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1 Introduction

Let L = —A + V be a Schrédinger operator on R%, d > 3, where V #0 is a nonnegative
potential belonging to a reverse Holder class RH, for g > d/2. Let b € BMOy(p), which is
larger than the space BMO(RR?). In this paper, we consider the Riesz transforms associated
with the Schrédinger operator L defined by R = VL2 and the higher order commutator

Rifw) = [ (b6s) - 50)"Klw 2 0y,

where C(x, y) is the kernel of R and m =1,2,....
We also consider its dual transforms associated with the Schrédinger operator L defined
by R = L2V and the higher order commutator

Ryfw)= [ (b6x)-50)"Klw s 0y

where K(x,7) is the kernel of Randm=1,2,....

The commutators of singular integral operators have always been one of the hottest
problems in harmonic analysis. Recently, some scholars have extended these results to
the case of higher order commutators. Please refer to [1-6] and so on. Furthermore, the
commutators of singular integral operators related to Schrédinger operators have been
brought to many scholars’ attention. See, for example, [7-18] and the references therein.
Motivated by the references, in this paper we aim to investigate the L estimates and end-
point estimates for R}’ when b € BM Oy (p).
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Note that a nonnegative locally L7 integrable function V(x) (1 < g < 00) on R? is said to
belong to RH,, if there exists a constant C > 0 such that

L ) <
(|B| /B\/(x) dx| < B /BV(x)dx 1)

holds for every ball B C R?. It is known that V € RH, implies V € RH,,, for some & > 0.
Therefore, under the assumption V' € RH,, we may conclude go > d/2.
We introduce the auxiliary function p defined as, for x € R%,

1 1
x) = =supir: — V(y)dy <1j;.
p( ) m(x, V) r>(I)){ Vd_z /B(x,r) (y) = }

The class BMOy(p) of locally integrable functions b is defined as follows:

1 r
b(y) — bg|d — )
|B(x, I’)| /I;(x,r) | (y) B| i’ = C<1 v p(x)> (2)

for all x € R% and r > 0, where 6 > 0 and bg = ﬁ Jzb. A norm for b € BMOy(p) denoted
by [b]y is given by the infimum of the constants satisfying (2) after identifying functions
that differ upon a constant. Denote that BMO(p) = (Jy.o BMOg(p). It is easy to see that
BMOR?) Cc BMOy(p) C BMO,,(p) for 0 < 6 < 6’. Bongioanni et al. [8] gave some examples

to clarify that the space BMO(R?) is a subspace of BMO,(p).
d

Because V >0 and V € lec(Rd)' the Schrodinger operator L generates a (Cp) con-
traction semigroup {77 : s > 0} = {e~L : s > 0}. The maximal function associated with
{Tf : s > 0} is defined by MEf(x) = sup,.o | TZf(x)|. The Hardy space H} (R“) associated

with the Schrodinger operator L is defined as follows in terms of the maximal function

mentioned.

Definition 1 A function f € L'(RY) is said to be in H} (R?) if the maximal function M:f
belongs to L' (R?). The norm of such a function is defined by

Mgy = 1817 -

Definition 2 Let 1 < g < co. A measurable function 4 is called a (1, g),-atom associated
to the ball B(x, r) if r < p(x) and the following conditions hold:

(1) suppa C B(x,r);

() llallgray < 1B, r)[Ma

(3) if r< p(x)/4, [paalx)dx=0.

The space H} (R") admits the following atomic decomposition (cf. [19]).

Proposition1 Letf € LN(R?). Thenf € H(R?) ifand only if f can be written asf = Zi Ajdj,
where a; are (1,q),-atoms and Z/ |A;] < 0o. Moreover,

Il ~ inf{Z 11 }
J

where the infimum is taken over all atomic decompositions of f into H}-atoms.
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Before stating the main theorems, we introduce the definition of the reverse Holder
index of V as gy = sup{q : V € RH,} (cf. [8]). In what follows, we state our main results in
this paper.

Theorem 1 Let V € RHy, b € BMOy(p) and po such that 1/pg = (1/qo — 1/d)*, where qq
is the reverse Holder index of V. If pjy < p < 00, then

m
IRf N, < (Z[mz) fller»
a=1
where (1/py) + (1/pp) = 1.
By duality, we immediately have the following theorem.

Theorem 2 Let V € RHyj3, b € BMOoo(p) and po such that 1/py = (1/qo — 1/d)*, where qq
is the reverse Holder index of V. If 1 < p < py, then

HMﬁM§<2y%)wm

where (1/po) + (1/py) = 1.

Theorem 3 Suppose that V € RH, for some q > %l. Let b € BMOo(p). Then, for any A > 0,
we have

m ba
e R Ry > 1) £ By v e @),

Namely, the commutator R}' is bounded from H}(R?) into L, (R?).

The proofs of Theorems 1 and 2 can be given by iterating m times starting from Lem-
mas 12 and 13. Please refer to Section 3 for details.

Throughout this paper, unless otherwise indicated, we always assume that 0 # V' € RH|,
for some g > d/2. We will use C to denote a positive constant, which is not necessarily the
same at each occurrence. By A ~ B and A < B, we mean that there exist some positive
constants C, C’ such that 1/C < A/B < C and A < C'B, respectively.

2 Some lemmas
In this section, we collect some known results about the auxiliary function p(x) and some
necessary estimates for the kernel of the Riesz transform in the paper (cf [20] or [7]). In

the end, we recall some propositions and lemmas for the BMO spaces BMOy(p) in [8].

Lemma 1 V € RH, for some q > d/2 implies that V satisfies the doubling condition; that
is, there exists a constant C > 0 such that

/  Vody=c [ voa

B(x,r)
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Especially, there exist constants u > 1 and C such that

[ vowscn [ voa 3)
B(x,tr) B(x,r)

holds for every ball B(x,r) and t > 1.

Lemma 2 Let V € RHy,. For the auxiliary function p, there exist C > 0 and ly > 1 such

that
s\ " =yl \ o
C o) (1 + ) <p(y) < Cplx) (1 + > (4)
p(x) p(x)
for all x,y € R%.
In particular, p(y) ~ p(x) if |x — y| < Cp(x).
Lemma 3 IfV € RHyy,, then there exists C > 0 such that
V(y)d C
[ O vow )
BxR) [ =l R Jpar)
Moreover, if V € RH,, then there exists C > 0 such that
V(y)d C
/ '_&%%5Tﬁ V0)dy.
BwR) X —y1% T R Jpap)
Lemma4 ForO<r<R<oo,
L / V() d <c<’)2m 1 f V() d ©)
— y=C\ 5 Y y-
72 g R R2 Jpm)

It is easy to see that

1
rd—2/( )V(y)dy'vl ifr~ p(x).
B(x,r

Lemma 5 There exist constants C >0 and Iy > 0 such that

1
Rd—2 B,

R\
ww@5c0+——>.
R p(x)

Lemma 6 Let >0 andl <s<oo.Ifbe BMOy(p), then

1 1/s ’ o’
_ _ N < -
(|B|/B'b bB') ”[b]"(1+p(x)> @)

forall B = B(x,r), withx € R and r > 0, where 0’ = (lo + 1)0 and ly is the constant appearing
in (4).
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Lemma 7 Let b € BMOy(p), B = B(xo,r) and s > 1. Then

1 1/s ok 0’
— b-bp|° < [blpk| 1 +
(|2k3| /ZkBl s ) ~ [Bls ( ,O(xo))

forall k e Nwith 6" = (ly +1)6.

Lemma 8 [fV € RH; for s> %l, then we have the following:
(i) for every N, there exists a constant Cy > 0 such that

Cn 1 V(z)dz 1
Kw9)| < ( [ . ); ®)
K )| @+ fx = ylp@) N\ x = 91970 Jpguy l2-91970 x—y|?

and

(ii) for every N, there exists a constant Cy > 0 such that

|K@xy +h) - Kx,)|

Cn |h|® V(z)dz 1
= N d-1+3 it ©)
1+ e = ylp)™N |x = y[9719 \ gy l2 =197 Jx =y

for some § > 0, whenever |h| < % |z — .

Lemma 9 IfV € RH,;y,, then we have the following:
(i) For every N, there exists a constant Cy > 0 such that

. Cv(l lx=z| \-N
,;C(MMEMU 4O du + 1 ) (10)
BY(

lx — 2|91 2,|x—2|/4) |u — 2|41 |~z

Moreover, the last inequality also holds with p(x) replaced by p(z).
(ii) For every N, there exists a constant Cy > 0 such that

i ~ Cu k(1 + 22N 1% 1
|K(x,y +h) - K(x,9)| < x y ’i(x; (/ (uzl T du + ), (11)
[ — y|a-1* By, lx—yl/a) |t — Y|~ lx — 1

whenever |h| < % |x — y|. Moreover, the last inequality also holds with p(x) replaced by p(y).
(iii) If K* denotes the R? vector-valued kernel of the adjoint of the classical Riesz operator,
then for some 0 < § <2 — ’f,

8
|’€(x,Z)—K*(x,Z)|SL</( Vi) du + ! <|x_z|) ) (12)
B

1% — 21972\ J Bz wezisay 11— 2|47 lx—z| \ p(x)

whenever |x — z| < p(x).
(iv) When s > d, the term involving V' can be dropped from inequalities (10), (11) and (12).

Proposition 2 (cf Theorem 0.5 in [20]) Suppose that V € RH; for some s > d/2, then
(i) R is bounded on L"(Rd)forpg <p < 0o0;
(ii) R is bounded on LP(R?) for 1 < p < po,

where 1/pg = (1/s — 1/d)*.
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Proposition 3 (¢f. Theorem 1 in [8]) Suppose that V € RH; for some s > d/2 and b €
BMOy.(p), then

(i) Ry is bounded on LP(]R”’)forp’O < p < 00;

(i) Ry is bounded on LP(R?) for 1 < p < po,
where 1/pg = (1/s — 1/d)*.

A ball B(x, p(x)) is called critical. In [19], Dziubanski and Zienkiewicz gave the following

covering lemma on R¥.

Lemma 10 There exists a sequence of points {xi}3°, in RY such that the family of critical
balls Qi = B(xx, p(xx)), k > 1, satisfies the following:

(i) Uk Qk = Rd~

(i) There exists N = N(p) such that for every k € N,

card{j: 4Q; N 4Q #¥} < N.

Given that « > 0, we define the following maximal functions for g € Lll0 . (R?) and x € R%:

1
M, g(x) = sup Bl /B g,

xeBeBp o

b g®) = sup |B|f|g gzl

xeBeBp o

where B, , = {B(y,r):y € R%, r < ap(y)}.

Also, given aball Q C R?, for g € L} (R“) and y € Q, we define

loc

Mog(x) = sup gl

xeBeF(©Q) BN Ql Jpng

1
Migx)= sup / lg — gBnal,
B b 1BNQ Jsng Q

where F(Q) = {B(y,r):y € Q,r>0}.

Lemma 11 (Fefferman-Stein type inequality, ¢f. Lemma 2 in [8]) For1 < p < 00, there exist
B and y such that if {Qi}72, is a sequence of balls as in Lemma 10, then

/Rd|Mp,ﬂ<g)|”§fRd|M <g)|”+Z|Qk|<|Q|/ |g|)p

forallg e LL (R?).

loc

3 Proofs of the main results
Firstly, in order to prove the main theorems, we need the following lemmas. As usual, for
f € LL (R?), we denote by M, the p-maximal function which is defined as

M ! P d v
pf(x) - Srl>15< IB(x, V)| B(x,r) lf(y” y) ’
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Lemma 12 Let V € RH; for some s > d/2,1/py = (1/s —1/d)*, and b € BMOy(p). Then, for
any p > p,, there exists a constant C,, > 0 such that

1 R - o . . S
|_Q|_/Q|Rbf| <Cu <;[b]9)[ylggMpf(y)+y12£Mp(Rbf)(y)]

forallf eI

loc

(R%) and every ball Q = B(xo, p(x0)).

Proof We only consider the case of % < s < d because the proof of the case of s > d can be
easily deduced from that of the case of % <s<d.

Following (4.5) in [21], we expand b(x) — b(y) = (b(x) — 1) — (b(y) — 1), where A is an arbi-
trary constant, as follows:

Rifw) = [ | (069 b0) "R =5/ 0) dy

= Y Gnlb@ - 2) /R (b0) - 2)" K =) &) dy

m-1

=Y Com(b®) = 1) “REF () + R((b - 1)"f) ()

a=0

= 11 +12.

Let f € L? (R%) and Q = B(xo, p(xo)) with A = by, then we have to deal with the average
on Q of each term.

Firstly, by the Holder inequality with p > p;, and Lemma 7,

1 m-1 1 =
— | < — b(y)-b RE d
|Q|/Q|1|N;|Q|/Q|( () - bas) " R )] dy

m-1

5 o-o10) (i )

m-1

< Z([bm’"‘“) i M, (1))

a=0

A
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As for I, we split f = f; + fo. Choosing pj, < p < p and denoting 4 + - =land v = 1%

using the boundedness of R on L?(R?) and the Hélder inequality, we obtam
1/p
Ql / [R((G) ~bas) A < ( Q / [R((b6) ~bas) ") )

IS (ﬁ /ZQ |(h(x)_b23)mf|i,) 1p
< <|Q| _/ |f|”>1/1’<ﬁ /2Q |(b(x)—b23)|mv>1/"

S [Bg” inf Myf (),

where in the last inequality we have used Lemma 6 for the remaining term. We firstly note
the fact that p(x) ~ p(x¢) and |x — z| ~ |x¢ — z|. Then we have to deal with

|R((b-bop)"fr)| =

/ Ko =60 - )1 | ST+ o)
x0—2|>2p(x0

where

o | 1b(2) ~ bas"|f @)
tro-i>20(x0) (1 + Z0E)N | — ]

]

|b(2) — byg|™|f (2)] |V ()]
I(x) = / T2\ N e 1/ 7|u—z|d‘1 dudz.
Ixo—zl>2p(xg) (1 + o) ) |x — 2| B(z,|x0—2|/4)

For I;(x), we have

71(x) Z 1+2’ 2’ Lo (o )) / \b(z)—b23|m[f(z)|dz
j=1 2 p(xo)<lxo-2I<2* p(xo)

< (1810)" lnfMJ(y)Z,mzl (N+mé’)

j=1

< ([61s)" inf M)

where we have used the following inequality:

Hf(b - bZB)mXB(xo,ﬂp(xo)) ”1 = |[fXB(x0,2jp(xo)) ”17 || (b - bZB)mXB(xO»Qj»O(xO)) 4

S (2p(x0)) inf Mof 0) (2 61s)"

/

by using Lemma 7, and we choose N large enough. As for I(x),

oo
- 1
I 1 21 _
295 2 ()2 0le) G
V(u)
< | b2 - bas|" D) VO
2 plxo)<lxo-2| <2 p(xo) Bz 23 p(xg)) U — 2]
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1

(1+2) Y pxo) = ————
; e TeN)]

x / ‘ |b(2) = bas| " || F1 (1 V 1 X502 pixg)) 92
2 p(xo)<lwo—zI<¥* p(xo)

Using the Holder inequality and the boundedness of the fractional integral 7; with 1/p’ =
1/s—1/d, we obtain

/ . , |b(2) = bas| " |o@)|F1L(IV | X523 o) 42
2 p(xo)<lxo—z| <2+ p(xg)

S @@ = b28)" Xaz.43 o |, | FL 1V 1 X323 piwon) [,

S A~ b28)" Xse.0 piaon |, |1V 1 X323 piaon [

Since V € RH;,

Vi, S @ota) ™ [ [via|de
B(z,2 p(x0))
< 2} d-2-d/s' 1 / 1% d
S (@olo) (Y p(x9))4-2 ZQ/p(xo))| @)z

5 (sz(xo))d—Z—d/s (21)2 d/s

And when v = ffpﬁ and 1/p’ = 1/s — 1/d, we also have

1220 (B = b26)" Xz piaon | = I Xstg 200 15 [ (B = B28)" Xy 0500 |,
< (Zp(x0)) ™ inf M () (72" (B1o)"

< (2" 1810)" (20 (eo)) " inf M)

Choosing N large enough, we get

B > ; 1 0 (51 V" (2 dlp
Lx) < le (1+2) )7|B(xo,?/p(xo))|(]2 [616)™ (2 p(x0))

« ingMpf(y)(zfp(xo))d—Z—d/s (21)2 dls
ye

A

Zlmzj (~-N+mb'~d+1+d/p) ([b]e) lll(gMpf(y)

j=1

< ([Blo)" inf M,f ©)-

~.

Therefore, this completes the proof. 0

Remark 1 It is easy to check that if the critical ball Q is replaced by 2Q, the last lemma
also holds.
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Lemmal3 LetV € RH% and b € BMOy(p). Then, for any s > py and y > 1, there exists a

constant C > 0 such that
[ IR0~ Kn2) [oe) - bal @) 2 < ClbIE int Mf ) (13)
(2B)¢ u

for all fand x,y € B = B(xo,r) with r < yp(xy). Additionally, if qo > d, the above estimate
also holds for K instead of K.

Because the proof of this lemma is very similar to that of Lemma 6 in [8], we omit the
details.

Proofs of Theorem 1 and Theorem 2 We will prove Theorem 1 via the mathematical induc-
tion and Theorem 2 follows by duality. When m = 1, we conclude that Theorem 1 is valid by
Theorem 1 in [8]. Suppose that the L boundedness of 7~2Zf holdswhenw =2,3,...,m -1,
where pj < p < 00. In what follows, we will prove that it is valid for k = m.

We start with a function f € L?(R¥) for Py <8 <00, and we notice that due to Lemma 12
we have R}'f € LL (R%).

loc

By using Lemma 11, Lemma 12 with pj < p < s and Remark 1, we have
R5rf = [ Wap (R

< 4 (Pm q 1 = 1
N/Rd |Mp,y(Rh )(x)| dx+;|Qk|(@/ |Rbf(x)|dx>

2Qx
- i 1 q
< [ v, (Rl (sz) [Z (/ o) )
a=1 k k
- q
R a
([, o Raryla) |
m q
< [ ot Ranofas (Vo) i, 1Rl
a=1

m q
< / M, (RiF) @) ds + (Z[b]z) 1
R4 a=1

where we use the finite overlapping property given by Lemma 10, the assumption on 7@‘;‘
and the boundedness of M, in L1(R?) for p < q.

Next, we consider the term fRd |M§’y (7§,’b”f )(x)|? dx. Our goal is to find a pointwise esti-
mate ofMﬁ,y(f%Z‘f)(x). Letx € R? and B = (xo, ) with 7 < yp(xo) such thatx € B.Iff = f; +f5
with fi = f x2¢, then we write

3

REF@) =Y Capm(bx) = 1) “REF(x) + R((b = 1)"f) ).

a

Il
(=]

Therefore, we need to control the mean oscillation on B of each term that we call Oy, O,.
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Let p > p,, by using the Holder inequality and Lemma 6, we obtain

1 M= 1~
(OBS Zﬁf]gy(b(x)-x) REf (x)| dx

m-1

; (% /B (0) = )" dx) ! ( 1B] / Ry @)’ dx) ’

o

A

m-1

(1610) "™ My (R ) ),

R
Il
(=}

since r < yp(xo).

As for Oy, let 1 < p < p. We split again f = f; + f,. Choose pj, < p < p and denote (1/p') +
(1/p)=1and v = 1%' Using the boundedness of R on LP(R?) and the Holder inequality,
we then get

On < |;T| IR (b — bs)™f) )| dx

< (g [ Rst@-nrmyra)

A

(|B|/Rb (|- bs)"fi @) dx)

1 . 1/v 1 »
<| Bl )=bs)| dx) (H /@ dx)
< (1B10)" M, ().

1/p

A

For O,,, by Lemma 13, we obtain

0s2 S 7 =/ / 1Ra (b bs)"fs) ) - R (b — b)) )| ey

< ([610)" Myf (),

since the integral is clearly bounded by the left-hand side of (13).
Therefore, we have proved that

m-1
ME(Ryf) )| < € (1b1e) ™" [Mp () (@) + M, (Rif) ()]
a=0

By the assumption on R} and the L” boundedness of M,, we obtain the desired result.

O

Proof of Theorem 3 We will prove Theorem 3 using the mathematical induction. When
m =1, we conclude that Theorem 3 is valid by Theorem 5 in [17]. Suppose that Theorem 3
holds when o =2, 3,...,m — 1. In what follows, we will prove that it is valid for k = m.
Similarly, we only consider the case of d <s<d. For f € HL(R?), we can write f =
Y2 oA ja;, where each a; is a (1, 9) , atom and > 0o 1M1 = 2|[f||H£. Suppose that supa; C

Page 11 of 16
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B, = B(xj, r;) with 7; < p(x;). Write

Ryf () = LRy ( > “i) ()

m-1 00 00
=2 Com(bx) - bs)" R ( > a,) (%) + R(A,»(b —bg)" Y a,) (x)
a=0 Jj=—00 J=—
m-1 oo
=D Camhi(bx) - bg) " “Riiajxss, ()
a=0 j=—00

mhi(b(x) = bg)" " Riajx(spe ()

+§Z

(%))

Jriz g

Cq,
+Z Z Comhj(b(x) — b)) _aRz“jX(SB,-)C(x)

a=0 plxj)

Jjirj<—4

+ R( > nb- bB,)ma,> (x)
J

= A1(x) + Ax(x) + Az(x) + Ag(x).
For the term A;(x), by Lemma 6 and Theorem 1, we obtain

1(60o) — 1" R 1,9
m-a|q v
(1601 d5) IR
SB/-
— / 1/q/
([ 16w -00)™|7 ) 1t
831‘
< 1 m-a|q v
— b d.
N<|3j|/83,»‘( ) - ) ‘ x)

S b1

since r; < p(x;).
Secondly, we consider the term A, (x). It is easy to see that |x —x;| ~ |x — y| and

-yl |x—x,»|) ( |x-x,-|>10%
(l p<>> C(“ o )ZC T m )

Note that p(x;) > r; > @. By the Holder inequality and inequality (11), we obtain, for

some £ > 1,

/ (b(x) - ij)m—oz |K(x,y)| dx
2 r,<|x—x]|<2k*1r/~

4 1

1
t' (m—a) i t i
< (b(x) - bg;) dx |K(x,9)|" dx
2K <|a—xj|<2K+1r; 2K rj<|x—xj|<2k+1r;
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1

5 [b]gn—a / |’C(x,y)|tdx t(2k+lrj);i’
2krj§|x—xj\<2k*1rj

_ N 4
Sl 1+ 2\ 2
~ p(x;) (2K )1

1
Vi(z ‘ t
X (/ </ —( )d_l dz) dx)
2krj§|x—xj\<2k+1r/- B(x/',2k+3rj) |z - le
2kp, \ T 4 1 :
+ [b]gfz—a <1 + ] ) (2k+11"1') v (/ W dx>
Io(x/) 2kr/§\x—xj|<2k“r/ |x_x}| *
2kr» Io+1 +1 2k+1 %1
S [blg™ <1 + — > ot T ) ((/ Vi(z) dz) + 1)
p(‘x]) (2 r]) B(x]‘,2k+3r]‘)

d
2K \ "o (2K41y) ¥ d d
< [p1me(1 J J 2k+3 . / Vi(z)d 2k+3 Va 41
< [ < + ,o(xj)> @Fr)d ] (( rj) st 24550) (2)dz ) (2°r;) 7 +

N, 2k+1 A o
S Bl (1+ 25 (7)) 0T h(ﬂ(zk ) +1>

(2kl”j)d_1
ko *%"‘ll
< (B 1+2r] 0+1 ,
~e p(x))

where % =

%1 - %. Via the above estimate, we have

” (b(x) - ij)miaR(bxa/X(SBj)C (x) ”Ll(Rd)
b _b ) m-o
= /Ixx;zsg-( ®) - b)
/ |a,()/)’2/k . b(x)—bB].)mfa|K(x,y)‘dxdy
lo+1 +h
b d
/ an e ( (x})) y

S bl

dx

| Kwa0)dy

if we choose N large enough.
Thirdly, we consider the term A3(x). Via the Holder inequality and (12), we get, for some
t>1,

/ (b(x) - bg)" | K(x,y) — K, %)) | dx
2K <|x—aj|<2k+1r; 4

S (/ (b(x) _ij)t/(Wlfot) dx)
2kri§\x—xi|<2k+1ri

1
T
x (/ |K(x,5) - ic(x,x,)|‘dx)
2krj§|x—xj\<2k+1r,~

!

i
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1

t d
< [bl ( / |K(x, y)—lC(x,x,-)de) (2"1r) 7
2krj§|x—xj\<2k*1rj
- 2k’,, 10+1( ) (2k+1}’)t’
steye (125 ) O
p () (2%ry)
\4
. ( / ( [ e dz)
2krj§|x—xj\<2k+1r/- B(x/,2k+3rj) |Z - le

2k, i d
j

1
x ( / @
r,<|x—x,\<2k+1rl |x x|

S(ok+1l,,\ 7 1
<l {r’(z+”’)‘ (f V(z)qdz)q+2"‘5}
o +ﬁ}lo% (2K ry) @18 \ g aker)

p(xj)

Sl

t
dx)

1
3

n
) —

LAY
{1 + p(_x,)} 0+1
{V}S@k”n)? ( L / V(o)d )( 7)7 +2 kS}
X z)dz 1427
(2krj)d—1+8 (2k+3rj)d B(xj,2k+3rj)

d

1 @) oy

) (rf Y (k) +z—k6)
{1+jx:/}lo+1 (2’”) *

< [b]m—a 1 2—k§
~ 6 2k r] -h ’
{1 + } lo+l

1_1_1
wheret-q 3

Similarly, via the above estimate and the vanishing moment of a;, we have

| (b = b)) Ry xisme @) | 11 g

5/ (b(x bB/ "‘* ‘/ (x,y x,x,)] a;(y) dy| dx
|x—x;|>8B;

«/ }a}(y ’ Z/ K <|x—aj| <2k+1y; b(x) B ij)m"" | [’C(x’y) - K(x’xf)] | dxdy

/ |a;(y) dy| Z 72"%‘S

Zkrl }10+1 -h
S bl

Thus, we have

A C " by &
{xeRd: |A,~(x)| > Z} < x”Ai(x) ||L1 < w Z A, i=1,2,3.
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Moreover, note that

, 1/q
|(b—bs)"aj|,, < (/B (b(x) —bB,-)mq d)’) llajllza

]

1 , 1/q
— | (b(x)-bs)"" d
: (Ile /13,( )=bs) y)

<[b]'”<1+ 7 )W
U )
< b1y,

where 7; < p(x;).
By the weak (1,1) boundedness of R, we get

[eem: il ][ 1| S ne-sa

Ly

Therefore,

4
{xeRd:|RZ’f(x)]>%”,<vZ

This completes the proof of Theorem 3. d
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