Ceng et al. Journal of Inequalities and Applications 2014, 2014:490 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2014/1/490 a SpringerOpen Journal

RESEARCH Open Access

Reqularized hybrid iterative algorithms for
triple hierarchical variational inequalities

Lu-Chuan Ceng'?, Ngai-Ching Wong**" and Jen-Chih Yao>®

“Correspondence:
wong@math.nsysu.edu.tw
3Department of Applied
Mathematics, National Sun Yat-sen
University, Kaohsiung, 804, Taiwan
4Center for General Education,
Kaohsiung Medical University,
Kaohsiung, 807, Taiwan

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, we introduce and study a triple hierarchical variational inequality (THVI)
with constraints of minimization and equilibrium problems. More precisely, let Fix(T)
be the fixed point set of a nonexpansive mapping, let MEP(®, @) be the solution set
of a mixed equilibrium problem (MEP), and let I" be the solution set of a
minimization problem (MP) for a convex and continuously Frechet differential
functional in Hilbert spaces. We want to find a solution x* € Fix(T) " MEP(®, @) N I of
a variational inequality with a variational inequality constraint over the intersection of
Fix(T), MEP(®, @), and I". We propose a hybrid iterative algorithm with regularization
to compute approximate solutions of the THVI, and we present the convergence
analysis of the proposed iterative algorithm.
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1 Introduction

Let H be a Hilbert space with inner product (-, -) and norm || - || over the real scalar field R.
Let C be a nonempty closed convex subset of H, and Pc be the metric projection of H
onto C. Let T : C — C be a self-mapping on C. Denote by Fix(T) the set of fixed points
of T. We say that T is L-Lipschitzian if there exists a constant L > 0 such that

I Tx - Tyl <Llx-yl, VayeC.

When L =10r 0 <L <1, wecall T a nonexpansive or a contractive mapping, respectively.
We say that a mapping A : C — H is a-inverse strongly monotone if there exists a constant
a > 0 such that

(Ax — Ay,x —y) > a|Ax - Ay||*>, Vx,yeC,

and that A is n-strongly monotone (resp. monotone) if there exists a constant 7 > 0 (resp.
n = 0) such that

(Ax—Ay,x-y) = nllx-yI?, VxyeC.
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It is known that T is nonexpansive if and only if I — T is %—inverse strongly monotone.

1

Moreover, L-Lipschitz continuous mappings are 7

(1]).

Let f : C — R be a convex and continuously Frechet differentiable functional. Consider

inversely strong monotone (see, e.g.,

the minimization problem (MP):
minf(x) (1.1)
xeC

(assuming the existence of minimizers). We denote by I" # {J the set of minimizers of prob-
lem (1.1). The gradient-projection algorithm (GPA) generates a sequence {x,} determined
by the gradient Vf and the metric projection Pc:

Kysl = Pc(xn - ka(xn)), Vn > 0. (1.2)

The convergence of algorithm (1.2) depends on Vf. It is known that if Vf is n-strongly

monotone and L-Lipschitz continuous, then for 0 < A < i—g, the operator

S:=Pc(l - AVf)

is a contraction. Hence, the sequence {x,} defined by the GPA (1.2) converges in norm to
the unique solution of (1.1). If the gradient Vf is only assumed to be Lipschitz continuous,
then {x,} can only be weakly convergent when H is infinite-dimensional (a counterexam-
ple to the norm convergence of {x,} is given by Xu [2, Section 5]).

The regularization, in particular the traditional Tikhonov regularization, is usually used

to solve ill-posed optimization problems. Consider the regularized minimization problem

minf, (s) 1= /() + 5 11,
where « > 0 is the regularization parameter, and again f is convex with Lipschitz continu-
ous gradient Vf. While a regularization method provides the possible strong convergence
to the minimum-norm solution, its disadvantage is the implicity. Hence explicit iterative
methods seem to be attractive. See, e.g., Xu [2, 3].

On the other hand, for a given mapping A : C — H, we consider the variational inequal-
ity problem (VIP) of finding x* € C such that

(Ax*,x-x*)>0, VxeC. (1.3)

The solution set of VIP (1.3) is denoted by VI(C, A). It is well known that when A is mono-

tone,
x€VI(C,A) & x=Pc(x—M1Ax), VYA>0.
Variational inequality theory has been studied quite extensively and has emerged as an

important tool in several branches of pure and applied sciences; see, e.g., [1, 4—8] and the
references therein.
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When C is the fixed point set Fix(T') of a nonexpansive mapping 7T and A = I — S, VIP
(1.3) becomes the variational inequality problem of finding x* € Fix(T) such that

((I —S)x*,x — x*) >0, VxeFix(T). (1.4)

This problem, introduced by Moudafi and Maingé [9, 10], is called the hierarchical fixed
point problem. It is clear that if S has fixed points, then they are solutions of VIP (1.4). If §
is contractive, the solution set of VIP (1.4) is a singleton and it is well known as a viscosity
problem. This was previously introduced by Moudafi [11] and also developed by Xu [12].
In this case, solving VIP (1.4) is equivalent to finding a fixed point of the nonexpansive
mapping Prixr)S, where Prix(r) is the metric projection onto the closed and convex set
Fix(T). Yao et al. [8] introduced a two-step algorithm to solve VIP (1.4).

Let ® : C x C — R be a bifunction and ¢ : C — R be a function. Consider the mixed
equilibrium problem (MEP) of finding x € C such that

Oy + () -9kx) =0, VyeC, (1.5)

which was studied by Ceng and Yao [13]. The solution set of MEP (1.5) is denoted by
MEP(®, ¢). The MEP (1.5) is very general in the sense that it includes, as special cases,
fixed point problems, optimization problems, variational inequality problems, minimax
problems, Nash equilibrium problems in noncooperative games and others; see, e.g,
[13-15].

Recently, liduka [16, 17] considered a variational inequality with a variational inequal-
ity constraint over the set of fixed points of a nonexpansive mapping. Since this problem
has a triple structure in contrast with bilevel programming problems or hierarchical con-
strained optimization problems or hierarchical fixed point problems, it is referred to as a
triple hierarchical constrained optimization problem (THCOP). He presented some ex-
amples of THCOP and developed iterative algorithms to find the solution of such a prob-
lem. Since the original problem is a variational inequality, in this paper, we call it a triple
hierarchical variational inequality (THVI). Ceng et al. introduced and considered some
THVI in [18]. A nice survey article on THVI is [19]. See also [20-22].

Extending the works done in [18], we introduce and study in this paper the following
triple hierarchical variational inequality with constraints of minimization and equilibrium

problems.

The problem to study
Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — R be
convex and continuously Frechet differentiable with I" being the set of its minimizers.
Let T:C — Cand S: H — H be both nonexpansive. Let V : H — H be p-contractive,
and F : C — H be «-Lipschitzian and 5-strongly monotone with constants p € [0,1) and
k,n>0. Suppose 0 < i < 2n/k?and 0 <y <t where t =1 — /1 — (25 — uk2).

Let & denote the solution set of the following hierarchical variational inequality (HVI):
find z* € Fix(T) N MEP(©®, ¢) N I" such that

((WF -=yS)z*,z-2*)>0, VzeFix(T)NMEP(®,9)NT,
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where the solution set = is assumed to be nonempty. Consider the following triple hier-
archical variational inequality (THVI).
Find x* € & such that

(WF -y V)x*,x-x*)>0, Vxe&. (1.6)

Based on the iterative schemes provided by Xu [2] and the two-step iterative scheme
provided by Yao et al. [8], by virtue of the viscosity approximation method, hybrid steepest-
descent method and the regularization method, we propose the following hybrid iterative
algorithm with regularization:

@(un’y)+§0(y)_(/)(un)+%(_y_unvun_xn) >0, VyeC,
Yn = Oy Sx, + - en/vLF)PC(un - )vaozn (1)),
Xpi1 = BuY Vyn +( - ﬁnﬂF)TPC(un - )‘Vfan (un), Vn=>0.

Here, 0 < A < 2/L, {r,},{a,} C (0,+00), and {B,},{6,} C (0,1). It is shown that under ap-
propriate assumptions, the two iterative sequences {x,} and {y,} converge strongly to the
unique solution of the THVI (1.6).

2 Preliminaries

Let K be a nonempty closed convex subset of a real Hilbert space H. We write x,, — x and
x, — x to indicate that the sequence {x,} converges weakly and strongly to x, respectively.
The weak w-limit set of the sequence {x,} is denoted by

wy(x,) = {x € H : x,, — x for some subsequence {x,,} of {x,,}}.

The metric (or nearest point) projection from H onto K is the mapping Px : H — K
which assigns to each point x € H the unique point Pxx € K satisfying the property

[lx — Pgx|| = inf ||x — y|| =: d(x, K).
yek

Proposition 2.1 For givenx € H and z € K:
(i) z=Pxx & (x—2z,y—2) <0,VyeK;
(i) z=Prx < [lx—zlI> < llx—ylI> - ly — 2z[* ¥y € K;
(iii) (Pxx — Pxy,x—y) > ||Pxx — Pxyl* Vy € H.
Hence, Px is nonexpansive and monotone.

Definition 2.2 A mapping T : H — H is said to be firmly nonexpansive if 2T — I is non-
expansive, or equivalently,

(x—y, Tx—Ty) > | Tx - Ty||>, Vx,yeH.
Alternatively, T is firmly nonexpansive if and only if T’ can be expressed as

1
T==(+9),
SU+9)


http://www.journalofinequalitiesandapplications.com/content/2014/1/490

Ceng et al. Journal of Inequalities and Applications 2014, 2014:490
http://www.journalofinequalitiesandapplications.com/content/2014/1/490

where S : H — H is nonexpansive. Projections are firmly nonexpansive. We call T an av-
eraged mapping if T can be expressed as a proper convex combination of the identity map

I and a nonexpansive mapping. In particular, firmly nonexpansive mappings are averaged.

Proposition 2.3 (see [23]) Let T : H — H be a given mapping.
(i) T is nonexpansive if and only if the complement I — T is %—inverse strongly
monotone.
(i) If T is v-inverse strongly monotone, then so is y T for all y > 0.
(ili) T is averaged if and only if the complement I — T is v-inverse strongly monotone for
some v >1/2. Indeed, for « € (0,1), T is a-averaged if and only if I — T is i—inverse

strongly monotone.

Proposition 2.4 (see [23,24]) LetS, T,V :H — H.
(i) fT=Q0-a)S+aV forsomea € (0,1) and if S is averaged and V is nonexpansive,
then T is averaged.
(i) T isfirmly nonexpansive if and only if the complement I — T is firmly nonexpansive.
(ili) If T=Q1-a)S+aV forsomea € (0,1) and if S is firmly nonexpansive and V is
nonexpansive, then T is averaged.
(iv) The composition of finitely many averaged mappings is averaged. In particular, if Ty
is oy -averaged and T; is ay-averaged, where oy, 0 € (0,1), then T1 Ty is
(o1 + oy — 100p)-averaged.
(v) Ifthe mappings Ty, ..., Tn are averaged and have a common fixed point, then

N
(\Fix(T:) = Fix(Ty - - - Ty).
i=1

For solving the equilibrium problem for a bifunction ® : C x C — R, let us consider the
following conditions:
(Al) O(x,x) =0 forallx € C;
(A2) ©® is monotone, thatis, ®(x,y) + O(y,x) <0 forallx,y € C;
(A3) foreachx,y,z€ C,lim o Otz + (1 - t)x,y) < O(x,%);
(A4) foreachx € C, y > @ (x,y) is convex and lower semicontinuous;
(A5) foreachye C, x— O(x,y) is weakly upper semicontinuous;
(B1) for each x € H and r > 0, there exist a bounded subset D, € C and y, € C such that

foranyz e C\ Dy,

1
@(Z»yx) + (p(.)/x) - QD(Z) + ;(yx -z,z—-x) < 0;

(B2) Cisabounded set.

Lemma 2.5 (see [14]) Let C be a nonempty closed convex subset of a real Hilbert space H
and O : C x C — R be a bifunction satisfying (A1)-(A4). Let r > 0 and x € H. Then there
exists z € C such that

1
Oz,y)+-{y-zz-x)>0, VyeC.
r

Page 5 of 26
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Lemma 2.6 (see [15]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Let ® : C x C — R be a bifunction satisfying (A1)-(A5) and ¢ : C — R be a proper lower
semicontinuous and convex function. For r > 0 and x € H, define a mapping T, : H — C as
follows:

T,x:= {ze C:0(zy)+9(y) —plz) + %(y—z,z—x) >0,Vye C}

for all x € H. Assume that either (B1) or (B2) holds. Then T, is a single-valued firmly non-
expansive map on H, and Fix(T,) = MEP(®, ¢) is closed and convex.

Lemma 2.7 (see [25]) Let {a,} be a sequence of nonnegative real numbers such that
Ans1 = (1 _Sn)ﬂn + Suty + €y Vn > 0.
Here,0<s,<1,0<e¢,,andt, eRforalln=0,1,2,..., such that
() Y02 = +00;
(ii) either imsup,,_, &y <0 0r Y 020 8yltu| < +00;
(il) Y 5op €n < +00.

Then lim,—, o a,, = 0.

Lemma 2.8 (Demiclosedness principle; see [1]) Let C be a nonempty closed convex subset
of a real Hilbert space H and let T : C — C be a nonexpansive mapping with Fix(T) # 0.
If {x,} is a sequence in C converging weakly to x and if {(I — T)x,} converges strongly to y,
then (I — T)x = y; in particular, ify = 0, then x € Fix(T).

Lemma 2.9 (see [12]) Let S: H — H be a nonexpansive mapping and V : H — H be a
p-contraction with p € [0,1), respectively.
(i) I- S is monotone, ie.,
(I-S)x-U-S)y,x-y)>0, Vx,yeH.
(i) -V is (1 - p)-strongly monotone, ie.,
(I-V)x=U-V)y,x—y)=A-p)llx-yI*>, VxyeH.
Lemma 2.10 ([26]) Let H be a real Hilbert space. Then, for all x,y € H and X € [0,1],
[+ =20y * = 2l + (= Dyl = 20 = Rl = 11
Lemma 2.11 We have the following inequality in an inner product space X:

Il +y1% < llll* + 20p,2 +9),  Va,yeX.

Notations Let A be a number in (0,1] and let u,x,n > 0. Let F: C — H be «-Lipschitzian
and n-strongly monotone. Associated with a nonexpansive mapping T : C — C, we define
the mapping 7" : C — H by

T*x:=(I - AuF)Tx, VxeC.
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Lemma 2.12 (see [27, Lemma 3.1]) The map T* is a contraction provided i < 2n/k?, that

is,
” - TkyH <(@-A")llx-yll, VxyeC,

where T =1— /1 - u(2n — ux?) € (0,1]. In particular, if T = I the identity mapping, then
| = 2puF)x = (I = puF)y| < A -20)llx=yl, VayeC.

A set-valued mapping T :H — 2H is called monotone if (x -yf—-g >0forallx,yeH,
fe Tx and ge Ty. A monotone set-valued mapping T :H — 21 is called maximal if its
graph Gph(T) is not properly contained in the graph of any other monotone set-valued
mapping. It is known that a monotone set-valued mapping T:H — 2 is maximal if and
only if for (x,f) e H x H, (x —y,f —g) > 0 for every (y,g) € Gph(T) implies that f € Tx.

Let A: C — H be a monotone and Lipschitz continuous mapping and let Ncv be the

normal cone to C at v € C, namely
Ncv = {weH: (v—u,w)>0,Vu e C}.
Define

~ Av+ Ncv, ifveC,
Tv=
@, ifveC.

Lemma 2.13 (see [28]) Let A: C — H be a monotone mapping.
(i) T is maximal monotone;
(ii) ve T710 & v e VI(C,A).

3 Main results
Let us consider the following three-step iterative scheme with regularization:

@(un:y)+§0(y)_¢(un)+ %O’_Mmun_xn) >0, VyeC,
Yn = QnVan + (I - GHMF)PC(MH - )‘-Vfan (un))) (31)
Xne1 = Bny Viin + I = BubF)TPc(uy — AVfy, (1)), Y =0,1,2,....

Here,
« V.:H — H isa p-contraction;
e« S:H — Hand T: C — C are nonexpansive mappings;
+ F:C — H is a k-Lipschitzian and n-strongly monotone mapping;
e ©®:CxC—Randg:C— R are real-valued functions;
+ Vf:C— H is L-Lipschitz continuous with 0 < A < %;
{r,} and {«,,} are sequences in (0, +00) with > -0 &, < +00 and liminf,_, « 7, > 0;

.

.

{B,} and {6, } are sequences in (0,1);
e 0<pu<2n/k?and 0 <y <7, where v =1-/1— u(2n — ux?).

Theorem 3.1 Suppose that © : C x C — R satisfies (A1)-(A5) and that (B1) or (B2) holds.
Let {x,} be the bounded sequence generated from any given xo € C by (3.1). Assume that

Page 7 of 26
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(H1) 3020 Bn = +00, lim,, ﬁl_n|1 _ 9;_;1| =0;

(H2) lim,, o0 313 = 7=1 = 0 and lim,, o 2-[1 - 22| = 0;
(H3) 1m0 6 = 0, limy o 272 = 0, and Tim, o0 % = 0;

(H4) 1im,_ o '“ﬂ+1‘ =0 and lim,_, « '/3—91' =0.
Then we have the following:

(i) lim,, o L2l = 0;

(i) wy(x,) CFix(T) NMEP(®,9)NT;

(iii) @w(xn) C & if %0 — yull = 0(6,,) held in addition, i.e., lim,_, ”e—y“ =0.
Proof First, let us show that Pc(I — AVf,) is £-averaged for each A € (0, -2-), where

7o+l

2+ Ma+1)

5 4

€(0,1).

The Lipschitz condition implies that the gradient Vf is %-inverse strongly monotone
[1], that is,

(90 = V0w =) = 1|90 - O

Observe that

(o + L)(Vfo &) = Vo), - )
= (o + L)[allx - ylI* + (Vf () - Vf(),x - y)]
=a?|lx=ylI? + & VF(x) = V), x = y) + aLllx = ylI* + L{Vf (%) = Vf(3), % - y)
> ol - g2 + 20(Vf (%) = V) x —y) + | Vf () - VIO |
= o~ 9) + V@) - VFO) |
= |Vl - VAW

Hence, Vf, = ol + Vf is ﬁ-inverse strongly monotone. Thus, AVf, is m-inverse

strongly monotone by Proposition 2.3(ii). By Proposition 2.3(iii) the complement / — AV,

is @ -averaged. Noting that P is %—averaged and utilizing Proposition 2.4(iv), we know

that for each A € (0, -2-), the map Pc(I — AVf,) is £-averaged with

> a+l

. 1 Ma+L) 1 Ma+L) 2+Ma+l)
- — + _—— =
2 2 2 2 4

€(0,1).

In particular, Pc(I — AVf,) is nonexpansive. Furthermore, for X € (0, %), utilizing the fact

that lim,,_, o an% = %, we may assume

O<A<

, Vn>0.
o, +L

Consequently, for each integer n > 0, Pc(I — AVf,,) is §,-averaged with

1 Aan+L)
1. _

1 May,+L) 2+ Ma,+1L)
£n= 5 : =

— € (0,1).
2 2 2 4 ©,1)

This immediately implies that Pc(I — AVf,,) is nonexpansive for all n > 0.

Page 8 of 26
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We divide the proof into several steps.
Step 1. lim,, o, P2zl = 0,
For simplicity, put i, = Pc(uy — AVfy, (4n)). Then y, = 0,y Sxy + (I — 6,0 F)iky, and %141 =
Buy Vyu + (I — By F) Ty, for every n > 0. We observe that
it = it |l < | Pl = AN fa,)ttn = Pl = AV fo, Yt |
+ | Pcl = AV fo, Y ttuoy = P = ANV fo, Ytk |
< oty = thya |l + “PC(I_ AV fe, Y1 — Pc(l - )Lvﬁxn_l)un—l ”
< |ty — vty |l + ”(1 - AVfo ) tn1 = ([ = AVfe, Jun1 H
= |ty — tpall + H)\Vfan (tn-1) - AV fo (#4-1) ”

= |ty — upall + My — oy |lttpall, Yr>1 (3.2)
Moreover, from (3.1) we have

Yn = QnVan + (I - enl‘LF)Z}m
Y1 =01y Sxyoy + (I = 0 uF)ityy, Vn> 1

Thus

Yn—Yn-1= Qn(ysxn - stn—l) + (0, - 9n-1)(3/5xn-1 - ,u'Fljln—l)
+ (I = Oy uF)ity — (I = Oy F)ihyy.

Utilizing Lemma 2.12 from (3.2) we deduce that

175 = ynall < Onlly Sxu = ¥ Sxu-all + 100 — Ouallly S¥n1 — uF ity 1 ||
+ || (I = 6 F)ity — (I = 6, F )ity |
< O0ny 1% = %1 | + 100 = Ona |||y Sxn1 — WF i1 |
+ (L= 6,0 sty — sy |
< Oy %0 = 1|l + 1600 = Opa [y S — F 1 ||

(1= 0,7) (It — 1 || + Mt = st ), (3.3)

where T =1 - /1- u(2n — uk?). Taking into consideration that u, = T;,x, and u,_; =

T, 1%n-1, we have
1
@(uﬂ’y)+¢(y)_¢(un)+ _<y_un’un_xn) ZO’ Vye C (34)
T'n
and
1
O(up-1,y) + ) — p(Uy1) + (y = tp-1, U1 —%41) 20, VyeC. (3.5)

Tn-1

Putting y = u,,; in (3.4) and y = u,, in (3.5), we obtain

1
@(unx un—l) + (p(un—l) - Qo(un) + — (un—l — Uy, Uy _xn> Z 0; Vy € C

n
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and

1

Ip-1

O (U1, tn) + (1) — @(th1) + (U — Up_1, Uy —%p1) =0, VyeC.

Adding the last two inequalities, by (A2) we get

Up-1 —Xn-1 Uy _xn> >0
- - Y

<un — Un-1,
n-1 T'n

and hence

n-1

(Mn _xn)> = 0

<un —Up-1,Up-1—Up + Uy —Xp-1—
n

Since liminf,_, o, 7, > 0, we may assume, without loss of generality, that there exists a pos-
itive number ¢ such that r, > ¢ > 0 for all # > 0. Thus we have

Tn-1
”un - un—1||2 = <un —Up-1,%p —Xp-1 + <1 - )(un _xn)>

'n

-1
< lwy =t || NI = X | + |1 = le2,, = %]l |,
n
and hence
-1
ety — 1|l < Ny —Xprll + |1 - 2ty — x|
n
My
=< ”xn_xn—l” + Tlrn_rn—ﬂ- (36)

Here, My = sup{||u, — x,|| : n > 0} < +00.
Substituting (3.6) into (3.3) we derive

lyn = V-1l < Ouy 120 — Xl + 105 = Oua ||V Sxuo1 — WF 1y ||
My
+ (1 =0, %y — X0l + T|rn = Tyt + Aoty — o || 41 ||
= (1 —0u(T - V)) %6 — %l + 160 — Oua [l SXppe1 — (WF Ty ||
My
+ T|rn =Tyt + Ay, — o |||t ||
= ”xn _xn—lll +M1(|9n _en—1| + |rn - rn—1| + |an _an—1|)~ (37)

Here, ||y Sx,, — uFi,|| + A@ + Muy|| < My for some M; > 0.
On the other hand, from (3.1) we have

Xne1 = BuY Vo + (I - BupuF) Tk,
Xn = ,Bn—ly Vyn—l + (1 - ﬂn—lﬂF) Tﬁn—l: Vn>1

Simple calculations show that

Xn+l — Xy = (I - ﬁnMF)Tiln - (I - ﬁnl‘LP) Tﬁn—l

+ (B — ﬂn—l)(yvyn—l - uFTi, ) + ﬂn(y Vo — ]/Vyn—l)'
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Utilizing Lemma 2.12 from (3.2), (3.6), and (3.7) we deduce that

(15641 — %l
< |\t = BupF) Tity — (I = BuptF) Titnr | + 1Bn = Bua |l V¥n-1 = WF T it |
+ Bully Vyn = v Vyuall
<@ =Bty = ttnall + 1Bn = Buallly Vi1 = nETttnall + Buy pllyn = yull
< (= But) (st — thna | + Aty — a1 1) + | Bn = Bucal 1Y Vinor = F Ty |

+BuyPlYn = Ynall
My
<A -But)| l%n — 20l + T|rn =Ty + Ay, — ot ||| s |

+1Bu = Bucal |y Vinat = WF Tty || + Buy p[1%0 = xnca | + My (16, = 6|
+ 7w = | + ety — 1)
< (L= Bu)[ %0 = xna || + My (170 = Fuca| + oty — ot [) ]
+ 180 = Buallly Vs = uF Tty 1 |
+ By o[ 180 = %ot || + My (100 = Ot + 170 — Fuca| + et — ota]) ]
< (1= Buo)lIxn = %t | + (1= BuT)Mi (17 = P | + |0ty — €ta])
+1Bu = Bu-al 1y Vynat — WF Tty |
+ Buy 1% = Xt | + But M1 (165 = Ot | + 17 = Pt | + |ty — s ])
< (1= Bulr = y0)) %0 = Xt | + 1Bn = Bucally VIinat — uF T ity |
+M1(|9n = Onal + |1y — Fpa | + oy — Oln71|)
< (1-Bult - yp))

+ |9n —9,,,_1| + |rn _rn—ll),

%0 — X1l +M(|an =&yl +|Bu = Bual

where M + ||y Vy, — uFTu,| <M, Vn > 0 for some M > 0. Therefore,

%41 — Xl
On
”xn — Xn- ”
<(1-Bulz —7/:0))9—1
n— Yn- n — Pn- 9;4_9;4— n =~ 'n-
M [ 0l1|+|/3 ﬁ1|+| 1|+|’” Fu-l
9,1 9;1 9}’1 9"
”xn —Xn— ” 1 1
= (1= (= yp)B) ="+ (1= (T = yP)Bu) s — ntll | = —
Qn—l en en—l
M |an_an—1| ¥ |ﬁn_ﬁn—1| ¥ |9n_9n—1| ¥ |rn_rn—1|
O On O On
[l — %1l 1 1 1
<{1- - n)— - nt n—An-11," |7 —
<(1-(-yp)Bu) A (T=yp)Bn- - _yp{llx x 1||/3n R

lty =1l |Bn = Bu-tl 100 = Onal |1 —1ual
+M + + +
BiOn BinOn Bnbn BinOn
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[EEE | M [1]1 1
<(-C-yobn) =+ =y — |~
- ( ('C ]/,0),3 ) 9,,,_1 * (T J/,O),B T—-Yp { ﬂn 971 971—1
oy —epal 1| Bua| 1| 6|, w} (3.8)
B0, O B B On Brbn

where M + ||x,, —x,_1|| < M, Vn > 1 for some M > 0. From (H1), (H2), and (H4), it follows
that o2 (t — yp)Bu = +00 and

. M 1|1 1 |an - an—1| 1 ,371—1
lim — = - +— + —1-
n=>00 T —yp ,Bn en en—l ﬂnen Qn ,Bn
1 Gn— n— 'n—
e fp ) W ral] g
B O Bnbn

Applying Lemma 2.7 to (3.8), we immediately conclude that

. (1241 — Xl
Iim — =

n—00

0.

n

In particular, from (H3) it follows that
lim %41 — x4 = 0.
n—0o0

Step 2. lim,, o ||, — 4yl = 0 and lim,,_, ||y, — %] = 0.
By the firm nonexpansivity of T, , if v € MEP(®, ¢) = Fix(T,,), we have

ety = V11> = | Tpp6n = T, vII>
<(T),%n— T, v, %, — V)
1 2 2|, T, 2
= E{Hun =vII” + |l = vII” = ” run = TryV = (% — V)” }
This immediately yields
N2t = VII* < llotn = VI = ot — > (3.9)
Let p € Fix(T) N MEP(®, ¢) N I". We have
litw = pll = | Pc = AVfy, )un = Pc(I = AVf)p|
< |Pcl = AVfo, )ty = Pc(I = AV S, )P |
+ | Pc = AVfy,)p = PcI = AVf)p |

< llttw = pll + ||Pc = AV, )p = Pc(I - AVf)p||

< |lun — pll + Aay|pll. (3.10)
Note that

Yn—P= GnVan _en:qu + (1_ gnMF)Zln - (1_ gnMF)p
= Gn(ysxn - /VLFP) + (1 - Qn)(gn —19) + (9,,[(1— MF)QW - (I - /»LF)P]

=0, (stn + (I = uF)uy, —P) + (1 -6,) (&, - p).

Page 12 of 26
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Hence we have
Y = tin = 0, (v Sk + (I = WF)ity — iky).
By Lemmas 2.10 and 2.12, we have from (3.9) and (3.10) that
Iy, - pII?
= [|6a(y Sz + (I = wE)ity — p) + (1 = 6,) (@t - )|

= 0,y Sx + (I = puF)it, - p||* + 1= 6,) |, - p?

-0,(1- 9)||7/Sx,, - uF)u,,—un”

= 0, |y Sx + (I = )i, — p||* + (1= 6,) |t — plI* - — it

<6,y Sxu + (I = uF)ity — p||* + N, - — i) (3.11)

Furthermore, utilizing Lemmas 2.11 and 2.12 we have from (3.9) and (3.10) that

”xn+l —P||2
= || Buy Vi = BuitFTp + (I = BupiF) Ty, — (I — BupuF) Tp
< (1Bx¥ Viin = ButtFTpl| + | (I = BuuF) Tit, — (I - BuuF) Tp|))?
~ 2
< (Bully Vyn = wEp|l + (1 = Bu7)llity — pll)
1 2 ~ 2
< By Vi = wEpI” + (L= B s = p

1 3
< ﬂn;[IIVVyn —y VpII* + 2y Vo — uFp, ¥ Vyu — kEp) ] + (1 = B0l — plI?

J/2'02

2 ~
=< Bn ly» - plI* + Pully Vo = wkplllly Van — nkpli + (1= Buo) ity - plI®

~ 12
— iyl ]

y’p

< [9 IS+ (4 = WEYity = p||* + N~ p* -

2 .
+ BNy Vo = wEplllly Vyu — ppll + (= But)lik -pl?

_ vip® 2
=(1-Fult-— i, - pll +ﬁ,,9—||ny,,+(1 1F)it, - p|*

_ ﬁnyzpz(l —0,)
60,

B 2
llyn = iall® + ﬁn—IIVVp—quHIIVVyn - ukp||

2
< Nty - p||2+,3n9—||y5x,, (I - uF)ity - |

,Bny 14 (l_en) -
- Tllyn — ii||® + ﬁn—IIVVp—uFPIIIIVVyn — uipl||
=< (||14n—19|| +)»01n||19||) + Bubn HJ/an (I - uF)u PH
:Bny 102(1 60,)

llyn = itull* + ﬁn—llpr - wEplilly Vy, — ukpl|
60, T
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< Il = pI* + hetullpll (21l = pll + Aetallpll)

2 n 2 2(1_9;4) ~
B0, Y L [y, 4 1~ Byt - P L) e
0,
+ﬁn;IIVVp—MFpIIIIVVyn—qull
2 2
< [l%s = pII* = 1150 — unll” + Aeu |21l (21115 — plI + Al pl)
”2_ ﬂnyzpz(l_en) ” i ”2

2
+:3n9 —”)/5xn 1 HF) 70
n

+ﬁn;IIVVp—uFPIIIIVVyn—MFpll- (3.12)

It turns out therefore that

,31'17/2:02(1_9;1) ~
”2 + T Yn — un||2

< %n = pI* = %041 = PI* + Aetullpll (2l — pll + At lIpll)

B

2
+ Bub ||y5xn+(1 1F)it, - p|?
+ﬁn;IIJ/Vp—uFPIIIIVVyn—MFPII
(1196 = Pl + 1%ns1 = P 120 = X | + Aetullpll (2124 — pll + Aetullpll)

2.2

vep - 2

+ ﬁnenT ||)’an + (1_ H’F)M}’I _p”
2

+ﬁn;IIVVp—MFpllllyVyn—MFpll-

Then it is clear that

1% = ll® < (110 = Il + 12001 = 2I) 1960 = %t || + At Il (211280 = pll + Acvullp)

2
+ Bubn —Hny,, (I - uF)u p||
+ﬂn;llpr—qullllyVyn—MFpll.

Since «,, > 0, B, — 0, 6, — 0, and ||x,.4,1 — x,|| — 0, we conclude that

lim [, -, = O
n—00

Furthermore,

:Bnyzpz(l - Hn)
76,
(In =1l + 1 = P 10 = Zna | + APl (21120 = pl + 2t lip]l)

2
”yn - un”

+ﬁ” Hnyn (I - uF)ii, —p|* +,3n—||VVP WEp Iy Vyn — 1uEpl.
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This yields

y2p*(1-6,) .
———lyn — |

0 o0,
< (Il = Il + %01 —Pll)ﬂ—nllxn =Xl + g = el (2llu, - pll + e lpll)
n n

2
P - 2 2
—— | ySxn + I - uF)it, - p|| +6u—lly Vo = uEpllly Vyn — uEpl.

Since ”"”*91 “ull 0, “”*ﬂ” — 0, and — 0 as n — 00, we have

On Xy — X 02
11m—||xn—xn+1||_ hm M_”zo
n—00 ﬁn 6, ﬂn

and
0 92
lim %79 _ qim ¥ % _ g
n—00 ﬁn n— 00 Qn ﬁn

Therefore, from the last inequality we have
lim ||y, — i, =0
n—0oQ

Step 3. lim,— o ||y, — Uyl = 0 and limy,—, o |, — y4]| =0
Let p € Fix(T) NFix(I") N E. Utilizing Lemmas 2.6 and 2.11 we have from (3.12) that

”xn+l —P”Z
2 .2
- P -
snun—pn%ﬁnen—yr |y Sxy + (I = uF)i, - p|*

_ Buy?p’(1-06y)

N 2
Iy = inll* + Bu=lly Vo — uEpllly Vyu — wEpll
76, T

< ||Pcll = 2V fi, )ty — Pl = 2V f)p? +/3,,«9—||ny,, (I - uF)it, - p|
+ﬁn;||VVp—qu||||VVyn—qull
< (4= 29 f)u = (1 - 2V F)p = revyun|® YR ||ny” (I = uF)is, - p|’

2
+ ﬁn; ly Vo — ubplllly Vy, — ukpl|

<=2Vt = A= AV])p|| = 200tn{tn, (I = 29, )1t — (I = AV )p)
y2p? 3 2 2
+Bubn—— |y Sxu + I = uE)it, - p|” + Bu—lly Vo = uEplllly Vi — |
2
< lun=pI” + x(x - Z) [Vf ) - vr @)’
+ 240 [l || (I = AV fo, it — (L = AV )p |

2
+ﬂn9—||Van (I - uF)ii, —p|* +,3n—||VVP 1Ep|Ily Vi, — wFpl|
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2

<l —P||2 + )‘()‘ - Z) ||Vf(un) - Vf(p) ”2

+ 200ty ||l | (L = AV Sy, )1y — (L= AVf)p |

y2p? - 2 2
+ B —— ly Sxw + I = uF)it, — p|”~ + Bu=lly Vo = nplllly Vyn = nkpll.
Hence,
2 2
(3 -2 19 - s

< [l%x —pn2 = %1 =PI + 20ttt ||| (L = AV for, )t — (L = AV )p |

+ B Hnyn (I - uF)ii, —p|* + ﬂn— ly Vp — wEpllIly Vi, — nEpl
= (”xn =l + 1% —P||) 1960 — Xnsa |l + 220, ]|y | ”(1 - )‘Vfotn)un -(I- )\Vf)P”

y2p? - 2 2
+ ﬁnenTHnyn + (I - uF)it, - p|| +Bu=lly Vo = npllly Vyn - nkpll.

Since o, — 0, B, —> 0, 6, — 0, and |[x,,1 — x,|| — O, it follows from 0 < A < % that
lim,, o [|Vf(u,) — Vf(p)| = 0, and hence

lim || V£, (ua) - V()| =0
H—0Q
Furthermore, from the firm nonexpansiveness of Pc we obtain

litn = pII* = | Pell = AVf )ty = Pell - AV )p|)?
< (I = AVfy,)uy — I~ AV )p,it, — p)
= %{H(I—Wﬁxn)un U =2Vp| + N - pI?

— | = 2V f )t = (I =2V ])p = (@1 - )|}

IA

2 s = 1P + 22 9o ) = V) || =29, e~ =29 )]
+ || ity —P||2 = lwn — ’j‘n”2 + 2)"<Mn = U, Ve, (tn) = Vf(p))
= 32| Vo () = V@) )-

Consequently,

i, - plI*
< ety = pII* = Nt = B8 |* + 21| Vo, (1) = VE@) || T = AV oo, )ttn — (I = 2V )p||

+ 2)\<un - Zlm vﬁxn (un) - Vf(p)> - )‘2 ” vﬁxn (un) - Vf(p) ”2
Thus, from (3.12) we have

2
l%441 — Pl

2 2
=< llan - p||2+,3n9—||y5x,, (I - uF)ii, - p|*
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_ Buy?p*1-6,)
60,

< Nt = pI* = Nty = ital1* + 24| Vo, () = VED)|| | T = AV S )t — (T = AV )p ||
+ 20ty — g Vfi () = V(D)) = 2| Vo, () = V(D) ||2

_ /3n1/2/02(1 - 9,,)
70,

B 2
llyn — i ll* + ﬁn;IIVVp—quIIIIVVyn - ukp||

vie? 2 ~
+ ,BnQnT ||stn + (I — uF)ity, _P” lyn - un”2

2

+ ﬁn; ly Vo — wEplllly Vyu — nkpll

< 6 =PI = ot — | + 24| Vor, () = VEO) | | T = AV o, )it — (T = 2V )p||
y2p? 2

+ 2 |2ty — 1ty | ||Vf01n (un) = Vf(p) ” + ﬂnenT ” YSx, + (I — uF)ity, —P”
2

+ ﬁn; ly Vo — ukplllly Vy, — ukpl.

This implies that

~ 2
”Mn_un”

< 1% = I = %na1 =PI + 24| Vi, () = V@) || = AV, )1 — (I = AV F)p|

2,2
+ 201ty = i || Vo (02) = V0 | + B0, 7= S, + (= )ity — p |

2
+ :31'1; ly Vo — ubplllly Vy, — ukpl|

< (s =PI+ %01 = PU) 1% = X

+ 20| Ve, () = VD) | | (4 = 29 o, )t = (I = 291 )p |
y20? )
+ 21ty = it || Vo, 14) = VF @) | + By —— [y S + (I = Bt~ p|
2
+ ﬂn; Iy Ve — ukplllly Vyn — nkpl.
Since 6, — 0, B, = 0, ||y — X1 |l = 0, and || V[, (u,) — Vf(p)]| — 0, it follows that
lim ||, — i, ]| = O.
Hn—0Q
This, together with ||x,, — u,|| — 0 and ||y, — #%,| = 0 (due to Step 2), implies that
16 = Yl < [l — s || + |2t — Uyl + |2, —yull >0 asn— oo,
and thus
lim ||x, —y,|l = 0.
n—0oQ

Step 4. wy(x,) C Fix(T)NMEP(®, ) N\ I"; moreover, if || x,, — v, || = 0(6,) in addition, then

wylx,) C E.
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Let p* € w,(x,). Then there exists a subsequence {x,,} of {x,} such that x,, — p*. Since

Kpal — Uy = By Syn + (I = BuuF) Tty — 1ty

= :Bn(VSyn - uFTu,) + T, — iy,
we have

I T, — | = ||xn+1 — iy~ Bu(y Syn — HFT’:‘n)H
= 1 = bl + Bully Syn — WE Ty

< nar — Xull + o6 — sl + N1t — U || + ﬁn”VSyn — uFTi,|.
Hence from ||%,.1 — 4| = O, ||%, — u,|| = O, |4y, — #2,]| — 0, and B, — 0, we get
lim || T, — i,] = 0.
n—00

Since ||%, — u,|| — 0 and ||u, — #,]| — O, we have #,, — p*. Utilizing Lemma 2.8 we derive
p* € Fix(T).

Let us show that p* € MEP(®, ¢). As a matter of fact, since u,, = T}, x,, for any y € C we
have

1
@(umy) + (p(y) - <P(Mn) + —O’— Uy, Uy _xn) > 0.

n

It follows from (A2) that

1
900’) - 90(’471) + r—()/— Up, Uy _xn) > @()/, un)~

Replacing n by n;, we have
1
) - (p(un,-) + r_(y_ Up;» Up; _xn,-> > 06, I/l,,l.).

Since w — 0 and u,, — p*, it follows from (A4) that

0> -9 +9(p*)+O(np*), VyeC.
Putz; =ty + (1-t)p* forall t € (0,1] and y € C. We have z; € C and

0> —p(z) +@(p*) + O (20, 0%). (3.13)
Utilizing (A1), (A4), and (3.13), we have

0 =0O(z1,20) + ¢(z) — p(21)
<tO(z1,9) + 1 - 1)O (20, p") + to(y) + (1 - o (p*) - ¢(21)
<t(O(z6y) +9() - 9(z)) + 1 - )(O (2, 0*) + 0 (P*) - 9(22))

<t(O(z,9) + 9(9) - (21)),
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and hence

0= 0(z,y) +90) - ¢(z). (3.14)
Letting ¢ — 0 in (3.14) and utilizing (A3), we get, for each y € C,
0=0(p"y) +90) - o(p").
Hence, p* € MEP(O, ¢).
Let us show that p* € I". From ||%, — u,|| — 0 and | u, —i,|| — 0, we know that u,, — p*

and #,, — p*. Define

Fo o Vf(v) +Ncv, ifveC,
), ifvéeC,

where
Nev={weH:(v-uw)>0,Yue C}.

Then T is maximal monotone and 0 € Tv if and only if v € VI(C, Vf); see [28] for more
details. Let (v, w) € Gph(%). Then we have

weTv= Vf(v) + Ncv
and hence,
w— Vf(v) € Ncv.
Therefore,
(v—u,w— Vf(v)) >0, VYueC.
On the other hand, from
i, = Pc(u,, — kVﬁ,,n(un)) and ve(,
we have
(t4n = AN foy, () = Ty 18y = v) = 0,

and hence

<v — Uy, o ; o + Vﬁ,n(un)> > 0.
Therefore, from

w—Vf(v) eNc(v) and 1, €C,
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we have

(V - ﬁni: W> = <V - ﬁni: Vf(V))

> (v = by, V() - <v i, ;

Uy,

+ Vfglni (u”i )>

= (v — iy, Vf(v)) - <v — ity i ; i, Vf(u,,,.)> = 0y, (V = Ty U,

= <V - ﬁ”i’ Vi) - Vf(ﬁni)> + (V - i;l”i’ Vf(ﬁ"i) - Vf(unz)>

~ uni _uni ~
—\V— Uy, Y _an,v<v_un,"un,v>

Up; — Uy,
A

> <V - ﬁnp Vf(ﬁnl) - Vf(un,-)) - <V - ﬁn,’r > - am(‘/ - ﬁnl‘; Mn,->'

Hence, we obtain
(v—p*,w) >0 asi— oo.

Since T is maximal monotone, we have pre T-10, and hence, p* € VI(C, Vf), which leads
to p* € I'. Consequently, p* € Fix(T) "MEP(®, ¢) N I". This shows that w,,(x,) C Fix(T)N
MEP(®,9)NT.
Utilizing Lemmas 2.11 and 2.12, we have for every p € Fix(T) N MEP(®,¢) N I,
Iy —plI*
= ||9,,nyn + (I — uF)uy, —p||2
- 2
= [|6u(y Sp — 1Ep) + 64(y S = v Sp) + (I = uitF)ity — (I = 6,1 F)p |
- 2
< [|6n(y S = ¥ Sp) + (I = 6t F)ity = (I = 6, uF)p " + 26,y Sp — 1Fp, y» — p)
. 2
< [164(y Sxn = v Sp) | + || = OuitFity — (I = 0w F)p||]” + 26,y Sp — Ep, yu — p)
. 2
< [Ony llxn = pll + 0 = 0,,7) ||y —P||] +20,(y Sp — WEp, yu — P)

2
Oy 1%n = pll + (1= 6,7) (s = pll + 2etullpll) | + 26,y Sp = 11Ep, 3y = p)

IA

IA

(1=0,4(t = ) 1% = pll + A lIpll]” + 26, (¥ Sp — Ep, Y - p)

=
=

[
[
[
[0y 120 = Il + (1= 6,7) (I = pIl + Actullpl)]” + 260, (v Sp — 11ED, 3 ~ P)
[
(

2
%0 = pll + Aatullpll)” + 260,y Sp — Ep, yu — p). (3.15)

Suppose now that ||x,, — v, | = 0(6,) in addition. It follows from (3.15) that

2(ySp — wEp,yn — p)

IA

[(I%: = pll + Aaullp ) = llyn - p11%]

IA

(I =PIl + 2atnllpll + Iy = pI) (120 =PIl + At llpll = 11y = pII)

(

IA

L= Dl S

=pll + 2aullpll + 11ys = 1) (116 = yull + Aeallpll).

B
N
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This, together with 32 — 0 and """9—7”” — 0, leads to

limsup(ySp — wkp,y, — p) <0.

n—o0

Observe that

lim sup{y Sp — uFp, x,, — p)

n—00

=limsup((ySp — LEP, %n = yu) + (¥ Sp — WED, Y — D))

n— 00
=limsup(ySp — wfp,y, — p) < 0.
n—0o0
So, it follows from x,,, — p* that

(ySp - ukp,p* —p) <0, VpeFix(T)NMEP(®,p)NT.

Note also that 0 <y < 7 and

un>=t & pn>=1-,/1-pu(2n-pk?)
& Jl-p(2n-ue?)=1-puny
& 1-2un+pPc* =1-2un + p’n?
& k2> p?
& k=1

It is clear that

((WF = yS)x = (WF = yS)y,x = y) = (un - y)llx—ylI>, Vx,y € H.

Hence, it follows from 0 < y < 7 < un that uF — yS is monotone. Since p* € w,(x,) C
Fix(T) " MEP(®, ¢) N I', by Minty’s lemma [1] we have

{ySp* - nEp*,p-p*) <0, VpcFix(T)NMEP(®,9) N T;
that is, p* € Z. This shows that w,(x,) C Z. O
Theorem 3.2 Assuming the conditions in Theorem 3.1. We have:
(i) {x4} and {y,} both converge strongly to an element x* € Fix(T) NMEP(®,9)N T,
which is a unique solution of the variational inequality

(yva* — uFx*,x —x*) <0, VxeFix(T)NMEP(®,¢)NT.

(ii) {xn} and {y.} both converge strongly to a unique solution of THVI (1.6) if
1% — ¥ull = 0(6,) in addition.
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Proof Utilizing Lemmas 2.11 and 2.12 we get from (3.15)

ner — 12
= | Bay Vo + U = uE)Tit, — p)|?
= ||Buly Vi = Ep) + Buly Vi — v Vo) + (I = BuptF) ity — (I~ Bt F)Tp |
< | Baly Viu = v Vio) + (I = ,uF) Tty — (I - 6, uF) Tp |
+2Bu(y Vp — WEp, Xp1 — p)
<184 Vi =y VD) + | (I = ButF) Tty — (1 - 6, F)Tp ||
+2Bu(y Vp — WEp, Xp1 — p)

< [Buvollyn = pll + U = By0)llit — plI]* + 2Bu{y Vo = 1Ep, 1 — )

2 2
yop -
<Bu . lyn —P||2 + (1= B,1)ll, _P”2 + 2B,y Vo — uEp, %41 — p)
y2o® 2
< Bn [(I%: = 2l + Actullpll)” + 26, (v Sp — uEp,yu — p)]
2
+ (L= Bat) (%4 — Il + 2etnlIpll)” +2Bu(y Vo — WEp, X1 — P)
2 y2p? ) y2p?
= (1 - ﬁni) (”xn -pll+ }‘an”p”) + 26,6, - (ySp — wkp,y, - p)
+2B,{y Vp — uFp, %1 — p), (3~16)

where 7 =1 - /1 - u(2n — u«x?).
Note that uF -y V : H — H is (uk + yp)-Lipschitzian and (un —y p)-strongly monotone,

namely
|(WF =y V)x = (uF =y V)y|| < (uk +yp)llx—yl, VxyeH
and
((WE =y V)x— (WF =y V)y,x—y) = (un - yp)llx—yI*, Vxy€H.

Hence there exists a unique solution x* € Fix(T) N MEP(®, ¢) N I" of the variational in-
equality problem

(7/ Vx* — uFx*, x —x*) <0, VxeFix(T)NMEP(®,p)NT. (3.17)
Since the sequence {x,} is bounded, there exists a subsequence {x,,} of {x,} such that

lim sup(y Vx* — wEx*, %, — x*) = lim (y V" — WFx*, %, — x*) (3.18)
1—> 00

n—00

Also, since H is reflexive and {x,} is bounded, without loss of generality we may assume
that x,,, = x € Fix(T) NMEP(®, ¢) N I" (due to Theorem 3.1(i)). Taking into consideration
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that x* is the unique solution of VIP (3.17), we obtain from (3.18)
lim sup(y Va* — wEx*, %01 — x*)
n—0o0

=lim sup((y Vx* — uFx*, x, — x*> + (y Vx* — WFx™, %01 — xn))

n—0o0

= hmsup(ny — WEX*, %, — x )— hm(ny — UWEX" %y, — X )
n—00 —> 00
= (y Vx* — wEx™, x —x*) <0. (3.19)
Putting p = x*, from (3.16) we conclude that
[ =7
<1 ﬂn#> ([0 = | + Aewa || [)°
+ 2,8,,9,,% ” y Sx* — wFx* ” ||y,, —x* ” + 2,3,,()/ Va* — wWEx™, %01 — x*)

< (1B 5L Y= | | 2l =+ )

+ 2,3,,9,,% ” ySx* — wFx* ” ||yn —x* ” + 2,3n(y Va* — wWEx™, %01 — x*)

_ (1—,371‘[2_]/2'()2)”7@4_x*Hz"',BnTZ —;/292

o e - -
2 —y2p?
+ 2()/ Va* — wFx™, %41 —x*)} + oA ”x* ” (2”96,, —x* ” + Aoy, Hx* ”) (3.20)

Since Z;’;O By = +00, Y o2y ay < +00, and 6, — 0 as n — 00, it follows from (3.19) that
Yoo Bn = = 400, D2 Al (211%, — x* || + A llx* ) < +00, and

T )/2,02 * * * * * *
lim sup 2,2 {29,, " Hny — wFx || Hy,,—x ||+2<)/Vx —UWFX™ %41 — % >} <0.

nooo T2—
Applying Lemma 2.7 to (3.20), we get
lim ”x,, —x* ” =0.
n—0o0
This, together with ||x, — y,|| = 0, implies that
lim ||y, —«*| = 0.
— 00
From now on, we suppose that ||x,, — ¥, || = 0(0,). Then by Theorem 3.1(ii) we know that
wyw(x,) C 5. Since uF — yV : H — H is (uk + yp)-Lipschitzian and (un — yp)-strongly

monotone, there exists a unique solution x* € & of the variational inequality problem

(yVa* — uFx*,x—x*) <0, VxeZ. (3.21)
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Since the sequence {x,} is bounded, there exists a subsequence {x,,} of {x,} such that

lim sup(y Vx* — uFx*, x, — x*) = lim (y V' — WFx*, %, — x*) (3.22)

n—00 =00

Again, since H is reflexive and {x,} is bounded, without loss of generality we may assume
that x,;, — x € & (due to Theorem 3.1(ii)). Taking into account that x* is the unique solu-
tion of VIP (3.21), we deduce from (3.22) that

lim sup(y V" — WFx™, %1 —x*) < (y Vx* — nFx*, x —x*) <0.

n—o0

Putting p = x*, from (3.16) we immediately infer that

w1 ="
2 _4,2,2 2,22
§<I_ﬂnﬂ)nxn_,¢*“2+ﬂnu
T T
T

2,2
T2 y2p2 {29,17’110 |y Sa* = b |y = 27|

+2(y Va* — wFx", %41 — x*)} + et || (2|20 = 2¥|| + Aev || 2*)).
Repeating the same arguments as above, we can readily see that
lim ||x,, —x* || =0,
n—00
which, together with ||x,, — y,|| — 0, yields
lim ||yn —x* || =0.
H—>0Q
This completes the proof. g

Remark 3.3 Our iterative algorithm (3.1) is very different from Xu’s iterative ones in [2],
and Yao et al’s iterative one in [8]. Here, the two-step iterative scheme in [8] for two non-
expansive mappings and the gradient-projection iterative schemes in [2] for MP (1.1) are
extended to develop our three-step iterative scheme (3.1) with regularization for the THVI
(1.6). It is worth pointing out that without assuming the conditions that ||x, — ¥, = 0(6,)
and that ||x — Tx|| > k Dist(x, Fix(T)), Vx € C for some constant k > 0, our three-step iter-
ative scheme (3.1) converges strongly to an element x* € Fix(T) N MEP(®, ¢) N I, which
is a unique solution of the variational inequality

(y Va* — uFx*,x —x*) <0, VxeFix(T) NMEP(®,¢) N T.
See Theorem 3.2(i).
Remark 3.4 As an example, we consider the following sequences:

(@) a, = #, Bn =+, and 6, = % where t € (0, 3] and s € (£,2¢) or £ € (3, 3),
se(t,1-1);
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(b) =3+ 7

e

They satisfy the hypotheses on the parameter sequences in Theorems 3.1 and 3.2.

Remark 3.5 Our Theorems 3.1 and 3.2 improve, extend, supplement, and develop [8,
Theorems 3.1 and 3.2] and [2, Theorems 5.2 and 6.1] in the following aspects:
(a) Our THVI (1.6) with the unique solution x* € = satisfying

x* = Prix(rynrixrng (I — (WF — y S))x*

is more general than the problem of finding an element X € C satisfying X = Prix(1)SX
in [8] and the problem of finding an element x € & in [2].

(b) Our three-step iterative algorithm (3.1) for THVI (1.6) is more flexible, more
advantageous and more subtle than Xu'’s iterative ones in [2] and than Yao et al.’s
two-step iterative one in [8], because, e.g, it drops the requirement of
llx — Tx|| > k Dist(x, Fix(T')), Vx € C for some k > 0 in [8, Theorem 3.2(v)].

(c) The arguments and techniques in our Theorems 3.1 and 3.2 are very different from
the ones in [8, Theorems 3.1 and 3.2] and in [2, Theorems 5.2 and 6.1] because we
utilize the properties of resolvent operators and maximal monotone mappings
(Lemmas 2.5, 2.6 and 2.13), the convergence criteria of real sequences (Lemma 2.7),
and the contractive coefficient estimates for the contractions associated with
nonexpansive mappings (Lemma 2.12).

(d) Compared with the proofs of [2, Theorems 5.2 and 6.1], the proofs of our Theorems
3.1 and 3.2 derive lim,—, oo |t4 — Pc(I — AVfy, )ut, || = O via the argument showing
limy,—, o0 || Ve, () = V(@) = 0, Vp € Fix(T) NMEP(©,¢) N I" (see Step 3 in the
proof of Theorem 3.1).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details

' Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China. 2Scientific Computing Key
Laboratory of Shanghai Universities, Shanghai, 200234, China. *Department of Applied Mathematics, National Sun
Yat-sen University, Kaohsiung, 804, Taiwan. “Center for General Education, Kaohsiung Medical University, Kaohsiung, 807,
Taiwan. °Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. ®Department of
Mathematics, King Abdulaziz University, PO. Box 80203, Jeddah, 21589, Saudi Arabia.

Acknowledgements

Lu-Chuan Ceng is partially supported by the National Science Foundation of China (11071169), Innovation Program of
Shanghai Municipal Education Commission (09ZZ133) and Leading Academic Discipline Project of Shanghai Normal
University (DZL707). Ngai-Ching Wong is partially supported by the Taiwan MOST grant 102-2115-M-110-002-MY2.
Jen-Chih Yao is partially supported by the Taiwan MOST grant 102-2111-E-037-004-MY3. Both Ngai-Ching Wong and
Jen-Chih Yao are also partially supported by the NSYSU-KMU joint venture 103-P013.

Received: 31 August 2014 Accepted: 24 November 2014 Published: 12 Dec 2014

References

1. Goebel, K, Kirk, WA: Topics on Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28.
Cambridge University Press, Cambridge (1990)

2. Xu, H-K: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360-378 (2011)

3. Xu, H-K: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Problems 26,
105018 (2010)

4. Ceng, L-C, Wang, C-Y, Yao, J-C: Strong convergence theorems by a relaxed extragradient method for a general system
of variational inequalities. Math. Methods Oper. Res. 67, 375-390 (2008)


http://www.journalofinequalitiesandapplications.com/content/2014/1/490

Ceng et al. Journal of Inequalities and Applications 2014, 2014:490
http://www.journalofinequalitiesandapplications.com/content/2014/1/490

11.
12.
13.

20.

21.

22.

23.

24.

25.
26.

27.

28.

. Ceng, L-C, Yao, J-C: An extragradient-like approximation method for variational inequality problems and fixed point

problems. Appl. Math. Comput. 190, 205-215 (2007)

. Glowinski, R: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
. Kinderlehrer, D, Stampacchia, G: An Introduction to Variational Inequalities and Their Applications. Academic Press,

New York (1980)
Yao, Y, Liou, Y-C, Marino, G: Two-step iterative algorithms for hierarchical fixed point problems and variational
inequality problems. J. Appl. Math. Comput. 31(1-2), 433-445 (2009)

. Moudafi, A, Maingé, P-E: Towards viscosity approximations of hierarchical fixed points problems. Fixed Point Theory

Appl. 2006, Article ID 95453 (2006)

Moudafi, A, Maingé, P-E: Strong convergence of an iterative method for hierarchical fixed point problems. Pac.

J. Optim. 3(3), 529-538 (2007)

Moudafi, A: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241(1), 46-55 (2000)
Xu, H-K: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
Ceng, L-C, Yao, J-C: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput.
Appl. Math. 214, 186-201 (2008)

Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145
(1994)

Peng, J-W, Yao, J-C: A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point
problems and variational inequality problems. Taiwan. J. Math. 12, 1401-1432 (2008)

liduka, H: Strong convergence for an iterative method for the triple-hierarchical constrained optimization problem.
Nonlinear Anal. 71, 1292-1297 (2010)

liduka, H: Iterative algorithm for solving triple-hierarchical constrained optimization problem. J. Optim. Theory Appl.
148, 580-592 (2011)

Ceng, L-C, Ansari, QH, Yao, J-C: Iterative methods for triple hierarchical variational inequalities in Hilbert spaces.
J.Optim. Theory Appl. 151, 489-512 (2011)

Ansari, QH, Ceng, L-C, Gupta, H: Triple hierarchical variational inequalities. In: Ansari, QH (ed.) Nonlinear Analysis:
Approximation Theory, Optimization and Applications, pp. 231-280. Birkhduser, Basel (2014)

Ceng, L-C, Ansari, QH, Wen, C-F: Hybrid steepest-descent viscosity method for triple hierarchical variational
inequalities. Abstr. Appl. Anal. 2012, Article ID 907105 (2012)

Ceng, L-C, Ansari, QH, Yao, J-C: Relaxed hybrid steepest-descent methods with variable parameters for
triple-hierarchical variational inequalities. Appl. Anal. 91(10), 1793-1810 (2012)

Kong, Z-R, Ceng, L-C, Pang, CT, Ansari, QH: Multi-step hybrid extragradient method for triple hierarchical variational
inequalities. Abstr. Appl. Anal. 2013, Article ID 718624 (2013)

Byrne, C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse
Problems 20, 103-120 (2004)

Combettes, PL: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization
53(5-6), 475-504 (2004)

Xu, H-K: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(2), 240-256 (2002)

Reineermann, J: Uber fixpunkte kontrahierender abbildungen und schwach konvergente Toeplitz-verfahren. Arch.
Math. (Basel) 20, 59-64 (1969)

Xu, H-K, Kim, T-H: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory
Appl. 119, 185-201 (2003)

Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)

10.1186/1029-242X-2014-490
Cite this article as: Ceng et al.: Regularized hybrid iterative algorithms for triple hierarchical variational inequalities.
Journal of Inequalities and Applications 2014, 2014:490

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 26 of 26


http://www.journalofinequalitiesandapplications.com/content/2014/1/490

	Regularized hybrid iterative algorithms for triple hierarchical variational inequalities
	Abstract
	MSC
	Keywords

	Introduction
	The problem to study

	Preliminaries
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


