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1 Introduction

Let C;,Cy, ..., C, be nonempty, closed, and convex subsets of a real Hilbert space H such
that (), C; # . The problem of image recovery in a Hilbert space setting by using con-
vex of metric projections Pc,, may be stated as follows: the original unknown image z is
known a priori to belong to the intersection of {C;}?,; given only the metric projections
Pc; of H onto C; for i =1,2,...,n recover z by an iterative scheme. Youla and Webb [1] first
used iterative methods for applied in image restoration. The problems of image recovery
have been studied in a Banach space setting by Kitahara and Takahashi [2] (see also [3,
4]) by using convex combinations of sunny nonexpansive retractions in uniformly convex
Banach spaces. On the other hand, Alber [5] studied the problem of image recovery by the
products of generalized projections in a uniformly convex and uniformly smooth Banach
space whose duality mapping is weakly sequentially continuous (see also [6, 7]). Nakajo et
al. [8] and Kimura et al. [9] considered this problem by the sunny nonexpansive retrac-
tions and proved convergence of the iterative sequence to a common point of countable

nonempty, closed, and convex subsets in a uniformly convex and smooth Banach space,
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and in a strictly convex, smooth and reflexive Banach space having the Kadec-Klee prop-
erty, respectively. Some iterative methods have been studied in problem of image recovery
by numerous authors (see [2-5, 10-12]).

The problems of image recovery are connected with the convex feasibility problem, con-
vex minimization problems, multiple-set split feasibility problems, common fixed point
problems, and variational inequalities. In particular, variational inequality theory has been
studied widely in several branches of pure and applied sciences. This field is dynamics
and is experiencing an explosive growth in both theory and applications. Indeed, appli-
cations of the variational inequalities span as diverse disciplines as differential equations,
time-optimal control, optimization, mathematical programming, mechanics, finance, and
so on. Note that most of the variational problems, including minimization or maximiza-
tion of functions, variational inequality problems, quasivariational inequality problems,
decision and management sciences, and engineering sciences problems. Recently, some
iterative methods have been developed for solving the fixed point problems and varia-
tional inequality problems in g-uniformly smooth Banach spaces by numerous authors
(see [13-24]).

Let A be a strongly positive bounded linear operator on H, that is, there exists a constant
y > 0 such that

(Ax,x) > 7 ||x||> forallx € H. (1.1)

Remark 1.1 From the definition of operator A, we note that a strongly positive bounded
linear operator A is a ||A||-Lipschitzian and n-strongly monotone operator.

A typical problem is to minimize a quadratic function over the set of the fixed points of
a nonexpansive mapping on a real Hilbert space H:

min %(Ax, x) — (x, u), (1.2)

xeC

where C is the fixed point set of a nonexpansive mapping 7 on H and u is a given point

in H.
In 2006, Marino and Xu [25] introduced and considered the following a general iterative
method:
Xni1 = Y f (xn) + ([ — 0, A)Tx,, Yr >0, (1.3)

where A is a strongly positive bounded linear operator on a real Hilbert space H. They
proved that if the sequence {«,} satisfies appropriate conditions, then the sequence {x,}
generated by (1.3) converges strongly to the unique solution of the variational inequality

((yf —Ax*,x - x*) <0, VxeFix(T), (1.4)

which is the optimality condition for the minimization problem

I;leiél %(Ax,x) - h(x), 1.5)
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where C is the fixed point set of a nonexpansive mapping T and /4 is a potential function
for yf (i.e., H'(x) = yf(x) for all x € H).

On the other hand, Yamada [26] introduced a hybrid steepest descent method for a
nonexpansive mapping 7 as follows:

KXntl = Txn - M)\nF(Txn): Vn > O; (16)

where F is a «-Lipschitzian and n-strongly monotone operator on a real Hilbert space
H with constants x,17 >0 and 0 < u < % He proved that if {1,} satisfy the appropriate
conditions, then the sequence {x,} generated by (1.6) converges strongly to the unique
solution of the variational inequality

(Fx*,x - x*) >0, VxeFix(T). (1.7)

Tian [27] combined the iterative method (1.3) with the Yamada method (1.6) and consid-
ered a general iterative method for a nonexpansive mapping 7 on a real Hilbert space H
as follows:

Xni1 = Y f (%) + (I — 0y uF)Tx,, Yn > 0. (1.8)

Then he proved that the sequence {x,} generated by (1.8) converges strongly to the unique
solution of variational inequality

((yf = uF)x*,x—x*) <0, VxeFix(T). (1.9)

In 2011, Ceng et al. [28] combined the iterative method (1.3) with Tian’s method (1.8) and
consider the following a general composite iterative method:

Xpe1 = [ — a,A)Tx, + an[Txn - B (/LFTX,, - yf(x,,))], Vn >0, (1.10)

where A is a strongly positive bounded linear operator on H with coefficient y € (1,2),
and {a,} C (0,1) and {8,} C (0,1] satisfy appropriate conditions. Then they proved that
the sequence {x,} generated by (1.10) converges strongly to the unique solution x* € C of
the variational inequality

((1 —A)x*,x —x*) <0, Vxe(C, (1.11)

where C = Fix(T).

In this paper, motivated by the above facts, we introduce new implicit and explicit iter-
ative methods for finding a common fixed point set of an infinite family of strict pseudo-
contractions by the sunny nonexpansive retractions in a real g-uniformly and uniformly
convex Banach space X which admits a weakly sequentially continuous generalized dual-
ity mapping. Consequently, we prove the strong convergence under mild conditions of the
purposed iterative scheme to a common fixed point of an infinite family of strict pseudo-
contractions of nonempty, closed, and convex subsets of X which is a solution of some
variational inequalities. Furthermore, we apply our results to the study of some strong
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convergence theorems in L, and £, spaces with 1 < p < 00. Our results extend the main
result of Ceng et al. [28] in several aspects and the work of many authors from Hilbert
spaces to Banach spaces. Finally, we give some numerical examples to support our main
theorem in the end of the paper.

2 Preliminaries

Throughout this paper, we denote by X and X™* a real Banach space and the dual space of
X, respectively. Let g > 1 be a real number. The generalized duality mapping J, : X — 2X*
is defined by

Jo@) = {f € X* . f) = [l IF 1l = [lell® ™,

where (-, -) denotes the duality pairing between X and X*. In particular, J; = J; is called the
normalized duality mapping and J,(x) = |lx[|7*/5(x) for x # 0. If X := H is a real Hilbert
space, then J = I, where [ is the identity mapping. It is well known that if X is smooth, then
J, is single-valued, which is denoted by j, (see [29]).

A Banach space X is said to be strictly convex if @ <1forallx,y € X with ||x|| = ||yl =1
and x #y. A Banach space X is said to be uniformly convex if, for each € > 0, there exists
8 > 0 such that for x,y € X with ||x|,|ly]l <1 and ||x — y|| > €, M <1 -6 holds. Let
S(X) = {x € X : ||x]| =1}. The norm of X is said to be Gdteaux differentiable (or X is said to
be smooth) if the limit

ll + yll = [lc]l

t—0 t

exists for each x,y € S(X). The norm of X is said to be uniformly Géateaux differentiable,
if, for each y € S(X), the limit is attained uniformly for x € S(X).
Let px : [0,00) — [0, 00) be the modulus of smoothness of X defined by

1
px(t) = Sup{§(||x+y|| +llx = yl) -1:x € SX), Iyl < t}.

A Banach space X is said to be uniformly smooth if pXT(t) — 0 ast— 0. Suppose that g > 1,
then X is said to be g-uniformly smooth if there exists ¢ > 0 such that px () < ct? forall ¢ > 0.
Itis shown in [30] (see also [31]) that there is no Banach space which is g-uniformly smooth
with g > 2. If X is g-uniformly smooth, then X is uniformly smooth. It is well known that
each uniformly convex Banach space X is reflexive and strictly convex and every uniformly
smooth Banach space X is a reflexive Banach space with uniformly Gateaux differentiable
norm (see [29]). Typical examples of both uniformly convex and uniformly smooth Banach
spaces are L,, where p > 1. More precisely, L, is min{p, 2}-uniformly smooth for every p > 1.

Let C be a nonempty, closed, and convex subset of X and T be a self-mapping on C. We
denote the fixed points set of the mapping T by Fix(T) = {x € C: Tx = x}.

Definition 2.1 A mapping T : C — C is said to be:
(i) A-strictly pseudo-contractive [32] if, for all x,y € C, there exist A > 0 and
jq(x — ) € J;(x — y) such that

(T = Ty,j,(x = 9)) < lx =y = 1| - T)x - (I - T)y|", (2.1)
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or equivalently
(1= D)x = (I = Ty jglx = 3)) = 2| (I = T)x— (I = Ty ||". (2.2)
(i) L-Lipschitzian if, for all x,y € C, there exists a constant L > 0 such that
1 Tx — Tyll < Lllx - yll.

If0 < L <1, then T isa contraction and if L = 1, then T is a nonexpansive mapping. By the
definition, we know that every A-strictly pseudo-contractive mapping is (%)—Lipschitzian
(see [33]).

Remark 2.2 Let C be a nonempty subset of a real Hilbert space H and T: C — C be a
mapping. Then T is said to be k-strictly pseudo-contractive [32] if, for all x,y € C, there
exists k € [0,1) such that

ITx— Ty|1* < llx = g1 + k|| (I = T)x = (I = Ty (2.3)

It is well known that (2.3) is equivalent to the following inequality:
1-k 2
(Tx = Tya—y) < e =ylI* = —— [ (I = T)x = (1 = Ty

A mapping F : C — X is said to be accretive if, for all x,y € C, there exists j,(x — y) €
Jq(x — y) such that

(Fx—Fy,j,(x-y) = 0.

For some 1 > 0, F: C — X is said to be strongly accretive if, for all x,y € C, there exists
ja(x =) € J;(x — y) such that

(Ex — Fy,j (x = ) = nllx -yl .

Remark 2.3 If X := H is a real Hilbert space, accretive and strongly accretive mappings
coincide with monotone and strongly monotone mappings, respectively.

Let D be a nonempty subset of C. A mapping Q: C — D is said to be sunny [34] if

Q(Qx + t{x — Q) = Qx,

whenever Qx + t(x — Qx) € C for x € C and t > 0. A mapping Q : C — D is said to be
retraction if Qx = x for all x € D. Furthermore, Q is a sunny nonexpansive retraction from
C onto D if Qisaretraction from C onto D which is also sunny and nonexpansive. A subset
D of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D. It is well known that if X := H is a real Hilbert space, then a
sunny nonexpansive retraction Q is coincident with the metric projection from X onto C.

Lemma 2.4 ([14]) Let C be a closed and convex subset of a smooth Banach space X. Let
D be a nonempty subset of C. Let Q : C — D be a retraction and let j, j; be the normalized
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duality mapping and generalized duality mapping on X, respectively. Then the following
are equivalent:
(a) Q is sunny and nonexpansive.

(b) 1Qx - QylI* < (x-,j(Qx - Qy)) forall x,y € C.
(€) (x—Qu,j(y—Qx)) <0 forallx e CandyeD.
)

(x
(d) (x—Qux,j,(y—Qx)) <0 forallxe CandyeD.

Lemma 2.5 ([35]) Suppose that q > 1. Then the following inequality holds:
ab < laq + (q—_1>b%
q q

for arbitrary positive real numbers a, b.

In a real g-uniformly smooth Banach space, Xu [36] proved the following important
inequality:

Lemma 2.6 ([36]) Let X be a real q-uniformly smooth Banach space. Then the following
inequality holds:

e+ 17 < %17 + gy, T4 (0)) + Cyllyll? (2.4)
forall x,y € X and for some C; > 0.

Remark 2.7 The constant C; satisfying (2.4) is called the best q-uniform smoothness con-
stant.

Lemma 2.8 ([21]) Let C be a nonempty and convex subset of a real q-uniformly smooth
Banach space X and T : C — C be a A-strict pseudo-contraction. For y € (0,1), define
Sx=Q1-y)x+yTx. Then,asy € (0,v), v = min{l, (’é—;)ﬁ 1, S: C — C is nonexpansive and
Fix(S) = Fix(T), where C, is the best q-uniform smoothness constant.

Definition 2.9 ([37]) Let C be a nonempty, closed, and convex subset of a real g-uniformly
smooth Banach space X. Let T}, x = 0,,xSx + (1 -0, k)], where S; : C — C is Ag-strict pseudo-
contraction and {t,} be a nonnegative real sequence with 0 <¢, <1, Vn e N. For n > 1,
define a mapping W,,: C — C as follows:

un,n+1 = 1,

un,n =ty Tn,nun,n+1 + (1 - tn)I»

Upi = Ty U + (L= )1,

Upp1 = e T Ui + (1= )],

Upp =trTuoUy3 + (1-1)],

Wn = un,l =h Tn,lun,Z + (1 - tl)l'
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Such a mapping W, is called the W-mapping generated by T}, ,, Ty -1, - --» Ty1 and &, £,-1,
Lo 0.

Throughout this paper, we will assume that {6,,«} satisfies the following conditions:

(H1) 6,4 € (0,v], v = min{l, (%)ﬁ} with & = infi; > 0, Vi, k € N;

(H2) 16ps14 — Ouxl <an,VneNand1 <k <nwith ) 2 a, < c0;

The hypothesis (H2) secures the existence of lim,,_, oo Ok, Yk € N. Set 6y 4 := limy,— 00 Oy
Vn € N. Furthermore, we assume

(H3) 614 >0,VkeN.
It is obvious that 6, satisfies (H1). Using condition (H3), from T, x = 6,,4Sk + (1 — 0,,%)1,
we define mappings T xx := limy—, o0 Ty x = 014 Skx + (1 — O 4)x, Vx € C.

Lemma 2.10 ([37]) Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth and strictly convex Banach space X. Let T,,; = 0,,,S; + (1 — 0,,;)I, where S; : C — C
(i=1,2,...) is A;-strict pseudo-contraction with ﬂflil Fix(S,) # @ and infA; > 0. Let ty,t5,...
be nonnegative real numbers such that 0 < t, < b <1, Vn > 1. Assume the sequence {0y}
satisfies (H1)-(H3). Then

(1) W, is nonexpansive and Fix(W,,) = (2, Fix(S,) for each n > 1;

(2) for each x € C and for each positive integer k, the limit lim,_, oo U, x exists;

(3) the mapping W : C — C defined by

Wx:= lim W,x= lim U,;x, VxeC,
n— 00 n—0o0

is a nonexpansive mapping satisfying Fix(W) = (2, Fix(S,,) and it is called the

W -mapping generated by S1,S,, ... and t1,t,, ... and 6, Vn € Nand 1 <k <n.

Lemma 2.11 ([37]) Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth and strictly convex Banach space X. Let T,,; = 0,,,S; + (1 — 0,,;)I, where S; : C — C
(i=1,2,...) is A;-strict pseudo-contraction with ﬂf;’l Fix(S,) # @ and infA; > 0. Let ty,t5,...
be nonnegative real numbers such that 0 < t, < b <1, Vn > 1. Assume the sequence {0y}
satisfies (H1)-(H3). If {w,} is a bounded sequence in C, then

lim | W, — Wyw,| = 0.
n—00
In the following, the notation — and — denote the weak and strong convergence, re-
spectively. The duality mapping J, from a smooth Banach space X into X* is said to be
weakly sequentially continuous generalized duality mapping if, for all {x,} C X, x, — x
implies J, (%) = J,;(x).
A Banach space X is said to be satisfy Opial’s condition [38], that is, for any sequence
{x,} in X, x,, — x implies that

liminf ||x, — x|| < liminf|lx, —y|l, Vye X withx#y.
n—00 n—oo

By Theorem 3.2.8 in [39], it is well known that if X admits a weakly sequentially continuous
generalized duality mapping, then X satisfies Opial’s condition.

Lemma 2.12 ([13]) Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach space X which admits weakly sequentially continuous generalized duality
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mapping j, from X into X*. Let T : C — C be a nonexpansive mapping. Then, for all {x,} C
C, ifx, — x and x, — Tx,, — 0, then x = Tx.

Lemma 2.13 ([40]) Let{a,}, {1tn}, and {5,} be real sequences of nonnegative numbers such
that

An+1l S (1 - O'n)an + Uy + (Sn; Vn Z 1;
where o, € (0,1), Y 021 0, = 00, i, = o(0y,) and Y -1 8, < 00. Then lim,,_, » a, = 0.

3 Main results
In order to prove our main result, the following lemma is needed.

Lemma 3.1 Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
Banach space X with the best q-uniform smoothness constant C; > 0. Let F: C — X be a
k-Lipschitzian and n-strongly accretive operator with constants k,n > 0. Let 0 < p <
1 -1
szq)ﬂ and T = u(n - W). Then for t € (0, min{l, q%}), the mapping S : C — X de-
fined by S := I — tuF is a contraction with constant 1 —tt.

Proof Since 0 < pu < (%)ﬁ and ¢ € (0, min{1, qir}). This implies that 1 — ¢t € (0,1). From
Lemma 2.6, for all x,y € C, we have
IS = Syll = | (7 - tuF)x — (I - tuF)y|*
= |-y - tuFx - Fy)|”
< Il = yll? - qtu(Fx = Fy, jy(x - y)) + C4t7 || Fx - Fy||?
< o= yll7 = gtunllx - yll? + Cot? it -yl

< [1-tu(qn - Cout™ k) I - y117

C iy
= [l—mq<n— qT)}IIx—yII”
C q-1,.q q
< [1—m<n— M)] -y
q

= 1 -tr)lx -yl
It follows that
[Sx =Syl < @ —¢tx)llx =yl
Hence, we have S:=1 — tuF is a contraction with constant 1 — ¢t. O

Lemma 3.2 Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
Banach space X and G : C — X be a mapping.
(i) If G is a 8-strongly accretive and \-strictly pseudo-contractive mapping wit § + A > 1,
then I — G is a contraction with constant Ls; := (%)5.
(i) If G is a §-strongly accretive and \-strictly pseudo-contractive mapping with § + A > 1.
For a fixed number t € (0,1), then I — tG is a contraction with constant 1 — (1 — Ls ; )t.
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Proof (i) For all x,y € C, from (2.2), we have

AT -Gx—U-Gy||” < llx-yll? - (Gx — Gy, jy(x - y))
<@-8)llx—yl

Observe that

1-6\17
S+Ai>1 < (T) 6(0,1)

It follows that

1
1-6\14
”U—GM—U—GWHS(j;>qw—yw=hﬂm—ﬂL

Hence, I — G is a contraction with constant L ;.
(ii) Since I — G is a contraction with constant Ls ;. For all £ € (0,1), we have
”(I —tG)x— (I - tG)y” = ” (x—y) —t(Gx - Gy) H
= [@-06x-9) +t[U-Gx-(U-Gp]|
<A-9lx-yl+t|0-Gx-U-G)|

< (1-@-Lsp)t)lx -yl

Hence, I — tG is a contraction with constant 1 — (1 — L; ; )¢. This completes the proof.

3.1 Implicit iteration scheme

Let C be a nonempty, closed, and convex subset of a real reflexive and g-uniformly smooth
Banach space X which admits a weakly sequentially continuous generalized duality map-
ping j,. Let Q¢ be a sunny nonexpansive retraction from X onto C. Let F: C — X be a
k -Lipschitzian and n-strongly accretive operator with constants «,7 >0, G: C — X be a
8-strongly accretive and A-strictly pseudo-contractive mapping with§ + A >1, V:C — X
be an L-Lipschitzian mapping with constant L > 0 and T : C — C be a nonexpansive map-
ping such that Fix(T) # . Let 0 < u < (%)ﬁ and 0 < yL < 7,where 7 = u(n - L——

1 1+Ls 5
qt’ t-yL

Foreacho € ( ,min{1,

by

Ls,y.
T—yL

Sx:= QC[(I —tG)Tx + t(Tx— o(uFTx — ny))], Vx e C.

It is easy to see immediately that S; is a contraction. Indeed, for all x,y € C, from Lem-

mas 3.1 and 3.2(ii), we have

IS = Syl = ||Qc[(I - tG) Tx + £(Tx — o (uWFTx — y V) |
—Qc[U - tG)Ty + t(Ty — o (WFTy -y V)) ]|

< H (I -tG)(Tx-Ty) + t[(]— ouF)(Tx - Ty) + oy (Vx — Vy)] ||

}and ¢ € (0,1), we define a mapping S; : C — C defined

Page 9 of 24
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8= Ls) =yl + efoy | Va = Vil + [ (- o wP)(Tx - T)|]

—t(o(t —yL)=Ls;)]lx -yl

—t0)llx = yll, (3.1

<(

< (-t -Lsp))lx =yl +t(Q-o(x - yL)) Ix -yl
[1
a

where 6 :=o(t —yL) — Ls . Since T — yL > 0 and L, € (0,1), observe that

Ls, . 1 1+Lsp | _1+Lsy
<o <minyl, —, = .
T—yL qt t-yL T—yL
It follows that
1+L
o< e < O=0(t-yL)-Ls)<1
T—yL
and
Ls
<o << 6O=0(t-yL)-Ls;>0.
T—yL

This implies that 6 = o(r — yL) — Ls, € (0,1), which together with ¢ € (0,1) gives
1-t(o(t - yL) - Ls;) €(0,1).

Hence S; is a contraction. By the Banach contraction principle, S; has a unique fixed point,
denote by x;, which uniquely solves the fixed point equation

X = QC[(I —tG)Tx; + t(Txt — o (WFTx; —y th))]. (3.2)
The following proposition summarizes the properties of the net {x;}.

Proposition 3.3 Let {x;} be defined by (3.2). Then the following hold:
(i) {x:} is bounded for each t € (0,1);
(if) lims—o llxe — Tx;|| = 0;
(ili) {x;} defines a continuous curve from (0,1) into C.

Proof (i) Take p € Fix(T'), and denote a mapping S; : C — C by
Six:= Qe[ - tG) Tx + t(Tx — o (WFTx — y Vx))], VxeC.
From (3.1), we have

llx; = pll < IS:x = Supll + IS - p|
<@ -t0)|x - pll + | Qc[U - tG)Tp + t(Tp — o (LFTp — y V)] - Qcp||
<@ -t0)|x —pll +t|-Gp+p-o(uEp—yVp)|

< (L= 19)llx - pll + t[I - Gllpll + ol Epll + oy | VP,
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where 6 := o (v — yL) — Ls .. It follows that

I = pll < I - Gllllpll + o pllFpll + oy (| Vol
t = 0 .

Hence {x,} is bounded, so are {Vx,}, {FTx;}, and {GTx,}.
(ii) By definition of {x;}, we have
llxe = Txell = | Qc[( = tG) Ty + ¢(Txe — 0 (WF Tty = y Virr)) | = Qc Txe

<t|(-G)Tx, — o (uFTx, - y Vi) | > 0 ast— 0.
(iii) Take t, £y € (0,1) and calculate

lla — a0 |l = ||Qc[(I = tG) Tix, + (T, — o (WFTx, — y Visy)) |

— Qc[(I - toG) Txyy + t(Toxsy — 0 (WF Ty — v Vi) |

< |[(to = OGTx, + (I — to G)(T, — Twyy) + (¢ — to)[ Tae — 0 (WF T, — v Vix,) ]
+ to| Twe — 0 (WF Ty, — y Vi) — [ Ty — 0 (WF Toxgy — v Vi) ]|

= || (to — )GTx, + (I - toG)(Txy — Toxyy) + (¢ — to)[ Ty — o (WE T, — y Vi) |
+to[oy (Vi — Vixyy) + (I — o WF)(Te — Tocg, )|

< [t =tolIGTx|l + (1= (1= L)) llocr — x4, |
+ |t = tol | To, — o (WFTx, — y Vixy)

+ to(l —-o(t - J/L)) [l — 24 Il

It follows that

IGTxell + | T — o (WF T, — y Vi)

|t —tol.
to(o(t —yL)—Ls,)

”xt - xto ” =

Since {Vx;}, {FTx;}, and {GTx,} are bounded. Hence {x;} defines a continuous curve from

(0,1) into C. O

Theorem 3.4 Assume that {x.} is defined by (3.2), then {x,} converges strongly to x* €
Fix(T) as t — 0, where x* is the unique solution of the variational inequality

((G —I+0(uF - yV))x*,jq(x* - v)) <0, VveFix(T). (3.3)
Proof We observe that
C ud C a1
Talt” K >0 — n—iqﬂ d <n
q q
C Mq_lqu
= u(n - qT) <un

= T<Un. (3.4)
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It follows that
0<yL<t<un (3.5)

First, we show the uniqueness of solution of the variational inequality. Suppose that x,x* €
Fix(T) are solutions of (3.3), then

(G-I+0(uF-yV))x*,j (x* —%)) <0 (3.6)
and
(G=I+0(uF -yV))x,j,(x-x)) < 0. 3.7)
Adding up (3.6) and (3.7), and from Lemma 3.2(i), we obtain
0>((G-I+0(uF-yV))x* — (G—1+0(uF -y V))Z j,(x* - X))
= ((G=Dx* = (G =Dz, j (5" = %)) + o((WE = y V)™ — (WF = y V)&, j (x* - %))
= —(I - G)x* - (I - G)X, j, (x" — X)) + o u(Fx* — Fx, j, (x* - %))
—oy(Va" - Vi, j,(x" - %))
> ~Lyp[la* =& | + ol ~ 3"~ oy Vi - Vi |2 5]
> (0(un -y L) = L) [ — [
On the other hand, we observe from (3.5) that

Ls,,
<
T—-yL

o < Ls)<o(t—yL)

& Lsp<o(un-yL)

< O<o(un-yL)-Ls,. (3.8)
Note that (3.8) implies that x* = X and the uniqueness is proved. Below, we use x to denote
the unique solution of the variational inequality (3.3).

Next, we show that x;, — x* as t — 0. Set x; = Qcy;, where y; = (I — tG)Tx; + t(Tx; —
o (WFTx; — y Vx;)). Assume that {¢,} C (0,1) is a sequence such that £, — 0 as n — oco. Put
%y =%y, and ¥, := yz,. For z € Fix(T'), we note that

Xn—=2=QcYn—Yn+In—2
=QcYn—yn+ U —-t,G)(Ix, —2) + tn(Tx,, — o (WFTx, —y Vx,) — Gz)
= QcYn = Yn + U = t,G)(Txy — 2) + tu[(I — o uE) T + 0y Vi, — Gz |
=QcYn—yYn+ U -t,G)(Tx, —2) + t,,[([— o uF)(Tx, —z) + oy (Vx, — Vz)]
+ty,[(1—a/LF)z+osz—Gz]. (3.9)

By Lemma 2.4, we have

(QCyn ~ Y Jjq(Qcyn — Z)) <0. (3.10)
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It follows from (3.9) and (3.10) that

%2 = 2117 = (QcYn = Y jg(QcYn = 2)) + (¥ — 2 jg (%0 — 2))
< (U = tG)(Tx, = 2),j (% = 2)) + ta{(I — 0 WF) (T, — 2), (3 — 2))
+ 630 Y (Vatn = Vz,jg(%n — 2)) + tu(( — o uF)z + 0y Vz = Gz, jy (x5 — 2))
<[1-tu(o(x = yL) - Lsy)]lIxn — 2II"

+ (I —ouF)z + 0y Vz - Gz,j, (%, — 2)),

which implies that

1

—z|f< —————— (U -ouF Vz - Gz, jy (% - 2)).
Il — 2l _G(T_yL)_LM(( ouF)z+ 0y Ve - Gz,jq(xn — 2))
In particular, we have
i< ————— (I -ouF Vz = Gz, jy (%, - 2)). 3.11
%, — I _a(r—yL)—LM« ouF)z+ 0y Ve~ Gz,jq(xn ~2)) (311)

By reflexivity of a Banach space X and boundedness of {x,}, there exists a subsequence
{#4;} of {x,,} such that x,,, — X as i — co. Since a Banach space X has a weakly sequentially
continuous generalized duality mapping and by (3.11), we obtain x,, — X. By Proposi-
tion 3.3(ii), we have x,, — Tx,, — 0 as i — oo. Hence, it follows from Lemma 2.12 that
x € Fix(T).

Next, we show that ¥ solves the variational inequality (3.3). We note that

%= Qcyr = Qcyr — yr + ([ - tG) Tx + t(Txt — o (WFTx, - vat)),

we derive

(G140 (WE—y V) =+ Q=3 (~1G)I )+l —o )~ T),). (312)

Since I - T is accretive (i.e., ({ - T)x— (I - T)y,j,(x—y)) = 0 for x,y € C). For all v € Fix(T),
it follows from (3.10) and (3.12) that

(G=I+0(UF =y V))xjgx —v))
= 21Qe 0 ja(Qe ~ ) = (U~ £ = T ~)
—(T = o uE)I = T)x4,jg o = v))
< —%<(1 =Ty — (I = T, jg (% = v)) + (GU = T)p, jg (% — )

(I = T)we = (U= T, jy (¢ = ) + o w{FU = T)axy, g (e = v))
<(GU = T)xs,jg e = v)) + o {F( = T)xp, jg (%0 — v))
<IGlllxe = Txelllloee = vI19™" + o | Flllove = Toee |l — v 27!

< % = Tx¢ || M3, (3.13)
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where M > 0 is an appropriate constant such that M; = sup, ;) {1 Glll|lx; - v|9Y o || F)| x
l%; — v||971}. Now, replacing ¢ in (3.13) with £, and taking the limit as # — oo, we notice
that x,, — Tx;, — ¥ — Tx = 0, we obtain

(G-I+0(WF-yV))x,j,(x-v)) <O0.

That is, ¥ € Fix(T) is the solution of the variational inequality (3.3). Consequently, x = x*
by uniqueness. In a summary, we have shown that each cluster point of {x,} is equal to x*.
Therefore x, — x* as t — 0. This completes the proof. g

3.2 Explicititeration scheme

Theorem 3.5 Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
and uniformly convex Banach space X which admits a weakly sequentially continuous
generalized duality mapping j,. Let Qc be a sunny nonexpansive retraction such that X
onto C. Let F : C — X be a k-Lipschitzian and n-strongly accretive operator with constants
k,n>0,G:C — X be a §-strongly accretive and A-strictly pseudo-contractive mapping
with § + A>1, V : C — X be an L-Lipschitzian mapping with constant L > 0. Let {S;}35
be an infinite family of \;-strictly pseudo-contractive mapping from C into itself such that
F =5, Fix(S;) # V. For given x, € C, define the sequence {x,} by

Kypsl = Qc[(l -, G)W,x, + an(W,,xn — o (WFW,x, — ny,,))], Vn>1, (3.14)
where {a,} is a sequence in (0,1) which satisfies the following conditions:
(C1) limy ooy =0andy 2 ay =00;
(C2) atps1 — atu| < oloty) + 0, With Y 021 0 < 00.
Suppose in addition that {0, x} satisfies (H1)-(H3). Then the sequence {x,} defined by (3.14)
converges strongly to x* € F as n — oo, where x* is the unique solution of the variational
inequality
(G-T+0(uF-yV))a"j,(x* —v)) <0, VvelF. (3.15)
Proof From the condition (C1), we may assume, without loss of generality, that «, <
min{l, qir} for all n € N. First, we show that {x,} is bounded. Take p € F, and denote a
mapping S5 : C — C by
Sonx = QC[(I - 0, G)Wyx + oty (Wox — o (WF W — y Vx))], Vx e C.

Then we have

Sy'p= QC[(I -, G)W,p + an(Wnl’) —o(WEFW,yp — VVP))]-

From (3.1), we have

|+ [Syp-p|
< @ -au0)llxy - pll + | Qc[U - s G)p + au(p — o (LEp — ¥ V)] - Qcp|

”xn+1 —PH =< ||Sznxn - San
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< (- )%y —pll +on|-Gp +p - o(uFp -y V)|
< (- au®)l%: = pll +au(Il1 - GlllIpll + o l|uFp - v Vpll)

=< (1 - ane)”xn —P” +ay

o= Gllipll + o plEpll + ¥ I VPl

0
I7 - Glllpll + o pllEpll + v | Vol }

< maX{llxn -pl, 5

where 6 := o (t — yL) — L; . By induction, we obtain

lxn — pll < maX{lel -pl,

0

Hence, {x,} is bounded, so are {Vx,}, {FW,x,}, and {GW,x,}.

Next, we show that ||x,,1 — x,|| = 0 as # — oo. Set S¥"x,, = Qcy,, where y, = (I —

o, Q)W + a,, (W, — 0 (WEW,x,, — y Vxy,)). From (2.5), we have

” Wn+1xn - ann”

= | Tpar s Uniron + (L= 1), — 1 T n Uy — (1= 1), |

= Ul T 1 Una1,2%0 — Tua Uyl

= 1] (Ons1.0S1 + (1= Op41,0)) Unsr,2%n — Toua U |

= tl || (gn,lsl + (1 - en,l)) Un+l,2xn - Tn,l un,an + (9n+1,1 - 9n,1)(51Un+1,2xn - Un+1,2xn) ||

=< tl ” Tn,l Un+1,2xn - Tn,l un,an ” + t1|9n+1,2 - Gn,l | ||Slun+1,2xn - Un+1,2xn ”

5 tl ” Tn,l Un+1,2xn - Tn,l un,an ” + t1|9n+1,2 - 9;'1,1 |1VI>k

Sl TuiUps12%0 — TuaUppxa|l + ianMy

i=1

n n j
S l—[ ti||un+1,n+lxn - Un,n+1xn|| + (ﬂn ti)Ml
=1

j=1 i

n
b
< l_[ ti H tn+1 Tn+1,n+1xn + (1 - tn+1)xn —Xn H + —(lan

i=1

n+l

b
=< l_[ Eill Tt ne1%n — %l + l—ﬂan

i=1

1-b

-b

b
< <bn+1 + mﬂn)Ml,

peee

On the other hand, we note that

Ynel = Yn = (1 — Opyl G) Wn+1xn + an+1[Wn+1xn - U(//LFWVHIxn -y Vxn)]

— (I = ayG) Wyt — [ Wy, — 0 (WF Wy — v Vi) |

I-G F |4
Il Ilipll +owlEpll + ¥ pll}’ Vi1

(3.16)
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= ([ = 01 G)(Wis1xn — W) + (@n — 0us1) GWintyy + (@1 — ) Winiaxy
+ 0y (W1, = Wix) + 0 (@ — 01 )(RE W18, — y V)
— 0 [ WE W%y — y Vaty — (WEW,ux, — y Vi) |
= [A+ @) = 01 G| (Wi = W) + (@1 — ) [Wiay — GW,]
+ 0 (oty = 1) [WE W1y — ¥ Vatn] = 0 0 b F[ W1 — Wi ]
= [+ @)l - 211G = 0o bF | (W12 — Wi,)
+(ns1 = ) [Wiiaxn — GWoxn] + 0 (0 = 01 [WE W12, — ¥ Vi)

Hence, we have

| Sost = S| = 1QcYw — Qeyll
< Yus1 = yull
< |0+ @) = 241G = 0o F ||| Wips126 — Wl
+ |otns1 — o[ | Wi, — GWony ||
+ 0|1 — | | WE W1, — y Vil

=< (” Wn+1xn - ann” + |an+1 - an|)MZr

where My = sup,.. {1 + @)l — @y1G = oauuF||, | Wiaxy — GWuxull, o | WF W%, —
y Vx,||}. It follows from (3.1) and (3.16) that

”xn+2 - xn+l|| = ||S:),(:‘.Jilxn+l - Ss,(ﬂlxn || + ||Ss,(ﬁlxn - Sgnxn ||
< (1= 10) 11 — xu ]| + (|an+1 =yl + Wy, - ann”)MZ
= (]- - an+19)||xn+l _xn” + (O(an) + Un)MZ + ” Wn+lxn - ann”MZ

b
< (A= apn1xna — x|l + ola,) My + (Un +b" + ﬁﬂn>Mx (3.17)

where M = max{M;, M5}. Then, by Lemma 2.13, we have

lim [[%pe1 — %, = O. (3.18)
n—00

Next, we show that lim,,_, o ||, — Wx,|| = 0. Since
16 = Wil < 1% = st | + %001 — Wiy |l

= ”xn - xn+1|| + H QC[(] - anG)ann + an(ann - G(MFann - )’Vxn))]
- QCann ||

< 1% = Xl + 0t | (I = G)Winxys — 0 (WE W,y — y Vi) |-

From (3.18) and the condition (C1), we obtain

lim ||x, — W,x,|| = 0. (3.19)
n— 00
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At the same time, observe that
1, = W |l < 1%, = Wi || + [| W — Wl

It follows from (3.19) and Lemma 2.11, we have
lim [|x, — Wi, | = 0. (3.20)
n—00

Next, we show that

lim sup([l -G+o(yV- ,uF)]x*,jq(x,, —x*)) <0,

n—00

where x* is the same as in Theorem 3.4. Since {x,} is bounded, there exists a subsequence
{#4,} of {x,} such that

limsup([/ - G + o (yV — uF)|x*,jq (%, — %))

n—0oQ
= lim([l— G+o(yV - uF)]x*,jq(x,,i —x*))

i—o00

By reflexivity of a Banach space X and boundedness of {x,}, without loss of generality,
we may assume that x,,, — v as i — oo. It follows from (3.20) and Lemma 2.12 that v € F.
Since a Banach space X has a weakly sequentially continuous generalized duality mapping,
we obtain

limsup([/ - G+ o (yV — uF)|x*,jq (x, — %))

n—0oQ0

= lim([/ - G+o(yV — uBF)|x*,jg (%, —x%))

1—>00

=([I-G+o(yV - uF)]|x%j,(v-«)) <0. (3.21)

Finally, we show that x, — x* as n — 00. Set x,,,1 = Qcyy,, where y, = (I - a,G) W%, +
o, (W, — o (uW,x, — y Vx,)). From Lemmas 2.4 and 2.5, we have

[ =]
= (0 = &% g (Bnar = 2%)) +(Qcyn = Yurjg (1 — x7))
< (70 = 2" jg (%01 — 27))
= (U = uG) Wity — %), jg (%41 — %)) + atu(( — 0 WF) (Wi — 5%), jg (%11 — 7))
+ 0,0y (Vay — V™, jg (tna1 — %)) + au((I — o uF)x* + oy V™ — Gx™, jg (%041 — %))
< (a1 L)) =" [t =2+ a1 = o) [ =2 i 27

+ 0,0y Ly — % || | He1 — &* ||q_1 + o — Gx* + o (y Va* — wEx"), jg (%1 — 2*))
A Y R [ B

+ (" — Gx* + 0 (y Va* — uFx"), jg (%1 — 2%))
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1 -1
< (1= ap(ote=y0) L) S e[+ (2 Y v =17

+ a,,(x* -Gx*+o (y Vx* — qu*),/’q (xml - x*)),
which implies that

[t =] = (1= (o e = yL) = Ly, )) =

+ qQn
1+(g-D(o(r —yL) - Ls,)
x (¢* = Ga* + o (y Va™ — uFx*), jg (xne1 — %%)). (3.22)

We can write (3.22) to the formula
|1 = 2" < (0= w20 — %017 + &, (323)

where 1, := (6(t — yL) — Ls, ), and &, := WM@* — Gx* + o(y Va* — uFx*),
Jjq(®n1 — x*)). Put ¢, = max{0,&,}, from (3.21), we have ¢, — 0 as # — oo. Then we can

rewrite (3.23) as

[ =% < (1= ) — 2| * +

< @ =) |Jn = || + olet).

Therefore, by Lemma 2.13, we conclude that x, — x* as n — oo. This completes the

proof. d

4 Some applications

In this section, we will utilize Theorems 3.4 and 3.5 to study some strong convergence
theorems in L, (or £,) spaces with 1 < p < 0o. It well known that Hilbert spaces, L, (or £,)
spaces with 1 < p < oo and the Sobolev spaces W2, with 1 < p < 0o are g-uniformly smooth,

ie.,

.| 2-uniformly smooth, if2 <p<oo,
L, (or ¢,) or WP is
p-uniformly smooth, ifl<p<2.

Furthermore, we have the following properties of L, (or £,) spaces with 1 < p < oo (see [36,
39)):
(1) For 2 < p < oo, the spaces L, (or £,) are 2-uniformly smooth with C; = C, =p - 1.
(2) For1<p <2,thespaces L, (or £,) are p-uniformly smooth with
C=Co=(1+ tﬁ_l)(l + tp)l‘l’, where £, is the unique solution of the equation

-2+ (p-1)F2-1=0, O<t<l.
(3) Every Hilbert spaces are 2-uniformly smooth with C; = C, = 1.

(4) Every L, (or £,) spaces with 1 < p < 0o are g-uniformly smooth and uniformly

convex.
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(5) Every £, spaces with 1 < p < 0o have weakly sequentially continuous generalized
duality mappings, but L, spaces (1 < p < 00, p #2) do not have weakly sequentially
continuous generalized duality mappings.

Lemma 4.1 Let X := L, (or £,) with 1< p < 2. Let C be a nonempty, closed, and convex
subset of X. Let F : C — X be a k-Lipschitzian and r/—strongly accretive operator with con-
stants k,n > 0. Let 0 < u < (%)ﬁ and t = u(n — D”“ ) Then for t € (0, mm{l L el )8
the mapping S : C — X defined by S :=1 - tuF isa contrzzctzon with constant 1 — tt.

Lemma 4.2 Let X := L, (or £,) with 2 < p < 0o. Let C be a nonempty, closed, and convex
subset of X. Let F: C — X be a k-Lipschitzian and n-strongly accretive operator with con-

stants k,n > 0. Let 0 < i < = 1 —=L and T = u(n - @,1;#,62)' Then for t € (0, min{1, L }), the

’ 2T
mapping S : C — X defined by S := I — tiuF is a contraction with constant 1 —tt.

Lemma 4.3 Let X := H be a real Hilbert space. Let C be a nonempty, closed, and convex
subset of X.Let F: C — X be a K—Lipschitzian and n-strongly accretive opemtor with con-
stantsk,n>0.Let 0 < < i—;’ and T = ju(n — “=). Then for t € (0, min{l, 5~ 5- 1), the mapping
S:C— Xdefinedby S:=1—-tuFisa contmctzon with constant 1 —tt.

4.1 Implicit iteration schemes

Theorem 4.4 Let C be a nonempty, closed, and convex subset of an £, space for 1< p < 2.
Let Qc, F, G, V,and T be the same as in Theorem 3.4. Assume that 0 <[4 < (D’;%)I% and
L L,mm{l oo l:LJ‘jL* ) and t € (0,1), the
sequence {x;} defined by (3.2) converges strongly to x* € Fix(T) as t — 0, where x* is the

0<yL<rt,wheret=u(n- ). For o €

unique solution of the variational inequality (3.3).

Theorem 4.5 Let C be a nonempty, closed, and convex subset of an £, space for 2 < p < 00.
Let Qc, F, G, V, and T be the same as in Theorem 3.4. Assume that 0 < u < = 1 5 and
L,mln{l, o 1:?2 1) and t € (0,1), the
sequence {x;} defined by (3.2) converges strongly to x* € Fix(T) as t — 0, where x* is the

0<yL<rt,wheret = u(n- (pl’”)Foroe

unique solution of the variational inequality (3.3).

Remark 4.6 If the spaces L, has a weakly sequentially continuous generalized duality
mappings, then we obtain Theorems 4.4 and 4.5 hold for L, spaces with 1 < p < 00, p #2.

4.2 Explicit iteration schemes

Theorem 4.7 Let C be a nonempty, closed, and convex subset of an £, space for1 <p < 2.
Let Qc, F, G, V, and W, be the same as in Theorem 3.5. Let {«,} and {B,} are sequences
in (0,1) which satisfy the conditions (C1) and (C2) in Theorem 3.5 and {6,,x} satisfies (H1)-
(H3). Then the sequence {x,} defined by (3.14) converges strongly to x* € F as n — oo,
where x* is the unique solution of the variational inequality (3.15).

Theorem 4.8 Let C be a nonempty, closed, and convex subset of an £, space for2 < p < oo.
Let Qc, F, G, V, and W, be the same as in Theorem 3.5. Let {«,} and {B,} are sequences
in (0,1) which satisfy the conditions (C1) and (C2) in Theorem 3.5 and {6,,x} satisfies (H1)-
(H3). Then the sequence {x,} defined by (3.14) converges strongly to x* € F as n — oo,
where x* is the unique solution of the variational inequality (3.15).
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Remark 4.9 If the spaces L, has a weakly sequentially continuous generalized duality
mappings, then we obtain Theorems 4.7 and 4.8 hold for L, spaces with 1 <p <00, p #2.

5 Numerical examples
In this section, we give a simple example and some numerical experiment result to explain
the convergence of the sequence (3.14) as follows:

Example 5.1 Let X =R and C = [0, %]. Let g = 2 and j; = I. We define a mapping Qc as
follows:

O = 7 x € (~00,0) U (5,00),
cx =

x, x€]0, %].

In terms of Theorem 3.5, set 0 = u =y =1and o, = % Then we see that «,, = % satisfies
(C1) and (C2) with o, = n% Moreover, we define the mappings F, G, and V as follows:

1
Fx=§(x2+2x), Gx=x and Vx=x2

It is easy to observe that F is 1-Lipschitzian and %-strongly accretive, G is 1-strongly ac-
cretive and A-strictly pseudo-contraction for A > 0 and V is 1-Lipschitzian. For each n € N,
set S, = I. We show that W, = I. Since T}, x = 0,4Sk + (1 — 0,,k)1, where Si is a Ax-strictly
pseudo-contractive mapping and {6,,«} satisfies (H1)-(H3). It is observe that T}, x is a non-
expansive mapping. From (2.5), we have

Wi =U,y=6Tylhy +(1-t8),
Wy = Uy = 1 Toalhy + (1 -t)]
=t 1o (6 Toplhs + (1= 0)I) + (1-1)]
=ty Do Topls + (1 -t2) Ty + (1 - t)],
W3 =Us1=6T3Usp + (1-t)]
=1, T31(t2 T32Uss + (1= )I) + (1 - )]
=htyT31T3pUsz + (1 - 6)T31 + (1 - 1)l
=115 T31 T30 (83 T53Usa + (L—13)I) + 1(1 - 1) T3y + (1 - t1)]

=tbt3T31 T30 T35 + 1a(1 = 13)T31 T30 + 11 — 1) T30 + (1 = t1)]
and we compute (2.5) in a similar way to above, we obtain

Wn = un,l
= tltZ te tn Tn,l Tn,2 te Tn,n + t1t2 tt tn—l(l - tn) Tn,l Tn,2 tre Tn,n—l

+ tltZ tee tn—2(1 - tn—l)Tn,l Tn,2 te Tn,n—z te+ tl(l - tZ)Tn,l + (1 - tl)L
Since S,, =1 and ¢, = «, for all # € N, we have

W, = [a”+a”’1(1—a)+---+a(1—a)+(1—a)] =1.
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Under the above assumptions, (3.14) is simplified as follows:

xIGC:: [01%]’ (51)
_ 2 2.2 ’
K1 = (1= g)xn + 5%,

Since the assumptions of Theorem 3.5 are satisfied in Example 5.1, the sequence (5.1) con-
verges to x* = 0, which is the unique fixed point of S,,.

Next, we show the numerical results by using MATLAB 7.11.0. We presented numerical
comparisons for two cases of iteration process with different initial values, which show
the convergence of the sequence (5.1).

When we choose x; = 0.05 and x; = 0.1, we see that the iteration process of sequence
{x,} converges to x* = 0 at n = 8,615 and n = 28,946, respectively, as shown in Table 1 and

Figures 1 and 2.

Table 1 The value of sequence {x,} with iteration values x; = 0.05 and x1 = 0.1

Iteration step (n)  Sequence value (x,)  Error Sequence value (x;)  Error
1 0.0500 5% 1072 0.1000 1% 107
2 00183 183 x 1072 0.0400 4% 1072
3 0.0123 123x 1072 00272 272 %1072
4 0.0096 96 x 1073 0.0213 213 x 1072
5 0.0080 8x 1073 00178 178 x 1072
1,658 0.0002 2% 107 0.00321 321 %1073
5,570 0.0002 2% 107 0.00217 217 x 1073
8614 0.0001 1x 107 0.00184 184 x 1073
8615 0.0000 1x 107 0.00184 184 x 1073
28,945 0.0000 1x 107 0.0001 1x 10
28,946 0.0000 1x 107 0.0000 0
0.05
0.045 f\\ -
0.04 ', |
8 0085 Y B
€ 003+ v E
Q
2 00251 R
E L ' _
z 0.02 N
9 0.015F N —
.
0.01 “ B
0.005 IR g
0 — e — ‘ .
10° 10’ 10° 10° 10"
Iteration step
Figure 1 The iteration process with initial value x; = 0.05.
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0.00 ]
0.08f" 4
0.07} 4
0061 E
005F E
004F & E
0.03 . E
0.02F Yo 4
0.01 Seee -
0 . T ——— ; ‘

10 10 10° 10* 10°

Iteration step

Sequence value

Figure 2 The iteration process with initial value x; =0.1.

From the figures, we can see that {x,} is a monotone decreasing sequence and converges
to 0, but an iterative process with initial value x; = 0.05 is converges faster than an iterative
process with initial value x; = 0.1.

Remark 5.2 Note that Lemma 3.1 and Lemma 3.2 play an important role in the proof of
Theorems 3.4 and 3.5. These are proved in the framework of the more general g-uniformly
smooth Banach space.

Remark 5.3 Our main result extends the main result of Ceng et al. [28] in the following
respects:

(1) An iterative process (1.10) is to extend to a general iterative process defined over the
set of fixed points of an infinite family of strict pseudo-contractions in a more
general g-uniformly smooth Banach space.

(2) The self contraction mapping f : H — H in [28, Theorem 3.2] is extended to the
case of a nonself Lipschitzian mapping V : C — X on a nonempty, closed, and
convex subset C of a real g-uniformly smooth Banach space X.

(3) The control condition (C3) in [28, Theorem 3.2] is removed by weaker than control
condition |et,41 — o] < () + 0, With > oo 0, < 00.

Furthermore, our method is extended to develop a new iterative method and method of
proof is very different from that in Ceng et al. [28] because our method involves the sunny
nonexpansive retraction and the infinite family of strict pseudo-contractions.
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