0. We show that for all $g\in L_{p_t}$, the equation Sf=g in L_{p_t} is solved. Let us assume that

$$f = \sum_{n \in \mathbb{Z}} g_n e^{int},$$

where $\{g_n\}_{n\in \mathbb{Z}}$ are the biorthogonal coefficients of the function g by the system (3). It is clear that $f\in L_{p_t}$, and so

$$Sf = e^{-i\alpha t} \sum_{n=0}^{\infty} (f, e^{inx}) e^{int} + e^{i\alpha t} \sum_{n=1}^{\infty} (f, e^{-inx}) e^{-int}$$
$$= e^{-i\alpha t} \sum_{n=0}^{\infty} g_n e^{int} + e^{i\alpha t} \sum_{n=1}^{\infty} g_{-n} e^{-int} = g,$$

as by the condition of the theorem, the system (3) forms a basis in L_{p_t} .

This means that for all $g \in L_{p_t}$ the equation Sf = g is solved in L_{p_t} . Then by the Banach theorem the operator S has a bounded inverse. It is obvious that $S[e^{int}] = A(t)e^{int}$, $n \ge 0$, and $S[e^{-int}] = B(t)e^{-int}$, $n \ge 1$. This completes the proof.

Now we study some basis properties of the system (1). Firstly, we recall the following theorem.

Theorem 3 ([11]) Let $p \in H^{\ln}$ and $p^- > 1$. If parameter $\alpha \in R$ satisfies the condition $-\frac{1}{2p(\pi)} < \alpha < \frac{1}{2q(\pi)}$, then the system $\{e^{i\mu_n t}\}$ forms a basis in L_{p_t} .

Let the asymptotics (2) occur. Let us assume $\mu_n = n - \alpha \operatorname{sign} n$ and $\delta_n = \lambda_n - \mu_n$, $\forall n \in \mathbb{Z}$. It is easy to see that the inequality

$$\left|e^{i\lambda_n t} - e^{i\mu_n t}\right| \le c|n|^{-\beta}, \quad \forall n \ne 0,$$
 (5)

is fulfilled, where c is some constant. Let us assume that the following inequalities are satisfied:

$$-\frac{1}{2p(\pi)} < \alpha < \frac{1}{2q(\pi)}, \qquad \beta > \frac{1}{\tilde{p}}, \tag{6}$$

where $\tilde{p} = \min\{p^-; 2\}$. Then, from Theorem 3, the system of exponents $\{e^{i\mu_n t}\}_{n \in \mathbb{Z}}$ forms a basis in L_{p_t} . By Theorem 1, it is isomorphic to the classical system of exponents $\{e^{int}\}_{n \in \mathbb{Z}}$ in L_{p_t} . Therefore the spaces of coefficients of the bases $\{e^{i\mu_n t}\}_{n \in \mathbb{Z}}$ and $\{e^{int}\}_{n \in \mathbb{Z}}$ coincide.

Let $T: L_{p_t} \to L_{p_t}$ be a natural automorphism

$$T[e^{i\mu_n t}] = e^{int}, \quad \forall n \in \mathbb{Z}.$$

For all $f \in L_{p_t}$, let $\{f_n\}_{n \in \mathbb{Z}}$ be biorthogonal coefficients of f by the system $\{e^{i\mu_n t}\}_{n \in \mathbb{Z}}$, and let g = Tf. Therefore, $\{f_n\}_{n \in \mathbb{Z}}$ are the Fourier coefficients of the function g by the system $\{e^{int}\}_{n \in \mathbb{Z}}$. From (4) and (5), it directly follows that

$$\sum_{n\in\mathbb{Z}} \left\| e^{i\lambda_n t} - e^{i\mu_n t} \right\|_{p_t}^{\tilde{p}} < +\infty.$$

Consider the following expression:

$$\sum_{n} (e^{i\lambda_n t} - e^{i\mu_n t}) f_n.$$

We have

$$\begin{split} \left\| \sum_{n \in Z} \left(e^{i\lambda_n t} - e^{i\mu_n t} \right) f_n \right\|_{p_t} &\leq \sum_{n \in Z} \left\| e^{i\lambda_n t} - e^{i\mu_n t} \right\| |f_n| \\ &\leq \left(\sum_n \left\| e^{i\lambda_n t} - e^{i\mu_n t} \right\|_{p_t}^{\tilde{p}} \right)^{1/\tilde{p}} \left(\sum_n |f_n|^{\tilde{q}} \right)^{1/\tilde{q}}, \end{split}$$

where $\frac{1}{\tilde{p}} + \frac{1}{\tilde{q}} = 1$. By the Hausdorff-Young theorem [16], we have

$$\left(\sum_{m}|f_{n}|^{\tilde{q}}\right)^{1/\tilde{q}}\leq m_{1}\|g\|_{\tilde{p}},$$

where m_1 is some constant. From $\tilde{p} \leq p^-$ and the continuous embedding $L_{p_t} \subset L_{\tilde{p}}$, it follows that, $\exists m_2 > 0$,

$$||g||_{\tilde{p}} \le m_2 ||g||_{p_t} \le m_2 ||T|| ||f||_{p_t}.$$

As a result, we obtain

$$\left\| \sum_{n} \left(e^{i\lambda_{n}t} - e^{i\mu_{n}t} \right) f_{n} \right\|_{p_{t}} \leq m_{1} m_{2} \|T\| \left(\sum_{n} \|e^{i\lambda_{n}t} - e^{i\mu_{n}t}\|_{p_{t}}^{\tilde{p}} \right)^{1/\tilde{p}} \|f\|_{p_{t}}. \tag{7}$$

Let us take $n_0 \in N$ such that

$$\delta = m_1 m_2 \| T \| \left(\sum_{|n| > n_0} \| e^{i\lambda_n t} - e^{i\mu_n t} \|_{p_t}^{\tilde{p}} \right)^{1/\tilde{p}} < 1.$$

Assume that

$$\omega_n = \begin{cases} \lambda_n, & |n| > n_0, \\ \mu_n, & |n| \le n_0. \end{cases}$$

It is clear that the following inequality is satisfied:

$$\left\| \sum_{n} \left(e^{i\omega_n t} - e^{i\mu_n t} \right) f_n \right\|_{p_t} \le \delta \|f\|_{p_t}. \tag{8}$$

It follows immediately from (7) that the expression $\sum_n (e^{i\omega_n t} - e^{i\mu_n t}) f_n$ represents a function from L_{p_t} and it can be denoted by $T_0 f$. Drawing attention to (8) we obtain $||T_0|| \le \delta < 1$. Thus, the operator $F = I + T_0$ is invertible, and it is easy to see that $F[e^{i\mu_n t}] = e^{i\omega_n t}$, $\forall n \in \mathbb{Z}$. Hence, the system $\{e^{i\omega_n t}\}_{n\in\mathbb{Z}}$ forms a basis in L_{p_t} isomorphic to $\{e^{i\mu_n t}\}_{n\in\mathbb{Z}}$. Systems $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ and $\{e^{i\omega_n t}\}_{n\in\mathbb{Z}}$ differ in a finite number of elements. Therefore, by Statement 1, the system $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ is complete in L_{p_t} , if $\lambda_i \neq \lambda_j$ for $i \neq j$. In the following it is necessary to apply Lemmas 1 and 2.

As a result we obtain the following theorem.

Theorem 4 Let the asymptotics (2) occur and the inequalities

$$-\frac{1}{2p(\pi)} < \alpha < \frac{1}{2q(\pi)}, \qquad \beta > \frac{1}{\tilde{p}}, \tag{9}$$

be fulfilled, where $\tilde{p} = \min\{p^-; 2\}$. Then the following properties of the system (1) are equivalent in L_{ν_r} :

- (1) the system (1) is complete;
- (2) the system (1) is minimal;
- (3) the system (1) is ω -linear independent;
- (4) the system (1) is isomorphic to $\{e^{int}\}_{n\in\mathbb{N}}$ basis;
- (5) $\lambda_i \neq \lambda_j$ for $i \neq j$.

Let us consider the case $\alpha = -\frac{1}{2p(\pi)}$. In this case, by the results of [11], the system $\{e^{i\mu_n t}\}_{n\in Z}$ is complete and minimal in L_{p_t} , but it does not form a basis in it. Then from the previous considerations it follows that the system (1) cannot form a basis in L_{p_t} . Because otherwise, by Theorem 2, it will be isomorphic to system $\{e^{int}\}_{n\in Z}$ in L_{p_t} , and as a result the system $\{e^{i\mu_n t}\}_{n\in Z}$ should form a basis in L_{p_t} . This gives a contradiction.

By $\{v_n\}_{n\in Z}\subset L_{q_t}$ we denote the system biorthogonal to $\{e^{i\mu_nt}\}_{n\in Z}$. It is clear that using the estimates from [4], for v_n , $n\in Z$, we establish that the following relation is true:

$$\gamma = \sup_n \|\nu_n\|_{q_t} < +\infty.$$

Let $\beta > 1$. Then it is clear that the following inequality is satisfied:

$$\sum_{n} \left\| e^{i\lambda_n t} - e^{i\mu_n t} \right\|_{p_t} < +\infty.$$

Similarly to the previous case, we can show that the operator

$$\tilde{T}f = \sum_n \nu_n(f) \left(e^{i\lambda_n t} - e^{i\mu_n t} \right), \quad \forall f \in L_{p_t},$$

is bounded in L_{pt} . Introducing the new system $\{e^{i\omega_n t}\}_{n\in\mathbb{Z}}$ in the same manner we establish the completeness of the system (1) in L_{p_t} , if $\lambda_i \neq \lambda_j$ for $i \neq j$. Minimality of the system (1)

in L_{p_t} follows from Lemma 3. Thus, if $\lambda_i \neq \lambda_j$ for $i \neq j$ and $\beta > 1$, then the system (1) is complete and minimal in L_{p_t} if the condition $-\frac{1}{2p(\pi)} \leq \alpha < \frac{1}{2q(\pi)}$ is satisfied.

Consider the case $\alpha \notin [-\frac{1}{2p(\pi)}, \frac{1}{2q(\pi)})$. Let, for example, $\alpha \in [\frac{1}{2q(\pi)}, \frac{1}{2q(\pi)} + \frac{1}{2})$. Multiplication of each member of the system (1) by $e^{i\frac{t}{2}}$ does not affect its basis properties in L_{pt} . After appropriate transformations we obtain the system

$$e^{i[\tilde{\alpha}+\tilde{\alpha}_0]t}\bigcup\left\{e^{i\tilde{\lambda}_n t}\right\}_{n\in Z'} \tag{10}$$

where $\tilde{\alpha} = \alpha - \frac{1}{2}$ and

$$\tilde{\lambda}_n = n - \tilde{\alpha} \operatorname{sign} n + O(|n|^{-\beta}), \quad n \to \infty.$$

Denote by $\tilde{\alpha}_0$ the member of $O(|n|^{-\beta})$ in (2), corresponding to n=0. It is easy to see that condition $\lambda_i \neq \lambda_j$ is equivalent to $\tilde{\lambda}_i \neq \tilde{\lambda}_j$. It is clear that $-\frac{1}{2p(\pi)} \leq \tilde{\alpha} < \frac{1}{2q(\pi)}$. Then, by the previous results, the system $\{e^{i\tilde{\lambda}_n t}\}_{n\in \mathbb{Z}}$ is complete and minimal in L_{p_t} , and therefore the system (10), and at the same time the system (1), is complete, but it is not minimal in L_{p_t} . Continuing this process we find that the system (1) is not complete, but it is minimal for $\alpha < -\frac{1}{2p(\pi)}$; and the system (1) is complete, but it is not minimal in L_{p_t} for $\alpha \geq \frac{1}{2q(\pi)}$. Thus, the following theorem is proved.

Theorem 5 We have:

- (I) Let the asymptotics (2) occur and the inequalities (9) be fulfilled, where $\tilde{p} = \min\{p^-; 2\}$. Then the following properties of the system (1) are equivalent in L_{p_t} :
 - (1.1) the system (1) is complete;
 - (1.2) the system (1) is minimal;
 - (1.3) the system (1) is ω -linear independent;
 - (1.4) the system (1) is isomorphic to $\{e^{int}\}_{n\in\mathbb{N}}$ basis;
 - (1.5) $\lambda_i \neq \lambda_j$ for $i \neq j$.
- (II) Let $\beta > 1$ and $\alpha = -\frac{1}{2p(\pi)}$. Then the following properties of the system (1) in L_{p_t} are equivalent:
 - (2.1) the system (1) is complete;
 - (2.2) the system (1) is minimal;
 - (2.3) $\lambda_i \neq \lambda_j$, for $i \neq j$.

Moreover, in this case the system (1) does not form a basis in L_{p_t} .

(III) Let $\beta > 1$ and $\lambda_i \neq \lambda_j$, for $i \neq j$. Then the system (1) is complete and minimal in L_{pt} for $-\frac{1}{2p(\pi)} \leq \alpha < \frac{1}{2q(\pi)}$, and for $\alpha < -\frac{1}{2\pi}$ it is not complete, but it is minimal; and for $\alpha \geq \frac{1}{2q(\pi)}$ it is complete, but it is not minimal in L_{pt} .

Competing interests

The author declares that they have no competing interests.

Acknowledgements

I wish to expresses my thanks to Prof. Bilal T Bilalov, Institute of Mathematics and Mechanics of National Academy of Sciences, Baku, Azerbaijan, for his kind help, careful reading, and making useful comments on the earlier version of the paper.

Received: 26 September 2014 Accepted: 26 November 2014 Published: 12 Dec 2014

References

- 1. Paley, R, Wiener, N: Fourier Transforms in the Complex Domain. Am. Math. Soc., Providence (1934)
- 2. Young, RM: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)
- Sedletskii, AM: Biorthogonal expansions in series of exponents on intervals of the real axis. Usp. Mat. Nauk 37(5(227)), 51-95 (1982)
- 4. Moiseev, El: Basicity of system of exponents, cosines and sines in L_p . Dokl. Akad. Nauk SSSR **275**(4), 794-798 (1984)
- 5. Kováčik, O, Rákosník, J: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslov. Math. J. 41, 592-618 (1991)
- 6. Fan, X, Zhao, D: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. **263**, 424-446 (2001)
- Kokilashvili, V, Samko, S: Singular integrals in weighted Lebesgue spaces with variable exponent. Georgian Math. J. 10(1), 145-156 (2003)
- 8. Sharapudinov, II: Topology of the space $\mathcal{L}^{p(t)}([0,1])$. Mat. Zametki **26**(4), 613-632 (1979)
- 9. Sharapudinov, II: Some questions of approximation theory in $L^{p(x)}(E)$ spaces. Anal. Math. **33**(2), 135-153 (2007)
- Bilalov, BT, Guseynov, ZG: Bases from exponents in Lebesgue spaces of functions with variable summability exponent. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 27(1), 43-48 (2008)
- 11. Bilalov, BT, Guseynov, ZG: Basicity of a system of exponents with a piece-wise linear phase in variable spaces. Mediterr. J. Math. 9(3), 487-498 (2012)
- 12. Bilalov, BT, Guseynov, ZG: Basicity criterion for perturbed systems of exponents in Lebesgue spaces with variable summability. Dokl. Akad. Nauk, Ross. Akad. Nauk 436(5), 586-589 (2011)
- 13. Zinger, I: Bases in Banach Spaces. I. Springer, Berlin (1970)
- 14. Bilalov, BT: Bases of exponentials, cosines and sines formed by eigenfunctions of differential operators. Differ. Equ. 39(5), 652-657 (2003)
- 15. Levinson, N: Gap and Density Theorems. Collog. Publ., vol. 26. Am. Math. Soc., Providence (1940)
- 16. Zygmund, A: Trigonometric Series, vol. 1. Mir, Moscow (1965)

10.1186/1029-242X-2014-495

Cite this article as: Muradov: On bases from perturbed system of exponents in Lebesgue spaces with variable summability exponent. *Journal of Inequalities and Applications* 2014, 2014:495

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com