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Abstract
m-d-Accretive mappings, which are totally different fromm-accretive mappings in
non-Hilbertian Banach spaces, belong to another type of nonlinear mappings with
practical backgrounds. The purpose of this paper is to present some new iterative
schemes by means of convex combination methods to approximate the common
zeros of finitely manym-d-accretive mappings. Some strong and weak convergence
theorems are obtained in a real uniformly smooth and uniformly convex Banach
space by using the techniques of the Lyapunov functional and retraction. The
restrictions are weaker than in the previous corresponding works. Moreover, an
example ofm-d-accretive mapping is exemplified, from which we can see the
connections betweenm-d-accretive mappings and the nonlinear elliptic equations.
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1 Introduction and preliminaries
Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual space of E. We use
‘→’ and ‘⇀’ to denote strong and weak convergence, respectively. We denote the value of
f ∈ E∗ at x ∈ E by 〈x, f 〉.
The normalized duality mapping J from E to E∗ is defined by

Jx :=
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, x ∈ E.

We call J weakly sequentially continuous if {xn} is sequence in E which converges weakly
to x it follows that {Jxn} converges in weak∗ to Jx.
A mapping T : D(T) = E → E∗ is said to be demi-continuous [] on E if Txn ⇀ Tx,

as n → ∞, for any sequence {xn} strongly convergent to x in E. A mapping T : D(T) =
E → E∗ is said to be hemi-continuous [] on E if w-limt→T(x + ty) = Tx, for any
x, y ∈ E. A mapping T : E → E is said to be non-expansive if ‖Tx – Ty‖ ≤ ‖x – y‖, for
∀x, y ∈ E.
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The Lyapunov functional ϕ : E × E → R+ is defined as follows []:

ϕ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖,

for ∀x, y ∈ E.
It is obvious from the definition of ϕ that

(‖x‖ – ‖y‖) ≤ ϕ(x, y)≤ (‖x‖ + ‖y‖), (.)

for all x, y ∈ E. We also know that

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 〈x – z, Jz – Jy〉, (.)

for each x, y, z ∈ E; see [, ].
We use Fix(S) to denote the set of fixed points of a mapping S : E → E. That is, Fix(S) :=

{x ∈ E : Sx = x}. Amapping S : E → E is said to be generalized non-expansive [] if Fix(S) �=
∅ and ϕ(Sx,p)≤ ϕ(x,p), for ∀x ∈ E and p ∈ Fix(S).
Let C be a nonempty closed subset of E and let Q be a mapping of E onto C. Then Q

is said to be sunny [] if Q(Q(x) + t(x – Q(x))) = Q(x), for all x ∈ E and t ≥ . A mapping
Q : E → C is said to be a retraction [] if Q(z) = z for every z ∈ C. If E is a smooth and
strictly convex Banach space, then a sunny generalized non-expansive retraction of E onto
C is uniquely decided, which is denoted by RC .
Let I denote the identity operator on E. A mapping A :D(A) ⊂ E → E is said to be accre-

tive if 〈Ax – Ay, J(x – y)〉 ≥ , for ∀x, y ∈ D(A) and it is called m-accretive if R(I + λA) = E,
for ∀λ > .
If A is accretive, we can define, for each r > , a single-valued mapping JAr : R(I + rA) →

D(A) by JAr = (I + rA)–, which is called the resolvent of A. And, JAr is a non-expansive
mapping []. In the process of constructing iterative schemes to approximate zeros of an
accretive mapping A, the non-expansive property of JAr plays an important role.
A mapping A : D(A) ⊂ E → E is said to be d-accretive [] if 〈Ax – Ay, Jx – Jy〉 ≥ , for

∀x, y ∈ D(A). And it is called m-d-accretive if R(I + λA) = E, for ∀λ > . However, the re-
solvent of anm-d-accretive mapping is not a non-expansive mapping.
An operator B ⊂ E × E∗ is said to be monotone if 〈x – x, y – y〉 ≥ , for ∀yi ∈ Bxi,

i = , . A monotone operator B is said to be maximal monotone if R(J + λB) = E∗, for
∀λ > . An operator B ⊂ E × E∗ is said to be strictly monotone if 〈x – x, y – y〉 > , for
∀x �= x, ∀yi ∈ Bxi, i = , .
It is clear that in the frame of Hilbert spaces, (m-)accretive mappings, (m-)d-accretive

mappings and (maximal) monotone operators are the same. But in the frame of non-
Hilbertian Banach spaces, they belong to different classes of important nonlinear oper-
ators, which have practical backgrounds. During the past  years or so, a large number
of researches have been done on the topics of constructing iterative schemes to approx-
imate the zeros of m-accretive mappings and maximal monotone operators. However,
rarely related work on d-accretive mappings can be found.
As we know, in , Alber and Reich [] presented the following iterative schemes

for the d-accretive mapping T in a real uniformly smooth and uniformly convex Banach
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space:

xn+ = xn – αnTxn (.)

and

xn+ = xn – αn
Txn

‖Txn‖ , n≥ . (.)

They proved that the iterative sequences {xn} generated by (.) and (.) converge
weakly to the zero point of T under the assumptions that T is uniformly bounded and
demi-continuous.
In ,Guan [] presented the following projectivemethod for them-d-accretivemap-

ping A in a real uniformly smooth and uniformly convex Banach space:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x ∈D(A),
yn = JArnxn,
Cn = {v ∈D(A) : ϕ(v, yn)≤ ϕ(v,xn)},
Qn = {v ∈D(A) : 〈xn – v, Jx – Jxn〉 ≥ },
xn+ =�Cn∩Qnx, n≥ ,

(.)

where JArn = (I + rnA)–, and �Cn∩Qn is the generalized projection from D(A) onto Cn ∩Qn.
It was shown that the iterative sequence {xn} generated by (.) converges strongly to the
zero point of A under the assumptions that A is demi-continuous, the normalized duality
mapping J is weakly sequentially continuous, and JArn satisfies

ϕ
(
p, JArnx

) ≤ ϕ(p,x), (.)

for ∀x ∈ E and p ∈ A–. The restrictions are extremely strong and it is hardly for us to
find such anm-d-accretive mapping which both is demi-continuous and satisfies (.).
The so-called block iterative scheme for solving the problemof image recovery proposed

by Aharoni and Censor [] inspired us. In a finite-dimensional spaceH , the block iterative
sequence {xn} is generated in the following way: x = x ∈H and

xn+ =
m∑
i=

ωn,i
(
αn,ixn + ( – αn,i)Pixn

)
, (.)

where Pi is a non-expansive retraction fromH onto Ci, and {Ci}mi= is a family of nonempty
closed and convex subsets of H . {ωn,i} ⊂ [, ],

∑m
i= ωn,i = , and {αn,i} ⊂ (–, ), for i =

, , . . . ,m and n≥ .
In [], Kikkawa and Takahashi applied the block iterative method to approximate the

common fixed point of finite non-expansive mappings {Ti}mi= in Banach spaces in the fol-
lowing way and obtained the weak convergence theorems: x = x ∈ C, and

xn+ =
m∑
i=

ωn,i
(
αn,ixn + ( – αn,i)Tixn

)
, (.)

where {ωn,i} ⊂ [, ],
∑m

i= ωn,i = , and {αn,i} ⊂ [, ], for i = , , . . . ,m and n≥ .
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In this paper, we shall borrow the idea of block iterative method which highlights the
convex combination techniques. Our main work can be divided into three parts. In Sec-
tion , we shall construct iterative schemes by convex combination techniques for ap-
proximating common zeros of m-d-accretive mappings. Some weak convergence theo-
rems are obtained in a Banach space. In Section , we shall construct iterative schemes by
convex combination and retraction techniques for approximating common zeros ofm-d-
accretive mappings. Some strong convergence theorems are obtained in a Banach space.
In Section , we shall present a nonlinear elliptic equation from which we can define an
m-d-accretive mapping. Our main contributions lie in the following aspects:

(i) The restrictions are weaker. The semi-continuity of the d-accretive mapping A and
the inequality of (.) are no longer needed.

(ii) The Lyapunov functional is employed in the process of estimating the convergence
of the iterative sequence. This is mainly because the resolvent of a d-accretive
mapping is not non-expansive.

(iii) The connection between a nonlinear elliptic equation and anm-d-accretive
mapping is set up, from which we cannot only find a good example of
m-d-accretive mapping but also see the iterative construction of the solution of the
nonlinear elliptic equation.

In order to prove our convergence theorems, we also need the following lemmas.

Lemma . [, , ] The duality mapping J : E → E∗ has the following properties:
(i) If E is a real reflexive and smooth Banach space, then J : E → E∗ is single-valued.
(ii) If E is reflexive, then J is a surjection.
(iii) If E is a real uniformly smooth and uniformly smooth Banach space, then

J– : E∗ → E is also a duality mapping.Moreover, J and J– are uniformly
continuous on each bounded subset of E and E∗, respectively.

(iv) E is strictly convex if and only if J is strictly monotone.

Lemma . [] Let E be a real smooth and uniformly convex Banach space, B ⊂ E × E∗

be a maximal monotone operator, then B– is a closed and convex subset of E and the
graph of B, G(B) is demi-closed in the following sense: ∀{xn} ⊂ D(B) with xn ⇀ x in E, and
∀yn ∈ Bxn with yn → y in E∗ it follows that x ∈D(B) and y ∈ Bx.

Lemma . [] Let E be a real reflexive, strictly convex, and smooth Banach space, let C
be a nonempty closed subset of E, and let RC : E → C be a sunny generalized non-expansive
retraction. Then, for ∀u ∈ C and x ∈ E, ϕ(x,RCx) + ϕ(RCx,u) ≤ ϕ(x,u).

Lemma . [] Let E be a real smooth and uniformly convex Banach space, and let {xn}
and {yn} be two sequences in E. If either {xn} or {yn} is bounded and ϕ(xn, yn) → , as
n→ ∞, then xn – yn → , as n→ ∞.

Lemma. [] Let {an} and {bn} be two sequences of nonnegative real numbers and an+ ≤
an + bn, for ∀n≥ . If

∑∞
n= bn < +∞, then limn→∞ an exists.

2 Weak convergence theorems
Theorem . Let E be a real uniformly smooth and uniformly convex Banach space. Let
Ai : E → E be a finite family of m-d-accretive mappings, {ωn,i}, {ηn,i} ⊂ (, ], {αn,i}, {βn,i} ⊂
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[, ), {rn,i}, {sn,i} ⊂ (, +∞), for i = , , . . . ,m.
∑m

i= ωn,i =  and
∑m

i= ηn,i = . Let D :=⋂m
i=A–

i  �= ∅. Suppose that the normalized duality mapping J : E → E∗ is weakly sequen-
tially continuous. Let {xn} be generated by the following iterative algorithm:⎧⎪⎨⎪⎩

x ∈ E,
yn =

∑m
i= ωn,i[αn,ixn + ( – αn,i)(I + rn,iAi)–xn],

xn+ =
∑m

i= ηn,i[βn,ixn + ( – βn,i)(I + sn,iAi)–yn], n ≥ .
(.)

Suppose the following conditions are satisfied:
(i) lim supn→∞ αn,i < , lim supn→∞ βn,i < , for i = , , . . . ,m;
(ii) lim infn→∞ ηn,i > , lim infn→∞ ωn,i > , for i = , , . . . ,m;
(iii) infn≥ rn,i > , infn≥ sn,i > , for i = , , . . . ,m.
Then {xn} converges weakly to a point v ∈D.

Proof For i = , , . . . ,m, let JAi
rn,i = (I + rn,iAi)– and JAi

sn,i = (I + sn,iAi)–.
We split the proof into the following six steps.
Step . For p ∈D, JAi

rn,i and JAi
sn,i satisfy the following two inequalities, respectively:

ϕ
(
xn, JAi

rn,i xn
)
+ ϕ

(
JAi
rn,i xn,p

) ≤ ϕ(xn,p), (.)

ϕ
(
yn, JAi

sn,i yn
)
+ ϕ

(
JAi
sn,i yn,p

) ≤ ϕ(yn,p). (.)

In fact, using (.), we know that for ∀p ∈D,

ϕ(xn,p) = ϕ
(
xn, JAi

rn,i xn
)
+ ϕ

(
JAi
rn,i xn,p

)
+ 

〈
xn – JAi

rn,i xn, JJ
Ai
rn,i xn – Jp

〉
. (.)

Since Ai is d-accretive and
xn–J

Ai
rn,i xn
rn,i

= AiJ
Ai
rn,i xn,

〈xn – JAi
rn,i xn

rn,i
, JJAi

rn,i xn – Jp
〉
≥ .

From (.) we know that (.) is true. So is (.).
Step . {xn} is bounded.
∀p ∈ D, using (.) and (.), we have

ϕ(xn+,p) ≤
m∑
i=

ηn,i
[
βn,iϕ(xn,p) + ( – βn,i)ϕ

(
JAi
sn,i yn,p

)]
≤

m∑
i=

ηn,i
[
βn,iϕ(xn,p) + ( – βn,i)ϕ(yn,p)

]
≤

m∑
i=

ηn,iβn,iϕ(xn,p)

+
m∑
i=

ηn,i( – βn,i)
m∑
i=

ωn,i
[
αn,iϕ(xn,p) + ( – αn,i)ϕ

(
JAi
rn,i xn,p

)]
≤ ϕ(xn,p).

Lemma . implies that limn→∞ ϕ(xn,p) exists. Then (.) ensures that {xn} is bounded.
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Step . AiJ– ⊂ E∗ × E is maximal monotone, for each i, ≤ i ≤m.
Since Ai is d-accretive, then ∀x, y ∈ E∗,

〈
x – y,AiJ–x –AiJ–y

〉
=

〈
Ai

(
J–x

)
–Ai

(
J–y

)
, J

(
J–x

)
– J

(
J–y

)〉 ≥ .

Therefore, AiJ– is monotone, for each i, ≤ i≤m.
Since R(I + λAi) = E, λ > , then ∀y ∈ E, there exists x ∈ E satisfying x + λAix = y, λ > .

Using Lemma .(ii), there exists x∗ ∈ E∗ such that J–x∗ = x. Thus J–x∗ + λAiJ–x∗ = y,
which implies that R(J– + λAiJ–) = E, λ > . Thus AiJ– is maximal monotone, for each i,
≤ i≤m.
Step . (AiJ–)– �= ∅, for each i, ≤ i≤m.
Since D �= ∅, then there exists x ∈ E such that Aix = , where i = , , . . . ,m. Using

Lemma .(ii) again, there exists x∗ ∈ E∗ such that J–x∗ = x. Thus AiJ–x∗ = , for each
i, ≤ i≤m. That is, x∗ ∈ (AiJ–)–, for each i, ≤ i≤m.
Step .ω(xn) ⊂D, whereω(xn) denotes the set of all of theweak limit points of theweakly

convergent subsequences of {xn}.
Since {xn} is bounded, there exists a subsequence of {xn}, for simplicity, we still denote

it by {xn} such that xn ⇀ x, as n→ ∞.
For ∀p ∈D, using (.) and (.), we have

ϕ(xn+,p) ≤
m∑
i=

ηn,i
[
βn,iϕ(xn,p) + ( – βn,i)ϕ(yn,p)

]
≤

m∑
i=

ηn,iβn,iϕ(xn,p)

+
m∑
i=

ηn,i( – βn,i)
m∑
i=

ωn,i
[
αn,iϕ(xn,p) + ( – αn,i)ϕ

(
JAi
rn,i xn,p

)]
≤

m∑
i=

ηn,iβn,iϕ(xn,p) +
m∑
i=

ηn,i( – βn,i)
m∑
i=

ωn,iαn,iϕ(xn,p)

+
m∑
i=

ηn,i( – βn,i)
m∑
i=

ωn,i( – αn,i)
[
ϕ(xn,p) – ϕ

(
xn, JAi

rn,i xn
)]

= ϕ(xn,p) –
m∑
i=

ηn,i( – βn,i)
m∑
i=

ωn,i( – αn,i)ϕ
(
xn, JAi

rn,i xn
)
,

which implies that

m∑
i=

ηn,i( – βn,i)
m∑
i=

ωn,i( – αn,i)ϕ
(
xn, JAi

rn,i xn
) ≤ ϕ(xn,p) – ϕ(xn+,p).

Using the assumptions and the result of Step , we know that ϕ(xn, JAi
rn,i xn) → , as n →

∞, for i = , , . . . ,m. Then Lemma . ensures that xn – JAi
rn,i xn → , as n → ∞, for i =

, , . . . ,m.
Let ui = Aiv, since Ai is d-accretive, then〈

ui –
xn – JAi

rn,i xn
rn,i

, Jv – JJAi
rn,i xn

〉
≥ .
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Since both {xn} and {JAi
rn,i xn} are bounded, then letting n → ∞ and using Lemma .(iii),

we have

〈ui, Jv – Jx〉 ≥ ,

i = , , . . . ,m. That is, 〈AiJ–(Jv), Jv– Jx〉 ≥ , for i = , , . . . ,m. From Step  and Lemma .,
we know that Jx ∈ (AiJ–)–, which implies that x ∈ A–

i . And then x ∈ D.
Step . xn ⇀ v, as n → ∞, where v is the unique element in D.
From Steps  and , we know that there exists a subsequence {xni} of {xn} such that xni ⇀

v ∈ D, as i→ ∞. If there exists another subsequence {xnj} of {xn} such that xnj ⇀ v ∈D,
as j → ∞, then from Step , we know that

lim
n→∞

[
ϕ(xn, v) – ϕ(xn, v)

]
= lim

i→∞
[
ϕ(xni , v) – ϕ(xni , v)

]
= lim

i→∞
[‖v‖ – ‖v‖ + 〈xni , Jv – Jv〉

]
= ‖v‖ – ‖v‖ + 〈v, Jv – Jv〉. (.)

Similarly,

lim
n→∞

[
ϕ(xn, v) – ϕ(xn, v)

]
= lim

j→∞
[
ϕ(xnj , v) – ϕ(xnj , v)

]
= lim

j→∞
[‖v‖ – ‖v‖ + 〈xnj , Jv – Jv〉

]
= ‖v‖ – ‖v‖ + 〈v, Jv – Jv〉. (.)

From (.) and (.), we have 〈v – v, Jv – Jv〉 = , which implies that v = v since J is
strictly monotone.
This completes the proof. �

Remark . If E reduces to the Hilbert space H , then (.) becomes the iterative scheme
for approximating common zeros ofm-accretive mappings.

Remark . The iterative scheme (.) can be regarded as two-step block iterative
scheme.

Remark . If m = , then (.) becomes to the following one approximating the zero
point of anm-d-accretive mapping A:⎧⎪⎨⎪⎩

x ∈ E,
yn = αnxn + ( – αn)(I + rnA)–xn,
xn+ = βnxn + ( – βn)(I + snA)–yn, n≥ .

(.)

If, moreover, αn ≡ , βn ≡ , then (.) becomes the so-called double-backward iterative
scheme for them-d-accretive mapping A:⎧⎪⎨⎪⎩

x ∈ E,
yn = (I + rnA)–xn,
xn+ = (I + snA)–yn, n≥ .

(.)
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3 Strong convergence theorems
Theorem . Let E be a real uniformly smooth and uniformly convex Banach space. Let
Ai : E → E be a finite family of m-d-accretive mappings, {ωn,i}, {ηn,i} ⊂ (, ], {αn,i}, {βn,i} ⊂
[, ), {rn,i}, {sn,i} ⊂ (, +∞), for i = , , . . . ,m.

∑m
i= ωn,i =  and

∑m
i= ηn,i = . Let D :=⋂m

i=A–
i  �= ∅. Suppose the normalized duality mapping J : E → E∗ is weakly sequentially

continuous. Let {xn} be generated by the iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E,
un =

∑m
i= ωn,i[αn,ixn + ( – αn,i)(I + rn,iAi)–xn],

vn =
∑m

i= ηn,i[βn,ixn + ( – βn,i)(I + sn,iAi)–un],
H = E,
Hn+ = {z ∈Hn : ϕ(un, z) ≤ ϕ(xn, z)},
xn+ = RHn+x, n≥ .

(.)

Suppose the following conditions are satisfied:
(i) lim supn→∞ αn,i < , lim supn→∞ βn,i < , for i = , , . . . ,m;
(ii) lim infn→∞ ηn,i > , lim infn→∞ ωn,i > , for i = , , . . . ,m;
(iii) infn≥ rn,i > , infn≥ sn,i > , for i = , , . . . ,m.
Then {xn} converges strongly to p = RDx, where RD is the sunny generalized non-

expansive retraction from E onto D, as n→ ∞.

Proof We split the proof into six steps.
Step . {xn} is well defined.
Noticing that

ϕ(un, z) ≤ ϕ(xn, z) ⇐⇒ ‖un‖ – ‖xn‖ ≤ 〈un – xn, Jz〉,

then from Lemma .(iii), we can easily know that Hn (n≥ ) is a closed subset of E.
For ∀p ∈D, using (.), we know that

ϕ(un,p) ≤
m∑
i=

ωn,i
[
αn,iϕ(xn,p) + ( – αn,i)ϕ

(
JAi
rn,i xn,p

)]
≤

m∑
i=

ωn,i
[
αn,iϕ(xn,p) + ( – αn,i)ϕ(xn,p)

]
= ϕ(xn,p),

which implies that p ∈Hn. Thus ∅ �=D ⊂Hn, for n≥ .
SinceHn is a nonempty closed subset of E, there exists a unique sunny generalized non-

expansive retraction from E onto Hn, which is denoted by RHn . Therefore, {xn} is well
defined.
Step . {xn} is bounded.
Using Lemma ., ϕ(xn+,p) ≤ ϕ(x,p), ∀p ∈ D ⊂ Hn+. Thus {ϕ(xn,p)} is bounded and

then (.) ensures that {xn} is bounded.
Step .ω(xn) ⊂D, whereω(xn) denotes the set of all of theweak limit points of theweakly

convergent subsequences of {xn}.
Since {xn} is bounded, there exists a subsequence of {xn}, for simplicity, we still denote

it by {xn} such that xn ⇀ x, as n→ ∞.
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Since xn+ ∈Hn+ ⊂Hn, using Lemma ., we have

ϕ(xn,xn+) + ϕ(x,xn) ≤ ϕ(x,xn+),

which implies that limn→∞ ϕ(x,xn) exists. Thus ϕ(xn,xn+) → . Lemma . implies that
xn – xn+ → , as n→ ∞.
Since xn+ ∈ Hn+ ⊂Hn, then ϕ(un,xn+) ≤ ϕ(xn,xn+)→ , which implies that xn –un →

, as n → ∞.
∀p ∈ D, using (.) again, we have

ϕ(un,p) ≤
m∑
i=

ωn,i
[
αn,iϕ(xn,p) + ( – αn,i)ϕ

(
JAi
rn,i xn,p

)]
≤

m∑
i=

ωn,iαn,iϕ(xn,p) +
m∑
i=

ωn,i( – αn,i)
[
ϕ(xn,p) – ϕ

(
xn, JAi

rn,i xn
)]

= ϕ(xn,p) –
m∑
i=

ωn,i( – αn,i)ϕ
(
xn, JAi

rn,i xn
)
.

Then

m∑
i=

ωn,i( – αn,i)ϕ
(
xn, JAi

rn,i xn
)

≤ ϕ(xn,p) – ϕ(un,p) = ‖xn‖ – ‖un‖ – 〈xn – un, Jp〉 → ,

as n→ ∞. Lemma . implies that xn – JAi
rn,i xn → , as n→ ∞, where i = , , . . . ,m.

The remaining part is similar to that of Step  in Theorem ., then we have ω(xn) ⊂D.
Step . {xn} is a Cauchy sequence.
If, on the contrary, there exist two subsequences {nk} and {mk} of {n} such that ‖xnk+mk –

xnk‖ ≥ ε, ∀k ≥ .
Since limn→∞ ϕ(x,xn) exists, using Lemma . again,

ϕ(xnk ,xnk+mk ) ≤ ϕ(x,xnk+mk ) – ϕ(x,xnk )

= ϕ(x,xnk+mk ) – lim
k→∞

ϕ(x,xnk+mk )

+ lim
k→∞

ϕ(x,xnk ) – ϕ(x,xnk ) → ,

as k → ∞. Lemma . implies that limk→∞ ‖xnk+mk – xnk‖ = , which makes a contradic-
tion. Thus {xn} is a Cauchy sequence.
Step . D is a closed subset of E.
Let zn ∈ D with zn → z, as n → ∞. Then Aizn = , for i = , , . . . ,m. In view of

Lemma .(ii), there exists z∗
n ∈ E∗ such that zn = J–z∗

n. Using Lemma .(iii), z∗
n → Jz, as

n → ∞. Since AiJ–z∗
n = , z∗

n → Jz and AiJ– is maximal monotone, Lemma . ensures
that Jz ∈ (AiJ–)–. Thus, z ∈ A–

i , for i = , , . . . ,m. And then z ∈ D. Therefore, D is
closed subset of E, which ensures there exists a unique sunny generalized non-expansive
retraction RD from E onto D.
Step . xn → q = RDx, as n→ ∞.
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Since {xn} is a Cauchy sequence, there exists q ∈ E such that xn → q, as n → ∞. From
Step , q ∈D.
Now, we prove that q = RDx.
Using Lemma ., we have the following two inequalities:

ϕ(x,RDx) + ϕ(RDx,q)≤ ϕ(x,q) (.)

and

ϕ(x,xn) + ϕ(xn,RDx)≤ ϕ(x,RDx). (.)

Letting n→ +∞, from (.), we know that

ϕ(x,q) + ϕ(q,RDx) ≤ ϕ(x,RDx). (.)

From (.) and (.),  ≤ ϕ(RDx,q) ≤ –ϕ(q,RDx) ≤ . Thus ϕ(RDx,q) = . So in
view of Lemma ., q = RDx.
This completes the proof. �

Remark . Combining the techniques of convex combination and the retraction, the
strong convergence of iterative scheme (.) is obtained.

Remark . It is obvious that the restrictions in Theorems . and . are weaker.

4 Connection between nonlinear mappings and nonlinear elliptic equations
Wehavementioned that in aHilbert space,m-d-accretivemappings andm-accretivemap-
pings are the same, while in a non-Hilbertian Banach space, they are different. So, there are
many examples of m-d-accretive mappings in Hilbert spaces. Can we find one mapping
that is (m-)d-accretive but not (m-)accretive?
In Section ., we shall review the work done in [], where an m-accretive mapping is

constructed for discussing the existence of solution of one kind nonlinear elliptic equa-
tions.
In Section ., we shall construct an m-d-accretive mapping based on the same non-

linear elliptic equation presented in Section ., from which we can see that it is quite
different from them-accretive mapping defined in Section ..

4.1 m-Accretive mappings and nonlinear elliptic equations
The following nonlinear elliptic boundary value problem is extensively studied in [, ]:

{
–div(α(gradu)) + |u|p–u + g(x,u(x)) = f (x), a.e. in �,
–〈ϑ ,α(gradu)〉 ∈ βx(u(x)), a.e. on 
.

(.)

In (.),� is a bounded conical domain of a Euclidean spaceRN with its boundary
 ∈ C

(see []). f ∈ Ls(�) is a given function, ϑ is the exterior normal derivative of 
, g : � ×
R → R is a given function satisfying Carathéodory’s conditions such that the mapping
u ∈ Ls(�) → g(x,u(x)) ∈ Ls(�) is defined and there exists a function T(x) ∈ Ls(�) such
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that g(x, t)t ≥ , for |t| ≥ T(x) and x ∈ �. βx is the subdifferential of a proper, convex, and
semi-lower-continuous function. α : RN → RN is a monotone and continuous function,
and there exist positive constants k, k, and k such that, for ∀ξ , ξ ′ ∈ RN , the following
conditions are satisfied:

(i) |α(ξ )| ≤ k|ξ |p–;
(ii) |α(ξ ) – α(ξ ′)| ≤ k||ξ |p–ξ – |ξ ′|p–ξ ′|;
(iii) 〈〈α(ξ ), ξ〉〉 ≥ k|ξ |p,

where 〈〈·, ·〉〉 denotes the inner product in RN .
In [], they first present the following definitions.

Definition . [] Define the mapping Bp :W ,p(�) → (W ,p(�))∗ by

(v,Bpu) =
∫

�

〈〈
α(gradu),grad v

〉〉
dx +

∫
�

∣∣u(x)∣∣p–u(x)v(x)dx,
for any u, v ∈W ,p(�).

Definition . [] Define themapping�p :W ,p(�) → R by�p(u) =
∫



ϕx(u|
(x))d
(x),
for any u ∈W ,p(�).

Definition . [] Define a mapping A : L(�)→ L(�) as follows:

D(A) =
{
u ∈ L(�) | there exists an f ∈ L(�) such that f ∈ Bpu + ∂�p(u)

}
.

For u ∈ D(A), Au = {f ∈ L(�) | f ∈ Bpu + ∂�p(u)}.

Definition . [] Define a mapping As : Ls(�) → Ls(�) as follows:
(i) If s ≥ , then

D(As) =
{
u ∈ Ls(�) | there exists an f ∈ Ls(�) such that f ∈ Bpu + ∂�p(u)

}
.

For u ∈D(As), we set Asu = {f ∈ Ls(�) | f ∈ Bpu + ∂�p(u)}.
(ii) If  < s < , then define As : Ls(�)→ Ls(�) as the Ls-closure of A : L(�) → L(�)

defined in Definition ..

Then they get the following important result in [].

Proposition . [] Both A and As are m-accretive mapping.

Later, by using the perturbations on ranges ofm-accretive mappings, the sufficient con-
dition on the existence of solution of (.) is discussed.

Theorem . [] If f ∈ Ls(�) ( N
N+ < p ≤ s < +∞) satisfies the following condition:

∫



β–(x)d
(x) +
∫

�

g–(x)dx <
∫

�

f (x)dx <
∫




β+(x)d
(x) +
∫

�

g+(x)dx,

then (.) has a solution in Ls(�).
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The meaning of β–(x), β+(x), g–(x), and g+(x) can be found in the following two defini-
tions.

Definition . [, ] For t ∈ R and x ∈ 
, let β
x (t) ∈ βx(t) be the element with least

absolute value if βx(t) �= ∅ and β
x (t) = ±∞, where t >  or < , respectively, in the case

βx(t) = ∅. Finally, let β±(x) = limt→±∞ β
x (t) (in the extended sense) for x ∈ 
. Then β±(x)

define measurable functions on 
.

Definition . [, ] Define g+(x) = lim inft→+∞ g(x, t) and g–(x) = lim supt→–∞ g(x, t).

4.2 Examples ofm-d-accretive mappings
Now, based on nonlinear elliptic problem (.), we are ready to give the example of m-d-
accretive mapping in the sequel.

Lemma . [] Let E be a Banach space, if B : E → E∗ is an everywhere defined, mono-
tone, and hemi-continuous mapping, then B is maximal monotone.

Definition . Let  < p ≤  and 
p +


p′ = .

Define the mapping B :W ,p′ (�) → (W ,p′ (�))∗ by

〈v,Bu〉 =
∫

�

〈〈
α
(
grad

(|u|p′– sgnu‖u‖–p′
p′

))
,grad

(|v|p′– sgn v‖v‖–p′
p′

)〉〉
dx,

for any u, v ∈W ,p′ (�).

Proposition . B :W ,p′ (�)→ (W ,p′ (�))∗ ( < p≤ ) is maximal monotone.

Proof We split the proof into four steps.
Step . B is everywhere defined.
In fact, for u, v ∈W ,p′ (�), from the property (i) of α, we have

∣∣〈v,Bu〉∣∣ ≤ k
∫

�

∣∣grad(|u|p′– sgnu‖u‖–p′
p′

)∣∣p–∣∣grad(|v|p′– sgn v‖v‖–p′
p′

)∣∣dx
= k

(
p′ – 

)p‖u‖(p–)(–p′)
p′ ‖v‖–p′

p′

∫
�

|gradu|p–|u|–p|grad v||v|p′– dx

≤ k
(
p′ – 

)p‖u‖(p–)(–p′)
p′ ‖v‖–p′

p′

(∫
�

|gradu|p|u|p′–p dx
) 

p′

×
(∫

�

|grad v|p|v|p′–p dx
) 

p

≤ k
(
p′ – 

)p‖u‖(p–)(–p′)
p′ ‖v‖–p′

p′

(∫
�

|gradu|p′
dx

) p
(p′)

×
(∫

�

|u|p′
dx

) p′–p
(p′)

(∫
�

|grad v|p′
dx

) 
p′

(∫
�

|v|p′
dx

) p′–p
p′p

≤ const.‖u‖p–,p′ ‖v‖,p′ .

Thus B is everywhere defined.
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Step . B is monotone.
Since α is monotone, then, for u, v ∈ D(B),

〈u – v,Bu – Bv〉

=
∫

�

〈〈
α
(
grad

(|u|p′– sgnu‖u‖–p′
p′

))
– α

(
grad

(|v|p′– sgn v‖v‖–p′
p′

))
,

grad
(|u|p′– sgnu‖u‖–p′

p′
)
– grad

(|v|p′– sgn v‖v‖–p′
p′

)〉〉
dx≥ ,

which implies that B is monotone.
Step . B is hemi-continuous.
To show that B is hemi-continuous. It suffices to prove that for u, v,w ∈ W ,p′ (�) and

t ∈ [, ], 〈w,B(u + tv) – Bu〉 as t → .
In fact, since α is continuous,

∣∣〈w,B(u + tv) – Bu
〉∣∣

≤
∫

�

∣∣α(
grad

(|u + tv|p′– sgn(u + tv)‖u + tv‖–p′
p′

))
– α

(
grad

(|u|p′– sgnu‖u‖–p′
p′

))∣∣
× ∣∣grad(|w|p′– sgnw‖w‖–p′

p′
)∣∣dx→ ,

as t → .
Step . B is maximal monotone.
Lemma . implies that B is maximal monotone.
This completes the proof. �

Remark . [] There exists a maximal monotone extension of B from Lp′ (�) to Lp(�),
which is denoted by B̃.

Definition . For  < p ≤ , the normalized duality mapping J : Lp′ (�) → Lp(�) is de-
fined by

Ju = |u|p′– sgnu‖u‖–p′
p′ ,

for u ∈ Lp′ (�).
Define the mapping A : Lp(�) → Lp(�) ( < p≤ ) as follows:

Au = B̃J–u, u ∈ Lp(�).

Proposition . The mapping A : Lp(�)→ Lp(�) ( < p ≤ ) is m-d-accretive.

Proof Since B̃ is monotone, for ∀u, v ∈D(A),

〈
Au –Av, J–u – J–v

〉
=

〈̃
BJ–u – B̃J–v, J–u – J–v

〉 ≥ .

Thus A is d-accretive.
In view of Remark ., B̃ is maximal monotone, then R(J + λB̃) = Lp(�), for ∀λ > .
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For ∀f ∈ Lp(�), there exists u ∈ Lp′ (�) such that Ju + λB̃u = f . Using Lemma . again,
there exists u∗ ∈ Lp(�) such that u = J–u∗. Then u∗ + λB̃J–u∗ = f . Thus f ∈ R(I + λA) and
then R(I + λA) = Lp(�), for λ > .
Thus A ism-d-accretive.
This completes the proof. �

Proposition . A– = {u ∈ Lp(�) : u(x)≡ const.}.

Proof It is obvious that {u ∈ Lp(�) : u(x)≡ const.} ⊂ A–.
On the other hand, if u(x) ∈ A–, then Au(x) ≡ . Let u∗ ∈ Lp′ (�) be such that u = Ju∗.

From the property (iii) of α, we have

 =
〈
u∗,AJu∗〉 ≥ k

∫
�

∣∣grad(|u∗|p′– sgnu∗∥∥u∗∥∥–p′
p′

)∣∣p dx = k
∫

�

∣∣grad(Ju∗)∣∣p dx,
which implies that u = Ju∗ ≡ const.
Thus A– ⊂ {u ∈ Lp(�) : u(x)≡ const.}.
This completes the proof. �

Remark . From Propositions . and ., we know that the restriction on the m-d-
accretive mapping in Theorem . or . that A– �= ∅ is valid.

Remark . If (.) is reduced to the following:

–div
(
α(gradu)

)
= , a.e. in �, (.)

then it is not difficult to see that u ∈ A– is exactly the solution of (.), from which
we cannot only see the connections between the zeros of an m-d-accretive mapping and
the nonlinear equation but also see that the work on designing the iterative schemes to
approximate zeros of nonlinear mappings is meaningful.
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