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Abstract
The purpose of this paper is to establish two new iteration schemes as follows:
xn = αnxn–1 + (1 – αn)yn, yn ∈ Txn, n ≥ 1, x′

n = βnu + αnx′
n–1 + (1 – αn – βn)y′

n, y
′
n ∈ Tx′

n,
n ≥ 1, for a multi-valued nonexpansive mapping T in a uniformly convex Banach
space and prove that {xn} and {x′

n} converge strongly to a fixed point of T under some
suitable conditions, respectively. Moreover, a gap in Sahu (Nonlinear Anal. 37:401-407,
1999) is found and revised.
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1 Introduction
Let E be a Banach space, K be a nonempty, closed, and convex subset of E. We denote
the family of all subsets of E by E , the family of nonempty, closed, and bounded subsets
of E by CB(E), the family of nonempty compact subsets of E by C(E), and the family of
nonempty, compact, and convex subsets of E by CC(E). LetH(·, ·) be Hausdorff metric on
CB(E), i.e.,

H(A,B) =max
{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)
}

∀A,B ∈ CB(E), (.)

where d(x,B) = inf{‖x – y‖ : y ∈ B}.
A multi-valued mapping T : K → CB(K ) is called nonexpansive (respectively, contrac-

tive), if for any x, y ∈ K , we have

H(Tx,Ty) ≤ ‖x – y‖ (.)
(
respectively,H(Tx,Ty)≤ k‖x – y‖ for some k ∈ [, )

)
.

A point x is called a fixed point of T if x ∈ Tx. In this paper, F(T) stands for the fixed point
set of the mapping T .
In , Markin [] firstly established the nonexpansive multi-valued convergence re-

sults in Hilbert space. Banach’s contraction principle was extended to a multi-valued con-
traction by Nadler [] in .
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In , a breakthroughwas achieved by TC Lim using Edelstein’s method of asymptotic
centers [].

Theorem . (Lim []) Let K be a nonempty, bounded, closed, and convex subset of a uni-
formly convex Banach space E and T : K → C(K ) a multi-valued nonexpansive mapping.
Then T has a fixed point.

In , Kirk andMassa [] obtained another important result for themulti-valued non-
expansive mappings.

Theorem . (Kirk and Massa []) Let K be a nonempty, bounded, closed, and convex
subset of a Banach space E and T : K → CC(K ) a multi-valued nonexpansive mapping.
Suppose that the asymptotic center in K of each bounded sequence of E is nonempty and
compact. Then T has a fixed point.

In , Sahu [] obtained the strong convergence theorems of the nonexpansive type
and non-self multi-valued mappings for the following iteration process:

xn = tnx + ( – tn)un, n≥ , (.)

where un ∈ Txn, x ∈ K , tn ∈ (, ), and limn→∞ tn = . Unfortunately, a gap exists in the
proof of Theorem  in p. of []; there are the following inequalities:

〈
xn – un, J(xn – v)

〉
=

〈
xn – v + v – un, J(xn – v)

〉
≥ ‖xn – v‖ – ‖un – v‖ · ‖xn – v‖
≥ ‖xn – v‖ – ‖xn – v‖ = . (.)

Clearly, if the above inequality holds, then the inequality ‖un – v‖ ≤ ‖xn – v‖ must be as-
sumed, for all v ∈ F(T), but this inequality does not hold generally, based on the definition
of the Hausdorff metric H(·, ·) on CB(E), for all v ∈ T(v).

Remark . To revise the gap we have found in Theorem  of [], in this paper, we change
the fixed point set of T (F(T) := {x ∈ K ,x ∈ Tx}) into F(T) := {x ∈ K ,x = Tx}. The above
problem is solved easily. Indeed,

〈
xn – un, J(xn – v)

〉
=

〈
xn – v + v – un, J(xn – v)

〉
≥ ‖xn – v‖ – ‖un – v‖ · ‖xn – v‖
≥ ‖xn – v‖ –H(Txn,Tv)‖xn – v‖
≥ ‖xn – v‖ – ‖xn – v‖ = . (.)

In , Xu [] extended Theorem . to a multi-valued nonexpansive nonself-mapping
and obtained the fixed theorems. Some recent fixed point results for multi-valued nonex-
pansive mappings can be found in [–] and the references therein.
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Motivated by Sahu [] and the above results, we propose two new iteration processes
(.) and (.) and we study them in this paper. Let K be a nonempty, bounded, closed,
and convex subset of E, and u and x be fixed elements of K . We have

xn = αnxn– + ( – αn)yn, yn ∈ Txn,n≥ , (.)

x′
n = βnu + αnx′

n– + ( – αn – βn)y′
n, y′

n ∈ Tx′
n,n≥ , (.)

where αn,βn ∈ (, ) satisfy certain conditions, and we prove some strongly convergence
theorems for the multi-valued nonexpansive mappings in Banach spaces. The results pre-
sented in this paper mainly extend and improve the corresponding results of Sahu [] on
the iteration algorithms.

2 Preliminaries
Let E be a real uniformly convex Banach space and let J denote the normalized duality
mapping from E to E∗ defined by

J(x) =
{
f ∈ E∗, 〈x, f 〉 = ‖x‖ · ‖f ‖,‖x‖ = ‖f ‖}, ∀x ∈ E, (.)

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pair. It is
well known that if E is smooth or if E∗ is strictly convex, then J is single-valued.
Recall that the norm of Banach space E is said to be Gâteaux differentiable (or E is said

to be smooth), if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y on the unit sphere S(E) of E. Moreover, if for each y in S(E) the limit
defined by (.) is uniformly attained for x in S(E), we say that the norm of E is uniformly
Gâteaux differentiable. It is alsowell known that if E has a uniformlyGâteaux differentiable
norm, then the duality mapping J is norm-to-weak star uniformly continuous on each
bounded subset of E.
A Banach space E is called uniformly convex, if for each ε >  there is a δ >  such that

for x, y ∈ E with ‖x‖,‖y‖ ≤ , and ‖x – y‖ ≥ ε, ‖x + y‖ ≤ ( – δ) holds. The modulus of
convexity of E is defined by

δE(ε) = inf

{
 –

∥∥∥∥  (x + y)
∥∥∥∥ : ‖x‖,‖y‖ ≤ ,‖x – y‖ ≥ ε

}
,

for all ε ∈ [, ]. E is said to be uniformly convex if δE() = , and δ(ε) >  for all  < ε ≤ .
Throughout this paper, we write xn ⇀ x (respectively, xn

∗
⇀ x) to indicate that the se-

quence xn weakly (respectively, weak*) converges to x, and as usual xn → x will symbolize
strong convergence. In order to show our main results, the following definitions and lem-
mas are needed.
Let LIM be a continuous linear functional on l∞ satisfying ‖LIM‖ =  = LIM(). Then

we know that LIM is a mean on N if and only if

inf{an;n ∈ N} ≤ LIM(a)≤ sup{an;n ∈N}

http://www.journalofinequalitiesandapplications.com/content/2014/1/483


He et al. Journal of Inequalities and Applications 2014, 2014:483 Page 4 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/483

for every a = (a,a, . . .) ∈ l∞. According to time and circumstances, we use LIMn(an) in-
stead of LIM(a). A mean LIM on N is called a Banach limit if

LIMn(an) = LIMn(an+)

for every a = (a,a, . . .) ∈ l∞. Furthermore, we have the following results [, ].

Lemma . ([, Lemma ]) Let C be a nonempty, closed, and convex subset of a Banach
space E with uniformly Gâteaux differentiable norm. Let {xn} be a bounded sequence of E
and let LIMn be a mean LIM on N and z ∈ C. Then

LIMn ‖xn – z‖ =minLIMn ‖xn – y‖

if and only if

LIMn
〈
y – z, J(xn – z)

〉 ≤ 

for all y ∈ C.

Definition . A multi-valued mapping T : K → CB(K ) is said to satisfy Condition I if
there is a nondecreasing function f : [,∞) → [,∞) with f () = , f (r) >  for r ∈ (,∞)
such that

d(x,Tx)≥ f
(
d
(
x,F(T)

))
for all x ∈ K .

An example of mappings that satisfy Condition I can be found in reference [].

3 Strong convergence theorems
Theorem . Let E be a uniformly convex Banach space with a uniformly Gâteaux differ-
entiable norm,K be a nonempty closed convex subset of E, T : K → C(K ) be amulti-valued
nonexpansive mapping. Assume that F(T) = ∅ and T(y) = {y} for each y ∈ F(T). Let {xn} be
an implicit Mann type iteration defined by (.), where αn ∈ (, ) and limn→∞ αn = , then
the sequence {xn} converges strongly to a fixed point of T .

Proof Firstly, let ∀p ∈ F(T), ∀n ≥ , we show that limn→∞ ‖xn – p‖ exists and {xn} is
bounded. Using (.), we obtain

‖xn – p‖ = 〈
αnxn– + ( – αn)yn – p, j(xn – p)

〉
= ( – αn)

〈
yn – p, j(xn – p)

〉
+ αn

〈
xn– – p, j(xn – p)

〉
≤ ( – αn)‖yn – p‖ · ‖xn – p‖ + αn‖xn– – p‖ · ‖xn – p‖
≤ ( – αn)H(Txn,Tp) · ‖xn – p‖ + αn‖xn– – p‖ · ‖xn – p‖
≤ ( – αn)‖xn – p‖ + αn‖xn– – p‖ · ‖xn – p‖,

so

‖xn – p‖ ≤ ‖xn– – p‖ · ‖xn – p‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/483
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If ‖xn – p‖ = , then limn→∞ ‖xn – p‖ =  apparently holds.
If ‖xn – p‖ > , from (.) we have

‖xn – p‖ ≤ ‖xn– – p‖,

we find that {‖xn – p‖} is a decreasing sequence, so

lim
n→∞‖xn – p‖

exists. Hence {xn} is bounded, and so is {yn}.
Secondly, we show that limn→∞ ‖xn – yn‖ = .
It follows from (.) and from {xn} and yn ∈ Txn being bounded, that there exists a real

numberM >  such that

‖xn– – yn‖ ≤M,

‖xn – yn‖ = αn‖xn– – yn‖ ≤ αnM.

Since limn→∞ αn = , we have

‖xn – yn‖ → , as n→ ∞,

therefore

lim
n→∞‖xn – yn‖ = . (.)

We define φ : K → [,∞) by φ(x) := LIMn ‖xn – x‖ for each x ∈ K , since E is uniformly
convex (hence reflexive) and φ is continuous, convex, and φ(x) → ∞ as ‖x‖ → ∞, φ at-
tains its infimum over K (see []). Let

M :=
{
z ∈ K : φ(z) =min

x∈K φ(x)
}
.

ThenM is nonempty, bounded, closed, and convex (see [, Theorem ..]).
Next, we show thatM is singleton.
SinceM and {xn} are bounded, there exists R >  such thatM, {xn} ⊂ BR() for all n ≥ .

Then, by inequality (.) of [] for y, y ∈ M we have

∥∥∥∥xn – 

(y + y)

∥∥∥∥


≤ 

‖xn – y‖ + 


‖xn – y‖ – 


g
(‖y – y‖

)
.

If y = y, we have

r := φ

(


(y + y)

)
≤ 


φ(y) +



φ(y) –



g
(‖y – y‖

)
< r.

This is a contradiction. Therefore,M has a unique element.

http://www.journalofinequalitiesandapplications.com/content/2014/1/483
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Now we show that z ∈ M is the fixed point of T . Since T is compact valued, we have
some wn ∈ Tz for z ∈M such that

‖yn –wn‖ = d(yn,Tz) ≤H(Txn,Tz) ≤ ‖xn – z‖;

indeed, wn = PTz(yn), since Tz is a compact set, and we take limn→∞ wn = w ∈ Tz.
It follows from the above inequality that

LIMn ‖xn –w‖ ≤ LIMn ‖xn – yn‖ + LIMn ‖yn –wn‖ + LIMn ‖wn –w‖
= LIMn ‖yn –wn‖ ≤ LIMn ‖xn – z‖,

and hence w ∈M, it follows thatM is singleton, so w = z ∈ Tz.
Therefore, z ∈ F(T) and so Tz = {z} by the assumption, and F(T) is nonempty.
On the other hand, for v ∈ F(T), we have

〈
xn – yn, J(xn – v)

〉
=

〈
xn – v + v – yn, J(xn – v)

〉
= ‖xn – v‖ – 〈

yn – v, J(xn – v)
〉

≥ ‖xn – v‖ – ‖yn – v‖ · ‖xn – v‖
≥ ‖xn – v‖ –H(Txn,Tv) · ‖xn – v‖
≥ ‖xn – v‖ – ‖xn – v‖ · ‖xn – v‖ = .

It follows from (.) that

 ≤ 〈
xn – yn, J(xn – v)

〉
= αn

〈
xn– – yn, J(xn – v)

〉
(.)

and

〈
xn – xn–, J(xn – v)

〉
=

〈
xn – yn, J(xn – v)

〉
+

〈
yn – xn–, J(xn – v)

〉
≤ ‖xn – yn‖ · ‖xn – v‖ + 〈

yn – xn–, J(xn – v)
〉
. (.)

Hence, from (.), (.), and (.), we obtain

LIMn
〈
xn – xn–, J(xn – v)

〉
= , ∀v ∈ F(T). (.)

Finally, we show that LIMn〈xn– – v, J(xn – v)〉 ≤ . Let s ∈ (, ), then by Lemma  of []
we get

∥∥xn – z – s(xn– – z)
∥∥

≤ ‖xn – z‖ + 
〈
–s(xn– – z), j

(
xn – z – s(xn– – z)

)〉
= ‖xn – z‖ – s

〈
xn– – z, j(xn – z)

〉
– s

〈
xn– – z, j

(
xn – z – s(xn– – z)

)
– j(xn – z)

〉
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/483
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Let ε >  be arbitrary, then since J is norm-to-weak∗ uniformly continuous on bounded
subsets of E, there exists δ >  such that for all s ∈ (, δ), we have

LIMn
〈
xn– – z, j(xn – z)

〉

≤ 
s

[
LIMn ‖xn – z‖ – LIMn

∥∥xn – z – s(xn– – z)
∥∥] + ε < ε,

since z ∈M, and it is a minimizer of φ over K . Now, since ε is arbitrary this implies that

LIMn
〈
xn– – z, j(xn – z)

〉 ≤ . (.)

Combining inequalities (.) and (.) we get

LIMn
〈
xn – z, j(xn – z)

〉
= LIMn ‖xn – z‖ ≤ .

Therefore, there is a subsequence {xnj} of {xn} which converges strongly to z.
Since limn→∞ ‖xn – p‖ exists ∀p ∈ F(T), we get

lim
n→∞‖xn – z‖ = .

The proof is completed. �

Theorem . Let E be a uniformly convex Banach space with a uniformly Gâteaux differ-
entiable norm, K a nonempty, closed, and convex subset of E, T : K → CB(K ) be a multi-
valued nonexpansive mapping that satisfies Condition I, assume F(T) = ∅ and T(y) = {y}
for each y ∈ F(T). Let {xn} be an implicit Mann type iteration defined by (.), where
αn ∈ (, ) and limn→∞ αn = , then the sequence {xn} converges strongly to a fixed point
of T .

Proof It follows from the proof of Theorem . that

lim
n→∞d(xn,Txn) = .

Then Condition I implies that

lim
n→∞d

(
xn,F(T)

)
= .

The remainder of the proof is the same as Theorem . of []. �

Theorem . Let E be a uniformly convex Banach space with a uniformly Gâteaux differ-
entiable norm, K be a nonempty, closed, and convex subset of E, T : K → C(K ) be a multi-
valued nonexpansive mapping. Assume that F(T) = ∅ and T(y) = {y} for each y ∈ F(T). Let
{x′

n} be the modified implicit Mann type iteration defined by (.), where αn,βn ∈ (, ) and
limn→∞ αn

βn
= limn→∞ βn = .Then the sequence {x′

n} converges strongly to a fixed point of T .

Proof Firstly, let λn = βn
–αn

and zn = λnu + ( – λn)y′
n, then

x′
n = αnx′

n– + ( – αn)zn. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/483
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Let ∀p ∈ F(T), ∀n≥ ; we show that {x′
n} is bounded. Using (.), we obtain

∥∥x′
n – p

∥∥ =
〈
αnx′

n– + ( – αn)zn – p, j
(
x′
n – p

)〉
= ( – αn)

〈
zn – p, j

(
x′
n – p

)〉
+ αn

〈
x′
n– – p, j

(
x′
n – p

)〉
≤ ( – αn)

〈
λn(u – p), j

(
x′
n – p

)〉
+ ( – αn)

〈
( – λn)y′

n – p, j
(
x′
n – p

)〉
+ αn

∥∥x′
n– – p

∥∥ · ∥∥x′
n – p

∥∥
≤ ( – αn)

(
λn‖u – p‖ · ∥∥x′

n – p
∥∥ + ( – λn)H

(
Tx′

n,Tp
)∥∥x′

n – p
∥∥)

+ αn
∥∥x′

n– – p
∥∥ · ∥∥x′

n – p
∥∥

≤ βn‖u – p‖ · ∥∥x′
n – p

∥∥ + ( – αn – βn)
∥∥x′

n – p
∥∥

+ αn
∥∥x′

n– – p
∥∥ · ∥∥x′

n – p
∥∥,

so

∥∥x′
n – p

∥∥ ≤ βn

αn + βn
‖u – p‖ · ∥∥x′

n – p
∥∥ +

αn

αn + βn

∥∥x′
n– – p

∥∥ · ∥∥x′
n – p

∥∥. (.)

If ‖x′
n – p‖ = , then {x′

n} is apparently bounded.
If ‖x′

n – p‖ > , from (.) we have

∥∥x′
n – p

∥∥ ≤ βn

αn + βn
‖u – p‖ + αn

αn + βn

∥∥x′
n– – p

∥∥
≤max

{∥∥x′
n– – p

∥∥,‖u – p‖}
...

≤max
{∥∥x′

 – p
∥∥,‖u – p‖}.

Thus, {x′
n} is bounded.

Secondly, we show that limn→∞ ‖x′
n – y′

n‖ = .
It follows from (.) and since {x′

n} and y′
n ∈ Tx′

n are bounded, there exists a real number
M >  such that

∥∥x′
n– – zn

∥∥ ≤M,∥∥x′
n – zn

∥∥ = αn
∥∥x′

n– – zn
∥∥ ≤ αnM.

Since limn→∞ αn = , we have

∥∥x′
n – zn

∥∥ →  as n → ∞,

therefore

lim
n→∞

∥∥x′
n – zn

∥∥ = .

Since

∥∥x′
n – y′

n
∥∥ ≤ ∥∥x′

n – zn
∥∥ +

∥∥zn – y′
n
∥∥ =

∥∥x′
n – zn

∥∥ +
βn

 – αn

∥∥u – y′
n
∥∥,

http://www.journalofinequalitiesandapplications.com/content/2014/1/483
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then

lim
n→∞

∥∥x′
n – y′

n
∥∥ = . (.)

We define φ : K → [,∞) by φ(x) := LIMn ‖x′
n – x‖ for each x ∈ K . Since E uniformly

convex (hence reflexive) and φ is continuous, convex and φ(x)→ ∞ as ‖x‖ → ∞, φ attains
its infimum over K (see, e.g., []). Let

M :=
{
z ∈ K : φ(z) =min

x∈K φ(x)
}
.

ThenM is nonempty, and it is also bounded, closed, and convex (see [, Theorem ..]).
In the same way as the proof of Theorem ., we see that M is also singleton, and it

follows from (.) that z is the fixed point of T .
By Lemma ., we have

LIMn
〈
x – z, J

(
x′
n – z

)〉 ≤ ,

for all x ∈ K . In particular, we have

LIMn
〈
u – z, J

(
x′
n – z

)〉 ≤ . (.)

It follows from the proof of (.) of Theorem . that (.) also holds here. Thus

∥∥x′
n – z

∥∥

=
〈
βn(u – z) + αn

(
x′
n– – z

)
+ ( – αn – βn)

(
y′
n – z

)
, J

(
x′
n – z

)〉
≤ βn

〈
u – z, J

(
x′
n – z

)〉
+ αn

〈
x′
n– – z, J

(
x′
n – z

)〉
+ ( – αn – βn)

{
H

(
Tx′

n,Tz
) · ∥∥x′

n – z
∥∥}

≤ βn
〈
u – z, J

(
x′
n – z

)〉
+ αn

〈
x′
n– – z, J

(
x′
n – z

)〉
+ ( – αn – βn)

∥∥x′
n – z

∥∥.

Hence

∥∥x′
n – z

∥∥ ≤ βn

αn + βn

〈
u – z, J

(
x′
n – z

)〉
+

αn

αn + βn

〈
x′
n– – z, J

(
x′
n – z

)〉

≤ 〈
u – z, J

(
x′
n – z

)〉
+

αn

αn + βn

(〈
x′
n– – z, J

(
x′
n – z

)〉
–

〈
u – z, J

(
x′
n – z

)〉)

≤ 〈
u – z, J

(
x′
n – z

)〉
+

αn

αn + βn
M,

whereM is a constant such that |〈x′
n– – u, J(x′

n – z)〉| ≤ M. Thus

LIMn
∥∥x′

n – z
∥∥ ≤ LIMn

〈
u – z, J

(
x′
n – z

)〉
+ LIMn

αn
βn

αn
βn

+ 
M

≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/483
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Therefore, there is a subsequence {x′
nj} of {x′

n} which converges strongly to z. To complete
the proof, suppose there is another subsequence {x′

nk } of {x′
n} which converges strongly

to z̄. Then z̄ is a fixed point of T by (.) and z̄ ∈ K because K is closed. It then follows
from (.) that

〈
z̄ – z, J(z̄ – z)

〉
= ‖z̄ – z‖ ≤ .

This proves the strong convergence of {x′
n} to z ∈ F(T).

The proof is completed. �

4 Numerical examples
Now, we give two real numerical examples in which the conditions satisfy the ones of
Theorem . and Theorem ..

Example . Let E = R, K = [–, ], T(x) = 
x, ∀x ∈ E, which is nonexpansive, αn = 

n for
every n ∈N. Then {xn} is the sequence generated by

xn =

n
xn– +

(
 –


n

)


xn, (.)

and xn →  as n→ ∞, where  is the fixed point of T .

Example . Let E = R, K = [–, ], T(x) = 
x, ∀x ∈ E, which is nonexpansive, αn = 

n ,
βn = 

n for every n ∈N. Then {xn} is the sequence generated by

xn =

n

+


n
xn– +

(
 –


n

–

n

)


xn, (.)

and xn →  as n→ ∞, where  is the fixed point of T .

Remark . We can prove Example . and Example . by Theorem . and Theo-
rem ., respectively, and we show two numerical experiments (Figure  and Figure )
which can explain that the sequence {xn} strongly converges to .

Remark . From the above numerical examples, we can see that the convergence results
in this paper are important. The main reason is that the convergence of the two iteration

Figure 1 x(1) = 1, iteration steps n = 100.

http://www.journalofinequalitiesandapplications.com/content/2014/1/483
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Figure 2 x(1) = 0.2, iteration steps n = 1,000.

schemes in this paper can easily be implemented by the software of Matlab ., so they
can be applied for numerical calculations in practical problems.
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