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presented the ACQA algorithm and the RACQA algorithm to solve SEP. However, the
two algorithms are weakly convergent. It is therefore the aim of this paper to
construct new algorithms for SEP so that strong convergence is guaranteed. Firstly,
we define the concept of the minimal norm solution of SEP. Using Tychonov
regularization, we introduce two methods to get such a minimal norm solution. And
then, we introduce two algorithms which are viewed as modifications of Moudafi’s
ACQA, RACQA algorithms and KM-CQ algorithm, respectively, and converge strongly
to a solution of SEP. More importantly, the modifications of Moudafi's ACQA, RACQA
algorithms converge strongly to the minimal norm solution of SEP. At last, we
introduce some other algorithms which converge strongly to a solution of SEP.
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1 Introduction and preliminaries

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H; and H, respec-
tively, and let A : H; — H; be abounded linear operator. The split feasibility problem (SEFP)
is to find a point x satisfying the property

xeC, Ax € Q

if such a point exists. SFP was first introduced by Censor and Elfving [1], which has at-
tracted many authors’ attention due to its application in signal processing [1]. Various
algorithms have been invented to solve it (see [2-7]).

Recently, Moudafi [8] proposed a new split equality problem (SEP): Let Hy, H,, H3 be real
Hilbert spaces, C € H;, Q € H, be two nonempty closed convex sets, and let A : H; — Hs,
B:H, — Hj be two bounded linear operators. Find x € C, y € Q satisfying

Ax = By. (1.1)
When B = I, SEP reduces to the well-known SFP. In the paper [8], Moudafi gave the fol-

lowing iterative algorithms for solving the split equality problem.

©2014 Shi et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

L]
@ Sprlnger tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2014/1/478
mailto:chenrd@tjpu.edu.cn
http://creativecommons.org/licenses/by/2.0

Shi et al. Journal of Inequalities and Applications 2014, 2014:478 Page 2 of 19
http://www.journalofinequalitiesandapplications.com/content/2014/1/478

Alternating CQ-algorithm (ACQA):

Xre1 = Pe(wr — yeA* (Axy — By));
Vi = Polyk + viB* (Axis1 — Byk)).

Relaxed alternating CQ-algorithm (RACQA):

Xre1 = Poy (0 — y A" (Axy — Byr));
Y1 = PQk()’k + BB (Axin _Byk))'

However, the above algorithms converge weakly to a solution of SEP.

It is therefore the aim of this paper to construct a new algorithm for SEP so that strong
convergence is guaranteed. The paper is organized as follows. In Section 2, we define the
concept of the minimal norm solution of SEP (1.1). Using Tychonov regularization, we ob-
tain a net of solutions for some minimization problem approximating such minimal norm
solutions (see Theorem 2.4). In Section 3, we introduce an algorithm which is viewed as a
modification of Moudafi’s ACQA and RACQA algorithms; and we prove the strong con-
vergence of the algorithm, more importantly, its limit is the minimum-norm solution of
SEP (1.1) (see Theorem 3.2). In Section 4, we introduce a KM-CQ-like iterative algorithm
which converges strongly to a solution of SEP (1.1) (see Theorem 4.3). In Section 5, we
introduce some other iterative algorithms which converge strongly to a solution of SEP
(1.1).

Throughout the rest of this paper, I denotes the identity operator on a Hilbert space H,
Fix(T) is the set of the fixed points of an operator T and Vf is the gradient of the functional
f+H — R. An operator T on a Hilbert space H is nonexpansive if, for each x and y in H,
ITx — Ty|| < |lx —y||. T is said to be averaged if there exists 0 < « <1 and a nonexpansive
operator N such that 7 = (1 — ) + aN.

Let Ps denote the projection from H onto a nonempty closed convex subset S of H; that

is,
Ps(w) = r;leig llx —wil.

It is well known that Pg(w) is characterized by the inequality
(w — Pg(w),x —Ps(W> <0, VxeS,

and Ps is nonexpansive and averaged.
We now collect some elementary facts which will be used in the proofs of our main

results.

Lemmal.1[9,10] Let X be a Banach space, C be a closed convex subset of X,and T : C —
C be a nonexpansive mapping with Fix(T) # 0. If {x,.} is a sequence in C weakly converging
to x and if {(I — T)x,} converges strongly to y, then (I — T)x = y.

Lemma 1.2 [11] Let {s,} be a sequence of nonnegative real numbers, {«,} be a sequence of
real numbers in [0,1] with Y .2, o, = 00, {u,} be a sequence of nonnegative real numbers
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with Y o2, u, < 00, and {t,} be a sequence of real numbers with limsup, t, < 0. Suppose
that

Spus1 = (1 — oty + Aty + 4y, VmeN.
Then lim,—, o0 S, = 0.

Lemma 1.3 [12] Let {w,}, {z,} be bounded sequences in a Banach space, and let {B,} be a
sequence in [0,1] which satisfies the following condition:

0 <liminf B, <limsup B, < 1.
o0

n— n—00

Suppose that Wy, = (1 — B)Wnu + Buzn and limsup,,_, o 1Zue1 — Zull = |[Wne1 — wall <0, then

lim,,, o [|124 — Wyl = 0.

Lemma 1.4 [13] Let f be a convex and differentiable functional, and let C be a closed
convex subset of H. Then x € C is a solution of the problem

minf )
if and only if x € C satisfies the following optimality condition:
(Vf(x),v—x) >0, VveC.

Moreover, if f is, in addition, strictly convex and coercive, then the minimization problem
has a unique solution.

Lemma 1.5 [3] Let A and B be averaged operators and suppose that Fix(A) N Fix(B) is
nonempty. Then Fix(A) N Fix(B) = Fix(AB) = Fix(BA).

2 Minimum-norm solution of SEP
In this section, we define the concept of the minimal norm solution of SEP (1.1). Using
Tychonov regularization, we obtain a net of solutions for some minimization problem
approximating such minimal norm solutions.

We use I' to denote the solution set of SEP, i.e.,

T ={(x,y) € Hi x Hy,Ax=By,x € C,y € Q}

and assume the consistency of SEP so that I' is closed, convex and nonempty.
LetS=Cx QinH = H; X H,, define G: H - H3 by G = [A,-B], then G*G : H — H has
the matrix form

A*A -A*B
G'G= .
-B*A B*B

The original problem can now be reformulated as finding w = (x,y) € S with Gw = 0, or,
more generally, minimizing the function ||Gw| over w € S. Therefore solving SEP (1.1) is
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equivalent to solving the following minimization problem:
. 1 2
minf(w) = = || Gw|*, (2.1)
weS 2
which is in general ill-posed. A classical way to deal with such a possibly ill-posed problem

is the well-known Tychonov regularization, which approximates a solution of problem
(2.1) by the unique minimizer of the regularized problem:

. 1 1
minf, (w) = ~|Gw|* + Za|lw|?, (2.2)
weS 2 2

where « > 0 is the regularization parameter. Denote by w, = (x4,y,) the unique solution
of (2.2).

Proposition 2.1 Forany « > 0, the solution w, = (x4, Ys) of (2.2) is uniquely defined. More-
over, Wy = (%4, Yy ) is characterized by the inequality

(G*Gwa + oUWy, W — wa> >0, Vwes,

(A*(Axa —Byy) + axa,x—xa> >0, VxeC;
and
(-B*(Axa — Bya) + @Yay = ¥a) 2 0, ¥y €Q.
Proof 1t is well known that f(w) = %||Gw||2 is convex and differentiable with gradient
Vf(w) = G*Gw, fu(w) =f(w) + %a||w||2. We can get that f; is strictly convex, coercive, and
differentiable with gradient
Vi (w) = G*Gw + aw.
It follows from Lemma 1.4 that w,, is characterized by the inequality
(G*Gwa + AWy, W — w‘,> >0, Vwes. (2.3)
Note that {(x,0),x € C} < S, {(0,%),y € Q} C S, adding up (2.3), we can get that
(A*(Axo = Byy) + axq, x —%4) > 0, Vx€C;
and
(-B*(Axy — Bya) + @Yo,y —Ya) 2 0, ¥y € Q. O

Definition 2.2 An element w = (x,y) € I is said to be the minimal norm solution of SEP
(L.1) if [wl = infyer [Iw]].

Page 4 of 19
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The next result collects some useful properties of {w,}, the unique solution of (2.2).

Proposition 2.3 Let w, be given as the unique solution of (2.2). Then the following asser-
tions hold.

(i) llwgll is decreasing for o € (0, 00).

(i) o > wy defines a continuous curve from (0,00) to H.

Proof Let a > B > 0; since w, and wg are the unique minimizers of f, and fz, respectively,
we can get that

1 2, 1 2
SIGwall” + Salwell” <

1Gws I + ~acllwll®
2 2 .B ﬂ ’

2

N = N =

1 2 1 2 2 1 2
SIGwgll +§,3||Wﬂ|| = s IGwell +§/3||Wa||~

2

Hence we can obtain that [|w, || < [|[wgl|. That is to say, ||w,|| is decreasing for € (0, 00).
By Proposition 2.1, we have

(G*Gwa + A Wo, W — wa> >0
and

(G*Gw,g + Bwg, Wo — wﬂ) > 0.
It follows that

(Wo —wg,awy — Bwg) < (wa -wg, G*G(wg - wa)) <0.
Hence

allwy —wgll < (o — B)(Wo — wg, wg).

It turns out that

2
”Wa - Wﬁ” =

=Bl
o Al

Thus o — w, defines a continuous curve from (0, 00) to H. O

Theorem 2.4 Let w, be given as the unique solution of (2.2). Then w, converges strongly
as a — 0 to the minimum-norm solution w of SEP (1.1).

Proof For any 0 < o < 00, w, is given as (2.2), it follows that

- 1
IGw]? + §a||w||2.

| Gwe lI* + ! [we > < !
1 1, 1
2 * 2 Y =9

Since w € I' is a solution for SEP, we get

S0
allw|”.

L Gwall? + afwe? < X
—|Gwe||* + =a|lw -
2 * 2 M =9

Hence, ||wy|| < ||[w]| for all @ > 0. That is to say, {w,} is a bounded net in H = H; x Hs.
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For any sequence {«,} such that lim, o, = 0, let w,, be abbreviated as w,,. All we need
to prove is that {w,} contains a subsequence converging strongly to w.

Indeed {w,} is bounded and S is bounded convex. By passing to a subsequence if neces-
sary, we may assume that {w,} converges weakly to a point w € S. By Proposition 2.1, we
get that

(G*Gwn + oWy, W — w,,) > 0.
It follows that

(Gw,, GW — Gw,,) > a, (W, W, — W).
Since w € T, it turns out that

(GWy, =GWy) > oty (Wy, Wy = W).
Using ||w,|l < [|w||, we can get that

[GWull < 2a,]|w|| — O.

Furthermore, note that {w,} converges weakly to a point w € S, then {Gw,} converges
weakly to Gw. It follows that Gw =0, i.e., w e T.
At last, we prove that w = w and this finishes the proof.

Since {w,} converges weakly to w and ||w,|| < |||, we can get that
w < liminf || w,|| < |w| = min{|lw||: we T'}.
n

This shows that w is also a point in I' which assumes a minimum norm. Due to the

uniqueness of a minimum-norm element, we obtain w = #. g
Finally, we introduce another method to get the minimum-norm solution of SEP.

Lemma 2.5 Let T =1 — yG*G, where 0 < y < 2/p(G*G) with p(G*G) being the spectral
radius of the self-adjoint operator G*G on H. Then we have the following:
(1) T <1 (i.e., T is nonexpansive) and averaged,;
(2) Fix(T) ={(x,y) € H,Ax = By}, Fix(PsT) = Fix(Ps) N Fix(T) = T;
(3) weFix(PsT) if and only if w is a solution of the variational inequality
(G*Gw,v—-w) >0,VveSs.

Proof (1) It is easily proved that ||T|| < 1, we only prove that T = I — y G*G is averaged.
Indeed, choose 0 < B < 1suchthaty/(1-8) <2/p(G*G),thenT =I-yG*G = BI+(1-B)V,
where V =1 -y/(1- B)G*G is a nonexpansive mapping. That is to say, T is averaged.

(2) If w € {(x,y) € H,Ax = By}, it is obvious that w € Fix(T). Conversely, assume that
w € Fix(T), we have w = w — y G*Gw, hence y G*Gw = 0, then || Gw||? = (G*Gw, w) = 0, we
get that w € {(x,y) € H,Ax = By}. This leads to Fix(T) = {(x,y) € H,Ax = By}.
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Now we prove Fix(PsT) = Fix(Ps) N Fix(T) = I'. By Fix(T) = {(x,y) € H,Ax = By},
Fix(Ps) N Fix(T) = T is obvious. On the other hand, since Fix(Ps) N Fix(T) = T" # @, and
both Ps and T are averaged, from Lemma 1.5, we have Fix(PsT) = Fix(Ps) N Fix(T).

3)

(G*Gw,v—w) >0, YveS <& <w— (w—yG*Gw),v—w) >0, VveS
& w= Ps(W - yG*Gw)
< weFix(PsT). O

Remark 2.6 Take aconstant y suchthat0 < y < 2/p(G*G) with p(G*G) being the spectral
radius of the self-adjoint operator G*G. For « € (0, %fw"), we define a mapping

Wy (w) := Ps[(l —ay)l - )/G*G]w.

It is easy to check that W, is contractive. So, W, has a unique fixed point denoted by wy,
that is,

wo = Ps[(1 - ay)I -y G*G|w,. (2.4)

Theorem 2.7 Let w, be given as (2.4). Then w, converges strongly as o — 0 to the
minimum-norm solution w of SEP (1.1).

Proof Let w be a point in I'. Since & € (0,
follows that

2-y|G* G Y
2y ), I -

s .
(l_w)G G is nonexpansive. It

[[wy — IX/H = ”Ps[(l —ot)/)I— VG*G]Wa —P5[17|/— )/G*GIX/] ”
< [ -an)i-yG Glw, - [~ yG"Gi]]

= [1-ay) WQ—LG*GWN —1-ay)|w- Y _GGw —ayw
l-ay l-ay
14 . . Y o v
<A-ay)||ws - G'Gwy | - | w- G'Gw ||| + ay|w|
1-ay l-ay

<A -ay)lwe —w| +ay|w|.
Hence,
[we =Wl < [l

Then {w,} is bounded.
From (2.4), we have

|we = Ps[I -y G*Gwe| <allywal — 0.

Next we show that {w,} is relatively norm compact as @ — 0. In fact, assume that {8,} C
(0, %?GH) is such that o, — 0* as n — co. Put w,, := w,,,, we have the following:

“Wn _PS[[_ yG*G]Wn || < Oln||)’Wn|| — 0.

Page 7 of 19
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By the property of the projection, we deduce that

lwe =Wl = | Ps[(1—ay) - y G*Glw, — Ps[i - yG*Gi]|*
< ([(1 —ay)l - yG*G]wa - [171/— yG*Gﬁ/],wa - ﬁ/)
= <(1 —ozy)|:wa - LG*Gw(,(:| -1 —ay)[ﬁ/— LG*G‘X/],WQ - 17v>
1-ay l-ay
_aJ/(ﬁ})Wa _ﬁ/>

< (L-ay)lwa = Wl* — ay (W, wy — ).

Therefore,

lwa = W1* < (=0, wy — ).
In particular,

lw, = w|® < (=W, w,, — W), VweTl.
Since {w,} is bounded, there exists a subsequence of {w,} which converges weakly to a
point w. Without loss of generality, we may assume that {w, } converges weakly to w. Notice
that

”Wn _PS[I_VG*G]W;«” San”)/wl'l” - 0!

and by Lemma 1.1 we can get that w € Fix(Ps[I — yG*G]) =T..
By

lw, = Wl* < (-, w, W), VweT,
we have
W, = Wl? < (=, w, — ).
Consequently, {w,} converges weakly to w actually implies that {w,} converges strongly
to w. That is to say, {w,} is relatively norm compact as & — 0*.
On the other hand, by
lw, = Wl* < (-, w, W), VweT,
let n — oo, we have
W —w|* < (-, w—), VweTl.
This implies that

(-w,w-—w) <0, Vwerl,

Page 8 of 19
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which is equivalent to

v ~

(-w,w—w) <0, VweTl.

It follows that w € Ps(0). Therefore, each cluster point of w,, equals w. So w, — w (@ — 0)

the minimum-norm solution of SEP. O

3 Modification of Moudafi's ACQA and RACQA algorithms
In this section, we introduce the following algorithm which is viewed as a modification of
Moudafi’s ACQA and RACQA algorithms. The purpose for such a modification lies in the

hope of strong convergence.

Algorithm 3.1 For an arbitrary point wy = (xo,y0) € H = H; X Hs, the sequence {w,,} =
{(x, yn)} is generated by the iterative algorithm

Wil :PS{(I_an)[I_yG*G]Wn}: (3.1)

Xne1 = Pcl{(l — o) [x, — yA*(Ax, — By,)]}, n>0;

Vn+1 = PQ{(l - Oln)b/n + VB*(Axn _Byn)]}) n>0,

where «,, > 0 is a sequence in (0, 1) such that
(i) lim, a,, = 0;
(i) Y520 an = 00;

(i) Y02y lotns — o] < 00 or limy, |ets1 — oyl /oty = 0.
Now, we prove the strong convergence of the iterative algorithm.

Theorem 3.2 The sequence {w,} generated by algorithm (3.1) converges strongly to the
minimum-norm solution w of SEP (1.1).

Proof Let R, and R be defined by

Ryw:=Pg{(1 - a,)[I - yG*G]}w =Ps[(1 - ) Tw],

Rw:=Ps(I - yG*G)w = Ps(Tw),

where T = I -y G*G. By Lemma 2.5 it is easy to see that R, is a contraction with contractive
constant 1 — «,;; and algorithm (3.1) can be written as w,,; = R,w,,.
For any w € T, we have

IR, =W = |Ps[(1—0t,) TW] - ||

= “PS[(I - O{V,)Tﬁ/] — Pg(Tw)

< |- T - T|

= ol TWIl < oty | W]l
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Hence,

”Rnwn - 1;i/” = ”Rnwn _Rnw” + ”erﬁ} - ﬁ/”

”Wn+1 - VAV”

IA

|Ps[Q = o) TW] = Ps(TW) |
< (I =ap)llwy =W +a,|w|
< max{||lw, — ||, [¥] }.

It follows that ||w,, — W|| < max{|lwo — W], |W||}. So {w,} is bounded.

Next we prove that lim,, |w,,1 — w,|| = 0.

Indeed,
”Wn+1 - Wn” = ”Rnwn - Rn—lwn—lll
=< ”Rnwn —Ran71|| + ”erwn—l - Rn—lwn—lll
=< (1 - Oln)”Wn - Wn—l” + ”Rnwn—l - Rn—lwn—1”~
Notice that

[RuWy1 = Ruawur || = | Ps[(1 = o) Twyi1] = Ps[ (1 = o) Tyt ]|

IA

” (I —an)Twyg — (1 - 0ym1) Twyy ”

|ty — ety || TWpa |

< lay — apallwpall.
Hence,
W1 = wull < 0= )Wy = Wy | + lotw = ot | | W1 I
By virtue of assumptions (1)-(3) and Lemma 1.2, we have
11511 IWis1 — wall = 0.
Therefore,

[Wn = Rwull < [[Wn1 = Wall + IRy — Rw,||
=< ||Wn+1 - Wn” + || (1 - an)TWn - Twn ”
< Wit = wall + aullwyll — 0.
The demiclosedness principle ensures that each weak limit point of {w,,} is a fixed point

of the nonexpansive mapping R = PsT, that is, a point of the solution set I" of SEP (1.1).

At last, we will prove that lim,, ||w,,; — w| = 0.
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Choose 0 < 8 <1 such that y/(1 - 8) <2/p(G*G), then T=1-yG*G=81+(1 - B)V,
where V =1 -y /(1 - B)G*G is a nonexpansive mapping. Taking z € I', we deduce that
Wni1 =2l = | Ps[(1 ) Tw,] — 2|
<@ -a,)Tw, —z||2
< (L=l Twy — z|* + au 12l
< [ BOvs =2) + A= B)(Vivy = 2)|” + izl
< Bl wa =2 + =B (Vi = 2)[” = BU= B)llw, = Vil + 2]

<||(wn -2 ||2 — B = B)lIwn = Vw,|I* + a2l
Then

BA=B) W — V|l < llwn — 211> = llwna — 2]1* + aullz]?
< (Iwn =zl + 1wnr = 211) (Ilwn = 21l = W1 — 2ll) 121>
= (”Wn =zl + [Wpa _Z”)(”Wn - Wn+1”)an||z||2 — 0.
Note that T =1 -y G*G = 81 + (1 - B)V, it follows that lim,, || Tw,, — w, | = 0.
Take a subsequence {w,, } of {w,} such that limsup, (w, — w,-w) = limy(w,, — w,—Ww).
By virtue of the boundedness of w,,, we may further assume, with no loss of generality,
that w,,, converges weakly to a point . Since ||[Rw,, — w, || — 0, using the demiclosedness

principle, we know that w € Fix(R) = Fix(PsT) = I'. Noticing that w is the projection of the
origin onto I', we get that

lim sup(w,, — w, —w) = li]£n(wnk -w,—w) = (w-—w,-w) <0.
n

Finally, we compute

Wt = I = || Ps[(1 = ) Tw, ] - |°

= | 5[ - ) Tw, ] - Ps T
< | -a,)Tw, - T#|?
= |0~ an) T — ]
= | = o) (Twy — ) + ou () *
= (1= 0)? | (Twy = ) |* + Q217117 + 20 (1 — ) (T, — i, ~0)
< (L= ) [ (Twy = ) |* + [l W11 + 2(1 = ) {Tw,, — 0, —)].

Since limsup, (w,, — W, =) <0, [|w, — Tw,|| — 0, we know that lim sup,, (|| w||% + 2(1 —

a,){Tw, —w,-w)) < 0.By Lemma 1.2, we conclude that lim,, || w,;; —W|| = 0. This completes
the proof. d

Remark 3.3 When B = I, the iteration algorithm (3.1) becomes

Xnsl = PC{(1 - an)[xn - yA*(Ax, _yn)]};

Page 11 of 19
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Yni1 = PQ{(1 - an)[yn +y(Axy _yn)]}~
By Theorem 3.2, we can get the following result.

Corollary 3.4 For an arbitrary point wy = (xo,y0) € H = H; X H,, the sequence {w,} =
{(x,7,)} is generated by the iterative algorithm

Fni1 = Pcl{(l — o) [y — y A" (Axy = y0)]}, 1205
yn+1=PQ{(1_an)[yn+V(Axn_yn)]}’ n>0,

where «, > 0 is a sequence in (0,1) such that
(i) lim, o, = 0;
(ii) D020ty = 00;
(i) Yo lotnst — | < 00 or limy, |atysr — iyl /ety = 0.
Then x,, converges strongly to the minimum-norm solution of SFP.

4 KM-CQ-like iterative algorithm for SEP
In this section, we establish a KM-CQ-like algorithm converging strongly to a solution of
SEP.

Algorithm 4.1 For an arbitrary initial point wy = (x9,0), the sequence {w, = (x,,,y,)} is
generated by the iteration

Wit = (1= Bu)wy + IBnPS[(l - an)(l - VG*G)]WVU (4.1)

X1 = (L= B)xn + BuPcl{(l — o) [, — VA*(Axn _Byn)]}r n=>0;
Yne1 = 1- ﬂn)yn + ,BnPQ{(l - an)[Yn + ]/B*(Axn _Byn)]}r n>0,

where «, > 0 is a sequence in (0,1) such that
(1) limyoo 0ty =0, > o0 oty = 00;
(11) hmn—>oo |an+l - Olnl =0;

(iii) 0 <liminf,_ o B, <limsup,_ . Bn <1

Lemma 4.2 Ifz € Fix(T) = Fix(I - y G*G), then for any w we have | Tw —z|? < |w - z||? -
B = B)||Vw — w||?, where B and V are the same as in Lemma 2.5(1).

Proof According to Lemma 2.5(1), we know that 7= 81 + (1- )V, where 0 < B <1land V
is nonexpansive. It is easy to check that z € Fix(T) = Fix(V), and

ITw—z|* = | pw+ (1 - B)Vw—z|”
< Blw—z|* + (1= B)IIVw—z|* - B(L - B)lIVw - w|?
< Blw—z|* + (1= B)llw—2z|* - BL- )| Vw—w|?

= lw—z|> - B(L - B) | Vw - w|*. O
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Theorem 4.3 The sequence {w,} generated by algorithm (4.1) converges strongly to a so-
lution of SEP (1.1).

Proof Forany solution of SEP w, according to Lemma 2.5, w € Fix(PsT) = Fix(Ps) NFix(T),
where T =1 - yG*G, and

Wi = Wl = || @ = Bu)wn + BuPs[ (1 — ) T]wu — W |
= [ @ = B wy = W) + Bu(Ps[(1 = ) T]wy, = ) |
< (1= B)lwny = Wl + Bu|| Ps[(1 = ) T ]w, — |
< (1L=B)llwy —wl
+ Bu|Ps[ (1 = 0t) T]wy — Ps[(1 - ) T ||

+ Bu|Ps[(1 - a,) T ] — W

< A= Bllwn =Wl + Bu(l = cn) Wy = Wl + Botull Wl
= (1= Buan)lwn = Wl + Buotu | W]

< max{||w, — |, W] }.
By induction,
Wy — Wil < max{|wo — wl|, [|W]}.
Hence, {w,} is bounded and so is {Tw,,}. Moreover,

1Ps[(1 = ) T — W] < [0 = ) Ty — ]
= ”(1 — o) [Tw, — W] - O[,,ﬁ/H
< @ =an)llwn =Wl + |l
< max{||lw, — |, | W] }.
Since {w,} is bounded, we have that {Tw,}, (1 — «,,)Tw,, and {Ps[(1 — «,)T]w,} are also
bounded.
Let z, = Ps[(1 - a,) T]wy, and M > 0 such that M = sup,..,{Tw,}. We observe that
||PS[(1 - O5;'14—1)T:|Wn _PS[(1 - an)T]Wn || =< ”(1 - an+1)Twn - (1 - an)TWn ||
= ” (an - an+1)Twn H

< Mloy, —ayal.
Hence,

1Zns1 — zull = ”PS[(1 - an+l)T]Wn+l - PS[(l - an)T]Wn ”
= ||PS[(1 - an+1)T]Wn+1 - PS[(l - c‘!;4+1)T:|Wn H

+ ||PS[(1 - an+1)T]Wn _PS[(l - an)T]Wn H
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< (= apan) Wni1 — wall + ”PS[(1 - an+1)T]Wn - pS[(1 - an)T]Wn ”

< (=) W1 — Wull + Mo, — .

Since 0 <, <1 and lim,,_, o |41 — ¢¢,| = 0, we obtain that

”Zn+1 - Zn” - ||Wn+1 - Wn” = M|Oln - an+1|
and
limsup [|z,41 = Zall = [Wps1 — Wil < 0.
n—o0

Using Lemma 1.3, we get that
lim || Ps[(1 - ) T]wy — wy || = lim ||z, — wyl| = 0.
n—00 n—oo

Therefore,

IWis1 — wall = ” (1= Bu)wy + ,BnPS[(l — ) T]Wn —Wn H

= By, ||P5[(1 - oz,,)T]w,, - Wy || — 0.
Let R, and R be defined by

R,w:= PS{(l - a,,)[[ - yG*G]}w = Ps[(l - a,,)Tw],

Rw := Pg([ - yG*G)w = Ps(Tw).
We find

”Wn _an” = ”Wn - Wn+1|| + ||Wn+1 _an”
= [[Wy = Wyl + ” (1= Bu)Wn + BuRywy — Rwy, ”

< Wy =Wyl + A = B)IWn — Rw, || + BullR,wy, — Rw, ||
So, we have

”Wn _an” = ”Wn - Wn+1||/ﬁn + ”Rnwn _an”
= [[Wy =W ll/ By + “PS[(I - an)T]Wn — PsTw, ”
< Wi = Wy ll/ By + “ (1= o) Tw, - Tw, ”

< Wn = wyall/ By + Moy
By assumption, we have
lim ||lw, — Rw,| =0.
H—>0Q

On the other hand, {w,} is bounded, there exists a subsequence of {w, } which converges
weakly to a point w. Without loss of generality, we may assume that {w,} converges weakly
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to w. Since ||Rw,,—w,|| — 0, using the demiclosedness principle we know that w € Fix(R) =
Fix(PsT) = Fix(Ps) N Fix(T) = .

At last, we will prove that lim,, || w,,,; — w|| = 0. To do this, we calculate

IWis1 — VVVH2 = ”(1 = Bu)wnu + /3,,])5[(1 _an)T]Wn —-PsTw ?

< (L= B)llwn = W11 + Bu|| Ps[(1 = ) T|wys = Ps T

< (L= B)lIw = W11% + B || (L = ) Ty — |

= (L= B W = WI% + Bu| (1 = ) (Tw,, = 9) + v

= (L= Bu)llwn = Wl + Bu[ (@ = )| Ty, — ]| + 2|10
+ 20,(1 — o, ){Tw,, — W, —17v)]

< (L= BlIwn = 1% + Ba[ (1 = ) 1wy — W11 + 22|39
+ 20, (1 = ) (Twy, — W, —w) |

= (L= 0uBu)[Wn = WII* + tuu[2(1 = o) (T — i, =) + 0t | 10]].
By Lemma 1.2, we only need to prove that

lim sup{Tw,, — w, —w) < 0.

n—0oQ0

By Lemma 2.5, T is averaged, that is, 7 = 8 + (1 - B)V, where 0 < 8 <1 and V is non-
expansive. Then, for z € Fix(PsT), we have

Wit =212 = | (L= Bu)w + BuPs[(1 = ) Tw, - 2|
< (=B lIwn— 2l + Bu |1~ @) Tw,, — 2|°
= (1= B W — 21 + Bu | (L~ @) (Twy, — 2) — 2|
< (1= Ba)lIwn — 2l + Bu[ (1 — )| Tw,y — 211% + u12]?]

< (L= B)llwn =21 + Ba[ I Tw — 211* + a2 .
By Lemma 4.2, we can get

”Wn+1 _2”2 = (l_lgn)”Wn _2”2
+ Bulllwn — 211> = B = B VW — wul® + 2]

< wn —2l% = BuBA = B)| VW = will* + Buctull2l|*.
Let K > 0 such that ||w,, — z|| < K for all #, then we have

2 2 2 2

BuBA = BIIVWy = wpll” < Wy — 2|17 = [Wnar — 211" + Buctallzll
2
< 2N|llwy = 2|l = W1 = 2ll| + Buctal2l|

2
= 2N||Wr1 - Wn+1|| + ,Bnan”Z” .
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Hence,

2N||Wn — Wni1 ”

1- Vn_ n2_
BA=BIIVwy —wul” < 5,

+ oyl
Since ||w, — wy41|| — 0, we can get that
I Vwy, — wyu|l — 0.
Therefore,
7w, — wyll — 0.
It follows that

lim sup(Tw,, — w, —w) = limsup(w,, — W, — ).

n—0o0 n— 00

Since {w,} converges weakly to , it follows that

lim sup{Tw,, — w,—-w) < 0. 0
n—0oQ

Similar to the proof of Theorem 4.3, we can get that the following iterative algorithm

converges strongly to a solution of SEP also. Since the proof is similar to Theorem 4.3, we

omit it.

Algorithm 4.4 For an arbitrary initial point wy = (xo,y0), the sequence {w, = (x,,y,)} is
generated by the iteration

Wy = (1= B,) (1~ Oln)(l - VG*G)WVI + ,BnPS[(l - O[n)(l - yG*G)]WVII (4.2)

Fni1 = (1= Bu) (L — ) [xy — yA*(Ax;, — By,)]

+ BuPcl(l = o) [ — v A*(Axy, — By,)1};
Yui1 = (1= Bu)(L = @) [y + ¥ B*(Ax, — By,)]

+ ﬂnPQ{(l - an)[yn + VB*(Axn _Byn)]};

where o, > 0 is a sequence in (0, 1) such that
(1) limyoo 0ty =0, > 020 oty = 00;
(11) limy;, oo |0tp41 — 0| = 0;

(iii) 0 <liminf,_ o B, <limsup,_, ., Bn < 1.

5 Other iterative methods
In this section, we introduce some other iterative algorithms which converge strongly to
a solution of SEP.

According to Lemma 2.5, we know that w = (x, y) belongs to the solution set I" of SEP (1.1)
if and only if w € Fix(Ps(I — y G*G)). Moreover, Ps(I — y G*G) is a nonexpansive mapping.
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That is to say, the essence of SEP is to find a fixed point for the nonexpansive mapping
Ps(I - yG*G).
For the fixed point of a nonexpansive mapping, the following results have been obtained.
In 1974, Ishikawa [14] gave the Ishikawa iteration as follows:

X0 € C,
Yn = (1 - ,Bn)xn + ,Bn Txm n= O¢
X1 = 1 —a,)x, + o, Ty,, n>0,

where xg € C is an arbitrary (but fixed) element in C, and {«,}, {8,} are two sequences
in (0,1). He proved thatif 0 <, < 8, <1, B, = 0, Yoo, @ufy = 00, then {x,} converges
strongly to a fixed point of T

In 2004, Xu [15] gave the viscosity iteration for nonexpansive mappings. He considered
the iteration process

Xpi1 = f () + (1 —0) Tx,, n>0,

where f is a contraction on C and xy is an arbitrary (but fixed) element in C. He proved
that if o, — 0, Y ooy = 00, either Y02 [otyu1 — ty| < 00 or limy,, o0 (@ps1/ety) = 1, then
{x,,} converges strongly to a fixed point of T'.

Halpern’s iteration is as follows:
Xne1 = pth + (1 — ) Tx,, n>0,

where u € C is an arbitrary (but fixed) element in C.
Mann’s iteration method that produces a sequence {x,} via the recursive manner is as

follows:
Xn+l = OpXy + (1 - an) Tx,, n>0,

where the initial guess x, € C is chosen arbitrarily. However, this scheme has only weak
convergence even in a Hilbert space.

In 2005, Kim and Xu [16] modified Mann’s iteration scheme and the modified itera-
tion method still works in a Banach space. Let C be a closed convex subset of a Banach
space and T : C — C be a nonexpansive mapping such that Fix(T) # @. Define {x,} in the
following way:

X0 € C,
Vn = QuXy + (1 - an)Txm n= 0;
X+l = ,Bnu + (1 - ﬂn)Tyru n= 0,

where u € C is an arbitrary (but fixed) element in C, and {«,}, {8,} are two sequences in
(0,1). They proved that if a, = 0,8, = 0, > o0 &y =00, > ooy By =00, and Y oo |1 —
o] <00, Y071 | Bus1 — Bul < 00, then {x,,} converges strongly to a fixed point of 7.

Therefore, we have the following iterative algorithms which converge strongly to a so-
lution of SEP.
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Algorithm 5.1

Wo = (xo,yo) eH-= H1 X Hz,
Vp = (1 - ,Bn)wn + ﬂnPSTWn; n= 0;
Wii1 = (1= o)Wy + o, PsTv,, n>0,

particulars:

Xo € Hy,y0 € Hy,

zy = %, — YA*(Ax, — By,),

hy, =Yt VB*(Axn _Byn)»

Jn = %n —A*(y Axy — Byn),

ky = yu + B*(Ax, — ¥ Byy),

Fni1 = (1= ), + 0, Pc[(1 = Bu)jin + Bull — yA*A)Pcz, + BuA*BPohy),
Yne1 = (L= @)yn + uPo[(1 = Bu)ky + BuB*APcz, + Bu(I — y B*B)Pqh,),

where wy = (%o, yo) is an arbitrary (but fixed) elementin H, T = I -y G*G and {@,}, {B.} are
two sequences in (0,1). If0 <o, <8,<1,8,—0, Zflil au By = 00, then {w,} converges

strongly to a solution of SEP.

Algorithm 5.2
Wyl = ar(f(wn) + (1 - an)PSTWnr n= 0,

particulars:

Xn+l = arzPHlf(xn:yn) + (1 - a,)Pclx, — VA*(Axn - Byn)]:
Vn+l = anPHgf(xnryn) +(1- an)PQb’n + VB*(Axn —Byn)]’

where f is a contraction on H = H; x H, and wy = (x0,y0) is an arbitrary (but fixed) el-
ementin H,and T =1-yG*G.If a, = 0, Y > ay = 00, either Yoo |41 — @] < 00 or

lim,,, oo (@y41/c,) = 1, then {w,,} converges strongly to a solution of SEP.
Algorithm 5.3

wo = (%0,%0), 4 = (x1,51) € H = H; X Hj,
Vp =0yWy + (1 - an)PSTWnr n= 0,
Wy = But + 1= B,)PsTv,, n=>0,

particulars:

x0,%1 € H1,¥0,y1 € Ha,

Zy = %, — YA*(Ax, — By,),

hy =yu + yB*(Ax, — By,),

Jn =% — A*(y Ax, — Byy),

ky = yu + B*(Ax, — ¥ Byy),

Xns1 = X1 + (L= ) Pc[Bujn + 1 = ) — yA*A)Pczy + (1 - B,)A*BPqh,],
Y1 = Ay + (1= ) Po[Buky + (1= B)B*APcz, + (1 = B,)(I — y B*B)Pqh,],
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where u, wy are arbitrary (but fixed) elements in H, T = — y G*G, and {«,}, {B,} are two
sequences in (0,1). They proved that if &, — 0, B, — 0, > oo, &, = 00, Y oo, By = 00 and
> o1 — | < 00, Y02y | Bust — Bul < 00, then {w,} converges strongly to a solution of
SEP.
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