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Abstract
This paper investigates a class of four-point boundary value problems of fractional
q-difference equations with p-Laplacian operator Dβ

q (ϕp(Dα
q u(t))) = f (t,u(t)), t ∈ (0, 1),

u(0) = 0, u(1) = au(ξ ), Dα
q u(0) = 0, and Dα

q u(1) = bDα
q u(η), where D

α
q and Dβ

q are the
fractional q-derivative of the Riemann-Liouville type, p-Laplacian operator is defined
as ϕp(s) = |s|p–2s, p > 1, and f (t,u) may be singular at t = 0, 1 or u = 0. By applying the
upper and lower solutions method associated with the Schauder fixed point theorem,
some sufficient conditions for the existence of at least one positive solution are
established. Furthermore, two examples are presented to illustrate the main results.
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1 Introduction
Recently, fractional differential equations with p-Laplacian operator have gained its pop-
ularity and importance due to its distinguished applications in numerous diverse fields of
science and engineering, such as viscoelasticity mechanics, non-Newtonian mechanics,
electrochemistry, fluid mechanics, combustion theory, and material science. There have
appeared some results for the existence of solutions or positive solutions of boundary
value problems for fractional differential equations with p-Laplacian operator; see [–]
and the references therein. For example, under different conditions, Wang et al. [] and
Ren and Chen [] established the existence of positive solutions to four-point boundary
value problems for nonlinear fractional differential equations with p-Laplacian operator
by using the upper and lower solutions method and fixed point theorems, respectively.
Since Al-Salam [] and Agarwal [] proposed the fractional q-difference calculus, new

developments in this theory of fractional q-difference calculus have been made due to the
explosion in research within the fractional differential calculus setting. For example, some
researcher obtained q-analogs of the integral and differential fractional operators prop-
erties such as the q-Laplace transform, the q-Taylor formula, the Mittag-Leffler function
[–], and so on.
Recently, the theory of boundary value problems for nonlinear fractional q-difference

equations has been addressed extensively by several researchers. There have been some
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papers dealing with the existence and multiplicity of solutions or positive solutions for
boundary value problems involving nonlinear fractional q-difference equations by the use
of some well-known fixed point theorems and the upper and lower solutions method.
For some recent developments on the subject, see [–] and the references therein.
El-Shahed and Al-Askar [] studied the existence of multiple positive solutions to the
nonlinear q-fractional boundary value problems by using the Guo-Krasnoselskii fixed
point theorem in a cone. Under different conditions, Graef and Kong [, ] inves-
tigated the existence of positive solutions for the boundary value problem with frac-
tional q-derivatives in terms of different ranges of λ, respectively. Zhao et al. [] showed
some existence results of positive solutions to nonlocal q-integral boundary value prob-
lem of nonlinear fractional q-derivatives equation using the generalized Banach contrac-
tion principle, the monotone iterative method, and the Krasnoselskii fixed point theo-
rem. Ahmad et al. [] considered the existence of solutions for the nonlinear fractional
q-difference equation with nonlocal boundary conditions by applying some well-known
tools of fixed point theory such as theBanach contraction principle, theKrasnoselskii fixed
point theorem, and the Leray-Schauder nonlinear alternative. By applying the nonlinear
alternative of Leray-Schauder type and Krasnoselskii fixed point theorems, the author []
established sufficient conditions for the existence of positive solutions for nonlinear semi-
positone fractional q-difference system with coupled integral boundary conditions. Re-
lying on the standard tools of fixed point theory, Agarwal et al. [] and Ahmad et al.
[] discussed the existence and uniqueness of solutions for a new class of sequential
q-fractional integrodifferential equations with q-antiperiodic boundary conditions and
nonlocal four-point boundary conditions, respectively.
In [], Aktuǧlu and Özarslan dealt with the following Caputo q-fractional boundary

value problem involving the p-Laplacian operator:

Dq
(
ϕp

(cDα
qx(t)

))
= f

(
t,x(t)

)
, t ∈ (, ),

Dk
qx() = , for k = , , . . . ,n – , x() = ax(), Dqx() = aDqx(),

where a,a �= ,  < α ∈ R, and f ∈ C([, ] × R,R). Under some conditions, the authors
obtained the existence and uniqueness of the solution for the above boundary value prob-
lem by using the Banach contraction mapping principle.
In [], Miao and Liang studied the following three-point boundary value problem with

p-Laplacian operator:

Dγ
q
(
φp

(
Dα

qu(t)
))

+ f
(
t,u(t)

)
= ,  < t < ,  < α < ,

u() = (Dqu)() = , (Dqu)() = , Dγ
+u(t)|t= = ,

where  < βηα– < ,  < q < . The authors proved the existence and uniqueness of a pos-
itive and nondecreasing solution for the boundary value problems by using a fixed point
theorem in partially ordered sets.
In [], the author investigated the following fractional q-difference boundary value

problem with p-Laplacian operator:

Dβ
q
(
ϕp

(
Dα

qu(t)
))

= f
(
t,u(t)

)
,  < t < ,

u() = u() = , Dα
qu() =Dα

qu() = ,
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where  < α,β ≤ . The existence results for the above boundary value problem were ob-
tained by using the upper and lower solutions method associated with the Schauder fixed
point theorem.
In this paper, motivated greatly by the above mentioned works, we consider the follow-

ing fractional q-difference boundary value problem with p-Laplacian operator:

Dβ
q
(
ϕp

(
Dα

qu(t)
))

= f
(
t,u(t)

)
, t ∈ (, ),

u() = , u() = au(ξ ), Dα
qu() = , Dα

qu() = bDα
qu(η),

(.)

whereDα
q ,D

β
q are the fractional q-derivative of the Riemann-Liouville type with  < α,β ≤

,  ≤ a,b ≤ ,  < ξ ,η < , ϕp(s) = |s|p–s, p > , (φp)– = φr , (/p) + (/r) = , and f (t,u) :
(, )× (, +∞)→ [,∞) is continuous andmay be singular at t = ,  or u = . By applying
the upper and lower solutions method associated with the Schauder fixed point theorem,
the existence results of at least one positive solution for the above fractional q-difference
boundary value problem with p-Laplacian operator are established. This work improves
essentially the results of []. At the end of this paper, we will give two examples to show
the effectiveness of the main results.

2 Preliminaries
For the convenience of the reader, we present some necessary definitions and lemmas of
fractional q-calculus theory to facilitate the analysis of problem (.). These details can be
found in the recent literature; see [] and references therein.
Let q ∈ (, ) and define

[a]q =
qa – 
q – 

, a ∈R.

The q-analog of the Pochhammer symbol (the q-shifted factorial) is defined by

(a;q) = , (a;q)n =
n–∏
k=

(
a – bqk

)
, n ∈ N∪ {∞}.

The q-analog of the power (a – b)n with n ∈N = {, , , . . .} is

(a – b)() = , (a – b)(n) =
n–∏
k=

(
a – bqk

)
, n ∈N,a,b ∈R.

The following relation between them holds:

(a – b)(n) = an(b/a;q)n, a �= .

Their natural extensions to the reals are

(a;q)γ =
(a;q)∞

(aqγ ;q)∞
and (a – b)(γ ) = aγ (b/a;q)∞

(qγ b/a;q)∞
, γ ∈R.
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Clearly, (a – b)(γ ) = aγ (b/a;q)γ , a �= . Note that, if b =  then a(α) = aα . The q-gamma
function is defined by


q(x) = ( – q)(x–)( – q)–x, x ∈R \ {,–,–, . . .},

and satisfies 
q(x + ) = [x]q
q(x).
The q-derivative of a function f is here defined by

(Dqf )(x) =
f (x) – f (qx)
( – q)x

, (Dqf )() = lim
x→

(Dqf )(x),

and q-derivatives of higher order by

(
D

qf
)
(x) = f (x) and

(
Dn

qf
)
(x) =Dq

(
Dn–

q f
)
(x), n ∈N.

The q-integral of a function f defined in the interval [,b] is given by

(Iqf )(x) =
∫ x


f (t)dqt = x( – q)

∞∑
n=

f
(
xqn

)
qn, x ∈ [,b].

If a ∈ [,b] and f is defined in the interval [,b], its integral from a to b is defined by

∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt.

Similarly as done for derivatives, an operator Inq can be defined, namely,

(
Iq f

)
(x) = f (x) and

(
Inq f

)
(x) = Iq

(
In–q f

)
(x), n ∈N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf )(x) = f (x),

and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f ().

Basic properties of the two operators can be found in the book []. We now point out
three formulas that will be used later (iDq denotes the derivative with respect to variable i):

[
a(t – s)

](α) = aα(t – s)(α), tDq(t – s)(α) = [α]q(t – s)(α–),(
x
Dq

∫ x


f (x, t)dqt

)
(x) =

∫ x


xDqf (x, t)dqt + f (qx,x).

Denote that if α >  and a≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α) [].
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Definition . ([]) Let α ≥  and f be function defined on [, ]. The fractional
q-integral of the Riemann-Liouville type is Iq f (x) = f (x) and

(
Iαq f

)
(x) =



q(α)

∫ x


(x – qt)(α–)f (t)dqt, α > ,x ∈ [, ].

Definition . ([]) The fractional q-derivative of the Riemann-Liouville type of order
α ≥  is defined by D

qf (x) = f (x) and

(
Dα

q f
)
(x) =

(
Dm

q I
m–α
q f

)
(x), α > ,

wherem is the smallest integer greater than or equal to α.

Lemma. ([]) Let α,β ≥  and f be a function defined on [, ].Then the next formulas
hold:
() (Iβq Iαq f )(x) = Iα+β

q f (x),
() (Dα

q Iαq f )(x) = f (x).

Lemma . ([]) Let α >  and p be a positive integer. Then the following equality holds:

(
Iαq D

p
qf

)
(x) =

(
Dp

qI
α
q f

)
(x) –

p–∑
k=

xα–p+k


q(α + k – p + )
(
Dk

qf
)
().

Lemma . Let y ∈ C[, ],  < α ≤ ,  < ξ < , and  ≤ a ≤ . Then the unique solution
of the following linear fractional q-difference boundary value problem:

Dα
qu(t) + y(t) = , t ∈ (, ),

u() = , u() = au(ξ ),
(.)

is given by

u(t) =
∫ 


G(t,qs)y(s)dqs, (.)

where

G(t, s) = g(t, s) +
ag(ξ , s)tα–

 – aξα– , (.)

g(t, s) =



q(α)

{
(t( – s))(α–) – (t – s)(α–), ≤ s≤ t ≤ ,
(t( – s))(α–),  ≤ t ≤ s≤ .

Proof By applying Lemma ., we may reduce (.) to an equivalent integral equation

u(t) = –Iαq y(t) + ctα– + ctα–, c, c ∈R. (.)

From u() =  and (.), we have c = . Consequently the general solution of (.) is

u(t) = –Iαq y(t) + ctα– = –
∫ t



(t – qs)(α–)


q(α)
y(s)dqs + ctα–. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/481
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By (.), one has

u() = –
∫ 



( – qs)(α–)


q(α)
y(s)dqs + c, u(ξ ) = –

∫ ξ



(ξ – qs)(α–)


q(α)
y(s)dqs + cξα–.

And from u() = au(ξ ), then we have

c =
∫ 



( – qs)(α–)

( – aξα–)
q(α)
y(s)dqs –

∫ ξ



a(ξ – qs)(α–)

( – aξα–)
q(α)
y(s)dqs.

So, the unique solution of problem (.) is

u(t) = –
∫ t



(t – qs)(α–)


q(α)
y(s)dqs +

∫ 



tα–( – qs)(α–)

( – aξα–)
q(α)
y(s)dqs

–
∫ ξ



atα–(ξ – qs)(α–)

( – aξα–)
q(α)
y(s)dqs

= –
∫ t



(t – qs)(α–)


q(α)
y(s)dqs +

∫ 



tα–( – qs)(α–)


q(α)
y(s)dqs

+
∫ 



aξα–tα–( – qs)(α–)

( – aξα–)
q(α)
y(s)dqs –

∫ ξ



atα–(ξ – qs)(α–)

( – aξα–)
q(α)
y(s)dqs

=
∫ 


G(t,qs)y(s)dqs, (.)

where G(t, s) is defined in (.). The proof is completed. �

Lemma . Let y ∈ C[, ],  < α,β ≤ ,  < ξ ,η < , and  ≤ a,b ≤ . Then the following
fractional q-difference boundary value problem with p-Laplacian operator:

Dβ
q
(
ϕp

(
Dα

qu(t)
))

= y(t), t ∈ (, ),

u() = , u() = au(ξ ), Dα
qu() = , Dα

qu() = bDα
qu(η),

(.)

has unique solution given by

u(t) =
∫ 


G(t,qs)ϕr

(∫ 


H(s,qτ )y(τ )dqτ

)
dqs, (.)

where b = bp–, G(t, s) is defined by (.) and

H(t, s) = h(t, s) +
bh(ξ , s)tα–

 – bξα– , (.)

h(t, s) =



q(β)

{
(t( – s))(β–) – (t – s)(β–), ≤ s≤ t ≤ ,
(t( – s))(β–),  ≤ t ≤ s ≤ .

Proof By applying Lemma ., we may reduce (.) to an equivalent integral equation,

ϕp
(
Dα

qu(t)
)
= Iβq y(t) + ctβ– + ctβ–, c, c ∈R. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/481
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From Dα
qu() =  and (.), we have c = . Consequently the general solution of (.) is

ϕp
(
Dα

qu(t)
)
= Iβq y(t) + ctβ– =

∫ t



(t – qs)(β–)


q(β)
y(s)dqs + ctβ–. (.)

By (.), one has

ϕp
(
Dα

qu()
)
=

∫ 



( – qs)(β–)


q(β)
y(s)dqs + c,

ϕp
(
Dα

qu(η)
)
=

∫ η



(η – qs)(β–)


q(β)
y(s)dqs + cηβ–.

From Dα
qu() = bDα

qu(η), we have

c =
∫ 



( – qs)(β–)

( – bηβ–)
q(β)
y(s)dqs –

∫ η



b(η – qs)(β–)

( – bηβ–)
q(β)
y(s)dqs,

where b = bp–. Similar to Lemma ., we have

ϕp
(
Dα

qu(t)
)
= –

∫ 


H(t,qs)y(s)dqs.

Consequently, the fractional boundary value problem (.) is equivalent to the following
problem:

Dα
qu(t) + ϕr

(∫ 


H(t,qs)y(s)dqs

)
= , t ∈ (, ),

u() = , u() = au(ξ ).

Lemma . implies that the fractional boundary value problem (.) has a unique solution

u(t) =
∫ 


G(t,qs)ϕr

(∫ 


H(s,qτ )y(τ )dqτ

)
dqs.

The proof is completed. �

Lemma. Let  < α,β ≤ ,  < ξ ,η < , and ≤ a,b ≤ .Then functions G(t, s) andH(t, s)
defined by (.) and (.), respectively, are continuous on [, ]× [, ] satisfying
(a) G(t,qs) ≥ , H(t,qs)≥ , for all t, s ∈ [, ];
(b) for all t, s ∈ [, ], σ(qs)tα– ≤G(t,qs) ≤ σ(qs)tα–, where

σ(s) =
ag(ξ , s)
 – aξα– , σ(s) =

( – s)(α–)


q(α)
+

ag(ξ , s)
 – aξα– .

Proof The proof is obvious, so we omit the proof. �

From Lemmas . and ., it is easy to obtain the following lemma.

http://www.journalofinequalitiesandapplications.com/content/2014/1/481
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Lemma . Let u(t) ∈ C([, ],R) satisfies u() = , u() = ϕp(b)u(η), and Dβ
q u(t) ≥  for

any t ∈ (, ), then u(t)≤ , for t ∈ [, ].

Let E = {u : u,ϕp(Dα
qu) ∈ C[, ]}. Now we introduce the following definitions about the

upper and lower solutions of the fractional q-difference boundary value problem (.).

Definition . A function φ(t) is called a lower solution of the fractional q-difference
boundary value problem (.), if φ(t) ∈ E and φ(t) satisfies

Dβ
q
(
ϕp

(
Dα

qφ(t)
)) ≤ f

(
t,φ(t)

)
, t ∈ (, ),

φ() ≤ , φ() ≤ aφ(ξ ), Dα
qφ() ≥ , Dα

qφ()≥ bDα
qφ(η).

Definition . A function ψ(t) is called an upper solution of the fractional q-difference
boundary value problem (.), if ψ(t) ∈ E and ψ(t) satisfies

Dβ
q
(
ϕp

(
Dα

qψ(t)
)) ≥ f

(
t,ψ(t)

)
, t ∈ (, ),

ψ()≤ , ψ()≤ aψ(ξ ), Dα
qψ()≥ , Dα

qψ()≥ bDα
qψ(η).

3 Main results
For the sake of simplicity, we make the following assumptions throughout this paper.

(H) f (t,u) ∈ C[(, )× (, +∞), [, +∞)] and f (t,u) is decreasing in u.
(H) Set e(t) = tα–. For any constant ρ > , f (t,ρ) �≡ , and

 <
∫ 


σ(qs)ϕr

(∫ 


H(s,qτ )f

(
τ ,ρe(τ )

)
dqτ

)
dqs < +∞.

We define P ={u ∈ C[, ]: there exist two positive constants  < lu < Lu such that lue(t) ≤
u(t) ≤ Lue(t), t ∈ [, ]}. Obviously, e(t) ∈ P. Therefore, P is not empty. For any u ∈ P, define
an operator T by

(Tu)(t) =
∫ 


G(t,qs)ϕr

(∫ 


H(s,qτ )f

(
τ ,u(τ )

)
dqτ

)
dqs, t ∈ [, ].

Theorem . Suppose that conditions (H)-(H) are satisfied, then the boundary value
problem (.) has at least one positive solution u, and there exist two positive constants
 < λ <  < λ such that λe(t) ≤ u(t) ≤ λe(t), t ∈ [, ].

Proof We will divide our proof into four steps.
Step . We show that T is well defined on P and T(P) ⊂ P, and T is decreasing in u.
In fact, for any u ∈ P, by the definition of P, there exist two positive constants  < lu <

 < Lu such that lue(t) ≤ u(t) ≤ Lue(t) for any t ∈ [, ]. It follows from Lemma . and
conditions (H)-(H) that

(Tu)(t) =
∫ 


G(t,qs)ϕr

(∫ 


H(s,qτ )f

(
τ ,u(τ )

)
dqτ

)
dqs

≤ e(t)
∫ 


σ(qs)ϕr

(∫ 


H(s,qτ )f

(
τ , lue(τ )

)
dqτ

)
dqs < +∞. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/481
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On the other hand, it follows from Lemma . that

(Tu)(t) =
∫ 


G(t,qs)ϕr

(∫ 


H(s,qτ )f

(
τ ,u(τ )

)
dqτ

)
dqs

≥ e(t)
∫ 


σ(qs)ϕr

(∫ 


H(s,qτ )f

(
τ ,Lue(τ )

)
dqτ

)
dqs. (.)

Take

l′u =min

{
,

∫ 


σ(qs)ϕr

(∫ 


H(s,qτ )f

(
τ ,Lue(τ )

)
dqτ

)
dqs

}
,

L′
u =max

{
,

∫ 


σ(qs)ϕr

(∫ 


H(s,qτ )f

(
τ , lue(τ )

)
dqτ

)
dqs

}
,

then by (.) and (.), l′ue(t) ≤ (Tu)(t) ≤ L′
ue(t), which implies that T is well defined and

T(P) ⊂ P. It follows from (H) that the operator T is decreasing in u. By direct computa-
tions, we can state that

Dβ
q
(
ϕp

(
Dα

q (Tu)(t)
))

= f
(
t,Tu(t)

)
,  < t < ,

(Tu)() = , (Tu)() = a(Tu)(ξ ), (.)

Dα
q (Tu)() = , Dα

q (Tu)() = bDα
q (Tu)(η).

Step . We focus on lower and upper solutions of the fractional q-difference boundary
value problem (.). Let

m(t) =min
{
e(t), (Te)(t)

}
, n(t) =max

{
e(t), (Te)(t)

}
, (.)

then, if e(t) = (Te)(t), the conclusion of Theorem . holds. If e(t) �= (Te)(t), clearly,
m(t),n(t) ∈ P, and

m(t)≤ e(t) ≤ n(t). (.)

We will prove that the functions φ(t) = Tn(t), ψ(t) = Tm(t) are a couple of lower and
upper solutions of the fractional q-difference boundary value problem (.), respectively.
From (H), we know that T is nonincreasing relative to u. Thus it follows from (.) and

(.) that

φ(t) = Tn(t) ≤ Tm(t) = ψ(t),

Tn(t) ≤ Te(t) ≤ n(t), Tm(t) ≥ Te(t)≥m(t),
(.)

and φ(t),ψ(t) ∈ P. It follows from (.)-(.) that

Dβ
q
(
ϕp

(
Dα

qφ(t)
))
– f

(
t,φ(t)

) ≤Dβ
q
(
ϕp

(
Dα

q (Tn)(t)
))
– f

(
t,n(t)

)
= ,

φ() = , φ() = aφ(ξ ), Dα
qφ() = , Dα

qφ() = bDα
qφ(η),

Dβ
q
(
ϕp

(
Dα

qψ(t)
))
– f

(
t,ψ(t)

) ≥Dβ
q
(
ϕp

(
Dα

q (Tm)(t)
))
– f

(
t,m(t)

)
= ,

ψ() = , ψ() = aψ(ξ ), Dα
qψ() = , Dα

qψ() = bDα
qψ(η),

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/481
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that is, φ(t) andψ(t) are a couple of lower andupper solutions of the fractional q-difference
boundary value problem (.), respectively.
Step . We will show that the fractional q-difference boundary value problem

Dβ
q
(
ϕp

(
Dα

qu(t)
))

= g
(
t,u(t)

)
,  < t < ,

u() = , u() = au(ξ ), Dα
qu() = , Dα

qu() = bDα
qu(η),

(.)

has at least one positive solution, where

g
(
t,u(t)

)
=

⎧⎪⎨
⎪⎩
f (t,φ(t)), if u(t) < φ(t),
f (t,u(t)), if φ(t) ≤ u(t) ≤ ψ(t),
f (t,ψ(t)), if u(t) > ψ(t).

(.)

It follows from (H) and (.) that g(t,u) : [, ] × R → R is continuous. To see this, we
consider the operator A : C[, ]→ C[, ] defined as follows:

Au(t) =
∫ 


G(t,qs)ϕr

(∫ 


H(s,qτ )g

(
τ ,u(τ )

)
dqτ

)
dqs,

where G(t, s) is defined as (.), H(t, s) is defined as (.). It is clear that Au ≥ , for all
u ∈ P, and a fixed point of the operator A is a solution of the boundary value problem
(.). Noting that φ(t) ∈ P, there exists a positive constant  < lφ <  such that φ(t)≥ lφe(t),
t ∈ [, ]. It follows from Lemma ., (.), and (H) that

Au(t) =
∫ 


G(t,qs)ϕr

(∫ 


H(s,qτ )g

(
τ ,u(τ )

)
dqτ

)
dqs

≤ e(t)
∫ 


σ(qs)ϕr

(∫ 


H(s,qτ )g

(
τ ,u(τ )

)
dqτ

)
dqs

≤ e(t)
∫ 


σ(qs)ϕr

(∫ 


H(s,qτ )g

(
τ , lφe(τ )

)
dqτ

)
dqs < +∞,

which implies that the operator A is uniformly bounded.
On the other hand, sinceG(t, s) is continuous on [, ]× [, ], it is uniformly continuous

on [, ]× [, ]. So, for fixed s ∈ [, ] and for any ε > , there exists a constant δ > , such
that any t, t ∈ [, ] and |t – t| < δ,

∣∣G(t,qs) –G(t,qs)
∣∣ < ε∫ 

 ϕr(
∫ 
 H(s,qτ )g(τ , lφe(τ ))dqτ )dqs

.

Then, for all u(t) ∈ C[, ], we have

∣∣Au(t) –Au(t)
∣∣

=
∫ 



∣∣G(t,qs) –G(t,qs)
∣∣ϕr

(∫ 


H(s,qτ )g

(
τ ,u(τ )

)
dqτ

)
dqs

<
∫ 



ε∫ 
 ϕr(

∫ 
 H(s,qτ )g(τ , lφe(τ ))dqτ )dqs

ϕr

(∫ 


H(s,qτ )f

(
τ ,ϕ(τ )

)
dqτ

)
dqs

=
ε∫ 

 ϕr(
∫ 
 H(s,qτ )g(τ , lφe(τ ))dqτ )dqs

∫ 


ϕr

(∫ 


H(s,qτ )f

(
τ ,ϕ(τ )

)
dqτ

)
dqs = ε,
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that is to say, A is equicontinuous. Thus, from the Arzela-Ascoli theorem, we know that
A is a compact operator, by using the Schauder fixed point theorem, the operator A has
a fixed point u such that u = Au; i.e., the fractional q-difference boundary value problem
(.) has a positive solution.
Step . We will prove that the boundary value problem (.) has at least one positive

solution. Suppose that u(t) is a solution of (.), we only need to prove that φ(t) ≤ u(t) ≤
ψ(t), t ∈ [, ]. Now we claim that φ(t) ≤ u(t) ≤ ψ(t), t ∈ [, ]. In fact, since u is fixed
point of A and (.), we get

u() = , u() = au(ξ ), Dα
qu() = , Dα

qu() = bDα
qu(η),

ψ() = , ψ() = aψ(ξ ), Dα
qψ() = , Dα

qψ() = bDα
qψ(η).

(.)

Suppose by contradiction that u(t) ≥ ψ(t). According to the definition of g , one verifies
that

Dβ
q
(
ϕp

(
Dα

qu(t)
))

= g
(
t,u(t)

)
= f

(
t,ψ(t)

)
,  < t < . (.)

On the other hand, since ψ is an upper solution to (.), we obviously have

Dβ
q
(
ϕp

(
Dα

qψ(t)
)) ≥ f

(
t,ψ(t)

)
,  < t < . (.)

Let z(t) = ϕp(Dα
qψ(t)) – ϕp(Dα

qu(t)),  < t < . From (.) and (.), we can get

Dβ
q z(t) =Dβ

q
(
ϕp

(
Dα

qψ(t)
))
–Dβ

q
(
ϕp

(
Dα

qu(t)
)) ≥ f

(
t,ψ(t)

)
– f

(
t,ψ(t)

)
= ,

z() = , z() = ϕp(b)z(η).

Thus, by Lemma ., we have z(t) ≤ , t ∈ [, ], which implies that

ϕp
(
Dα

qψ(t)
) ≤ ϕp

(
Dα

qu(t)
)
, t ∈ [, ].

Since ϕp is monotone increasing, we obtain Dα
qψ(t)≤Dα

qu(t), i.e., Dα
q (ψ –u)(t) ≤ . Com-

bining Lemma ., we have (ψ –u)(t) ≥ . Therefore,ψ(t)≥ u(t), t ∈ [, ], a contradiction
to the assumption that u(t) > ψ(t). Hence, u(t) > ψ(t) is impossible.
Similarly, suppose by contradiction that u(t) ≤ φ(t). According to the definition of g , one

verifies that

g
(
t,u(t)

)
= f

(
t,φ(t)

)
,  < t < .

Consequently, we obtain

Dβ
q
(
ϕp

(
Dα

qu(t)
))

= f
(
t,φ(t)

)
,  < t < . (.)

On the other hand, since φ is an upper solution to (.), we obviously have

Dβ
q
(
ϕp

(
Dα

qφ(t)
)) ≤ f

(
t,φ(t)

)
,  < t < . (.)
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Let z(t) = ϕp(Dα
qu(t)) – ϕp(Dα

qφ(t)),  < t < . From (.) and (.), we get

Dβ
q z(t) =Dβ

q
(
ϕp

(
Dα

qu(t)
))
–Dβ

q
(
ϕp

(
Dα

qϕ(t)
)) ≥ f

(
t,φ(t)

)
– f

(
t,φ(t)

)
= ,

z() = , z() = ϕp(b)z(η).

Thus, by Lemma ., we have z(t) ≤ , t ∈ [, ], which implies that

ϕp
(
Dα

qu(t)
) ≤ ϕp

(
Dα

qϕ(t)
)
, t ∈ [, ].

Since ϕp is monotone increasing, we obtain Dα
qu(t) ≤ Dα

qφ(t), i.e., Dα
q (u – φ)(t) ≤ . Com-

bining Lemma ., we have (u–φ)(t) ≥ . Therefore, u(t) ≥ φ(t), t ∈ [, ], a contradiction
to the assumption that u(t) < φ(t). Hence, u(t) < φ(t) is impossible.
Consequently, we have φ(t) ≤ u(t) ≤ ψ(t), t ∈ [, ], that is, u(t) is a positive solution of

the boundary value problem (.). Furthermore, φ(t),ψ(t) ∈ P implies that there exist two
positive constants  < λ <  < λ such that λe(t) ≤ u(t) ≤ λe(t), t ∈ [, ]. Thus, we have
finished the proof of Theorem .. �

Theorem . If f (t,u) ∈ C([, ]× [, +∞), [, +∞)) is decreasing in u and f (t,ρ) �≡  for
any ρ > , then the boundary value problem (.) has at least one positive solution u, and
there exist two positive constants  < λ <  < λ such that λe(t)≤ u(t) ≤ λe(t), t ∈ [, ].

Proof The proof is similar to Theorem ., we omit it here. �

4 Two examples
Example . Consider the p-Laplacian fractional q-difference boundary value problem

D/
/

(
ϕ

(
D/

/u(t)
))

=
( + √t)√

tu(t)
,  < t < ,

u() = , u() =


u
(



)
, (.)

D/
/u() = , D/

/u() =


D/

/u
(



)
.

It is easy to check that (H) holds. For any ρ > , f (t,ρ) �≡ , we have

 <
∫ 


σ(qs)ϕ

(∫ 


H(s,qτ )f

(
τ ,ρe(τ )

)
dqτ

)
dqs

≤
∫ 


σ(qs)ϕ

(∫ 


H(,qτ )f

(
τ ,ρe(τ )

)
dqτ

)
dqs

=
√
ρ

∫ 


σ(qs)dqs

∫ 


H(,qτ )

( + √τ )
τ / dqτ < +∞,

which implies that (H) holds. Theorem . implies that the boundary value problem (.)
has at least one positive solution.
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Example . Consider the p-Laplacian fractional q-difference boundary value problem

D/
/

(
ϕp

(
D/

/u(t)
))

= t +
√

u(t) + 
,  < t < ,

u() = , u() =


u
(



)
, (.)

D/
/u() = , D/

/u() =


D/

/u
(



)
.

It is not difficult to check that f (t,u) : [, ] × [, +∞) → [, +∞) is continuous and de-
creasing in u and f (t,ρ) �≡  for any ρ > . Theorem . implies that the boundary value
problem (.) has at least one positive solution.
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