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1 Introduction
In , Lupaş [] introduced a q-analogue of Bernstein operators, and in  another q-
generalization of the Bernstein polynomials was introduced by Phillips []. After that gen-
eralizations of the Bernstein polynomials based on the q-integers attracted a lot of interest
and were studied widely by a number of authors. Some new generalizations of well-known
positive linear operators based on q-integers were introduced and studied by several au-
thors (e.g., see [–]). On the other hand, the study of the statistical convergence for se-
quences of positive operators was attempted by Gadjiev and Orhan []. Very recently, the
statistical approximation properties have also been investigated for q-analogue polynomi-
als. For instance, in [] q-Bleimann, Butzer and Hahn operators; in [] Kantorovich-type
q-Bernstein operators; in [] a q-analogue of MKZ operators; in [] Kantorovich-type
q-Szász-Mirakjan operators; in [] Kantorovich-type q-Bernstein-Stancu operators were
introduced and their statistical approximation properties were studied.
The paper is organized as follows. In Section , we introduce a new modification of

Schurer-type q-Bernstein Kantorovich operators and evaluate the moments of these op-
erators. In Section  we study local convergence properties in terms of the first and the
secondmodulus of continuity. In Section , we obtain their statistical approximation prop-
erties with the help of the Korovkin-type theorem proved by Gadjiev and Orhan. Further-
more, in Section , we compute the degree of convergence of the approximation process
in terms of the modulus of continuity and the Lipschitz class functions.

2 Construction of the operators
Some definitions and notations regarding the concept of q-calculus can be found in [].
Let α,β ,p ∈ N

 (the set of all nonnegative integers) be such that ≤ α ≤ β .We introduce a
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newmodification of Schurer-type q-Bernstein Kantorovich operators K (α,β)
n,q (f ;x) : C[,  +

p] → C[, ] as follows:

K (α,β)
n,q (f ;x) =

n+p∑
k=

pn,k(q;x)
∫ 


f
(

t
[n +  + β]q

+
q[k + α]q
[n +  + β]q

)
dqt, (.)

where x ∈ [, ] and pn,k(q;x) = [ n+pk ]qx
k ∏n+p–k–

s= ( – qsx). It is clear that K (α,β)
n,q (f ;x) is a

linear and positive operator. When α = β = , it reduces to the Schurer-type q-Bernstein
Kantorovich operators (see [])

Kp
n (f ;q;x) =

n+p∑
k=

[
n + p
k

]
q
xk

n+p–k–∏
s=

(
 – qsx

)∫ 


f
(

t
[n + ]q

+
q[k]q
[n + ]q

)
dqt.

In order to investigate the approximation properties of K (α,β)
n,q , we need the following

lemmas.

Lemma . ([]) For the generalized q-Schurer-Stancu operators

(
S(α,β)n,p,q f

)
(x) =

n+p∑
k=

[
n + p
k

]
q
xk

n+p–k–∏
s=

(
 – qsx

)
f
(
[k + α]q
[n + β]q

)
, x ∈ [, ],

the following properties hold:

(
S(α,β)n,p,q 

)
(x) = , (.)

(
S(α,β)n,p,q t

)
(x) =

qα[n + p]q
[n + β]q

x +
[α]q

[n + β]q
, (.)

(
S(α,β)n,p,q t

)(x) = [n + p]q[n + p – ]q
[n + β]q

qα+x +
[n + p]qqα

[n + β]q

(
[α]q + qα

)
x +

[α]q
[n + β]q

. (.)

Lemma . For K (α,β)
n,q (ti;x), i = , , , we have

K (α,β)
n,q (;x) = , (.)

K (α,β)
n,q (t;x) =

[n + p]q
[n +  + β]q

qα+x +


[n +  + β]q

(


[]q
+ q[α]q

)
, (.)

K (α,β)
n,q

(
t;x

)
=
[n + p]q[n + p – ]q

[n +  + β]q
qα+x

+
[n + p]q

[n +  + β]q

(


[]q
qα+ + q+α

(
[α]q + qα

))
x

+


[n +  + β]q

(


[]q
+
q[α]q
[]q

+ q[α]q

)
. (.)

Proof It is obvious that

∫ 


dqt = ,

∫ 


t dqt =


[]q

,
∫ 


t dqt =


[]q

,  < q < .
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For i = , since
∑n+p

k= pn,k(q;x) = , so (.) holds.
For i = , we get

K (α,β)
n,q (t;x) =

n+p∑
k=

pn,k(q;x)
∫ 



(
t

[n +  + β]q
+

q[k + α]q
[n +  + β]q

)
dqt

=
n+p∑
k=

pn,k(q;x)
∫ 



t
[n +  + β]q

dqt +
n+p∑
k=

pn,k(q;x)
∫ 



q[k + α]q
[n +  + β]q

dqt

=


[]q[n +  + β]q
+

n+p∑
k=

pn,k(q;x)
q[k + α]q
[n +  + β]q

.

Using (.), we have

n+p∑
k=

pn,k(q;x)
q[k + α]q
[n +  + β]q

=
q[n + β]q
[n +  + β]q

n+p∑
k=

pn,k(q;x)
[k + α]q
[n + β]q

=
q[n + β]q
[n +  + β]q

(
S(α,β)n,p,q t

)
(x).

So

K (α,β)
n,q (t;x) =

[n + p]q
[n +  + β]q

qα+x +


[n +  + β]q

(


[]q
+ q[α]q

)
.

For i = ,

∫ 



(
t

[n +  + β]q
+

q[k + α]q
[n +  + β]q

)

dqt

=


[n +  + β]q

(∫ 


t dqt + q[k + α]q

∫ 


t dqt + q[k + α]q

∫ 


dqt

)

=


[n +  + β]q

(


[]q
+
q[k + α]q

[]q
+ q[k + α]q

)
,

we obtain

K (α,β)
n,q

(
t;x

)

=


[n +  + β]q

n+p∑
k=

pn,k(q;x)
(


[]q

+
q[k + α]q

[]q
+ q[k + α]q

)

=


[]q[n +  + β]q
+

[n + β]q
[n +  + β]q

q
[]q

n+p∑
k=

pn,k(q;x)
[k + α]q
[n + β]q

+
q[n + β]q
[n +  + β]q

n+p∑
k=

pn,k(q;x)
[k + α]q
[n + β]q

=


[]q[n +  + β]q
+

[n + β]q
[n +  + β]q

q
[]q

(
S(α,β)n,p,q t

)
(x) +

q[n + β]q
[n +  + β]q

(
S(α,β)n,p,q t

)(x).

Using (.) and (.), by a simple calculation we can get the stated result (.). �
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Lemma . From Lemma ., we have

μp
n,q(x) := K (α,β)

n,q (t – x;x)

=
(
qα+[n + p]q
[n +  + β]q

– 
)
x +


[n +  + β]q

(


[]q
+ q[α]q

)
(.)

and

δpn,q(x) := K (α,β)
n,q

(
(t – x);x

)

=
(
[n + p]q[n + p – ]qqα+

[n +  + β]q
–
qα+[n + p]q
[n +  + β]q

+ 
)
x

+
(

[n + p]q
[n +  + β]q

(


[]q
qα+ + q+α

(
[α]q + qα

))

–


[n +  + β]q

(


[]q
+ q[α]q

))
x

+


[n +  + β]q

(


[]q
+
q[α]q
[]q

+ q[α]q

)
. (.)

3 Local approximation
Now, we consider a sequence q = qn satisfying the following two expressions:

lim
n→∞qn =  and lim

n→∞


[n]qn
= . (.)

By the Korovkin theorem, we can state the following theorem.

Theorem . Let K (α,β)
n,qn (f ;x) be a sequence satisfying (.) for  < qn < . Then, for any

function f ∈ C[,p + ], the following equality

lim
n→∞

∥∥K (α,β)
n,qn (f ; ·) – f

∥∥
C[,] = 

is satisfied.

Proof Weknow thatK (α,β)
n,q (f ;x) is linear positive. By Lemma ., if we choose the sequence

q = qn satisfying conditions (.), and using the equality

[n + α]qn = [n]qn + qnn[α]qn , [n +  + β]qn = [n]qn + qnn[β + ]qn , (.)

we have

K (α,β)
n,qn (q;x)⇒ , K (α,β)

n,qn (t;x)⇒ x, K (α,β)
n,qn

(
t;x

)
⇒ x

as n → ∞. Because of the linearity and positivity of K (α,β)
n,qn (f ;x), the proof is complete by

the classical Korovkin theorem. �

Consider the following K-functional:

K
(
f , δ

)
:= inf

{‖f – g‖ + δ
∥∥g ′′∥∥ : g ∈ C[,p + ]

}
, δ ≥ ,
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where

C[,p + ] :=
{
g : g, g ′, g ′′ ∈ C[,p + ]

}
.

Then, in view of a known result [], there exists an absolute constant C >  such that

K
(
f , δ

) ≤ Cω(f , δ), (.)

where

ω(f , δ) := sup
<h≤δ

sup
x±h∈[,p+]

∣∣f (x – h) – f (x) + f (x + h)
∣∣

is the second modulus of smoothness of f ∈ C[,p + ].
Let f ∈ C[,p + ], for any δ > , the usual modulus of continuity for f is defined as

ω(f , δ) = sup<h≤δ supx,x+h∈[,p+] |f (x + h) – f (x)|.
We next present the following local theorem of the operators K (α,β)

n,q (f ;x) in terms of the
first and the second modulus of continuity of the function f ∈ C[,p + ].

Theorem . Let f ∈ C[,p + ], there exists an absolute constant C >  such that

∣∣K (α,β)
n,q (f ;x) – f (x)

∣∣ ≤ Cω

(
f ,

√
apn,q(x)

)
+ω

(
f ,bpn,q(x)

)
,

where

apn,q(x)

=
(qα+[n + p]q

[n +  + β]q
+
[n + p]q[n + p – ]q

[n +  + β]q
qα+ –

qα+[n + p]q
[n +  + β]q

+ 
)
x

+
(

[n + p]q
[n +  + β]q

(
qα+

[]q
+ qα+[α]q + qα+

)
–


[n +  + β]q

(


[]q
+ q[α]q

))
x

+


[n +  + β]q

(
q[α]q +

q[α]q
[]q

+


[]q
+


[]q

)

and

bpn,q(x) =
∣∣∣∣
(
qα+[n + p]q
[n +  + β]q

– 
)
x +


[n +  + β]q

(


[]q
+ q[α]q

)∣∣∣∣.

Proof Let

K (α,β)
n,q (f ;x) := K (α,β)

n,q (f ;x) – f
(
ξp
n,q(x)

)
+ f (x),

where f ∈ C[,p + ] and

ξ p
n,q(x) =

[n + p]q
[n +  + β]q

qα+x +


[n +  + β]q

(


[]q
+ q[α]q

)
.
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Using the Taylor formula

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – s)g ′′(s)ds

for g ∈ C[,p + ], we have

K (α,β)
n,q (g;x) = g(x) +K (α,β)

n,q

(∫ t

x
(t – s)g ′′(s)ds;x

)
–

∫ ξ
p
n,q(x)

x

(
ξp
n,q(x) – s

)
g ′′(s)ds.

Hence

∣∣K (α,β)
n,q (g;x) – g(x)

∣∣

≤ K (α,β)
n,q

(∣∣∣∣
∫ t

x
|t – s| · ∣∣g ′′(s)

∣∣ds
∣∣∣∣;x

)
+

∣∣∣∣
∫ ξ

p
n,q(x)

x

∣∣ξp
n,q(x) – s

∣∣ · ∣∣g ′′(s)
∣∣ds

∣∣∣∣
≤ ∥∥g ′′∥∥K (α,β)

n,q
(
(t – x);x

)
+

∥∥g ′′∥∥(
ξp
n,q(x) – x

).
Observe that

K (α,β)
n,q

(
(t – x);x

)
+

(
ξp
n,q(x) – x

) = apn,q(x),

we obtain

∣∣K (α,β)
n,q (g;x) – g(x)

∣∣ ≤ apn,q(x)
∥∥g ′′∥∥. (.)

Using (.) and the uniform boundedness of K (α,β)
n,q , we get

∣∣K (α,β)
n,q (f ;x) – f (x)

∣∣ ≤ ∣∣K (α,β)
n,q (f – g;x)

∣∣ + ∣∣K (α,β)
n,q (g;x) – g(x)

∣∣
+

∣∣f (x) – g(x)
∣∣ + ∣∣f (ξ p

n,q(x)
)
– f (x)

∣∣
≤ ‖f – g‖ + apn,q(x)

∥∥g ′′∥∥ +ω
(
f ,bpn,q(x)

)
.

Taking the infimum on the right-hand side over all g ∈ C[,p + ], we obtain

∣∣K (α,β)
n,q (f ;x) – f (x)

∣∣ ≤ CK

(
f ,

√
apn,q(x)

)
+ω

(
f ,bpn,q(x)

)
,

which together with (.) gives the proof of the theorem. �

4 Korovkin-type statistical approximation properties
Further on, let us recall the concept of statistical convergence which was introduced by
Fast [].
Let the set K ∈ N and Kn = {k ≤ n : k ∈ K}, the natural density of K is defined by δ(K ) :=

limn→∞ 
n |Kn| if the limit exists (see []), where |Kn| denotes the cardinality of the set Kn.

A sequence x = xk is called statistically convergent to a number L if for every ε > ,
δ{k ∈ N : |xk – L| ≥ ε} = . This convergence is denoted as st- limk xk = L. It is known
that any convergent sequence is statistically convergent, but not conversely. Details can
be found in [].
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In approximation theory by linear positive operators, the concept of statistical conver-
gence was used by Gadjiev and Orhan []. They proved the following Bohman-Korovkin-
type approximation theorem for statistical convergence.

Theorem . ([]) If the sequence of linear positive operators An : C[a,b]→ C[a,b] satis-
fies the conditions

st- lim
n

∥∥An(ei; ·) – ei
∥∥
C[a,b] = 

for ei(t) = ti, i = , , , then, for any f ∈ C[a,b],

st- lim
n

∥∥An(f ; ·) – f
∥∥
C[a,b] = .

In this section, we establish the following Korovkin-type statistical approximation the-
orems.

Theorem . Let q = qn,  < qn < , be a sequence satisfying the following conditions:

st- lim
n
qn = , st- lim

n
qnn = a (a < ) and st- lim

n


[n]qn

= , (.)

then, for f ∈ C[,p + ], we have

st- lim
n

∥∥K (α,β)
n,qn (f ; ·) – f

∥∥
C[,] = .

Proof From Theorem ., it is enough to prove that st- limn ‖K (α,β)
n,qn (ei; ·) – ei‖C[,] =  for

ei = ti, i = , , .
By (.), we can easily get

st- lim
n

∥∥K (α,β)
n,qn (e; ·) – e

∥∥
C[,] = . (.)

From equality (.) and (.) we have

∥∥K (α,β)
n,qn (e; ·) – e

∥∥
C[,]

≤
∣∣∣∣q

α+
n [n + p]qn
[n +  + β]qn

– 
∣∣∣∣ + 

[n +  + β]qn

(


[]qn
+ qn[α]qn

)

≤
∣∣∣∣q

α+
n [n + p]qn
[n +  + β]qn

– 
∣∣∣∣ +  + α

[n]qn
. (.)

Now, for given ε > , let us define the following sets:

U =
{
k :

∥∥K (α,β)
n,qk (e; ·) – e

∥∥
C[,] ≥ ε

}
,

U =
{
k :

qα+
k [n + p]qk
[n +  + β]qk

–  ≥ ε



}
,

U =
{
k :

 + α

[n]qk
≥ ε



}
.
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From (.), one can see that U ⊆U ∪U, so we have

δ
{
k ≤ n :

∥∥K (α,β)
n,qk (e; ·) – e

∥∥
C[,] ≥ ε

}

≤ δ

{
k ≤ n :

qα+
k [n + p]qk
[n +  + β]qk

–  ≥ ε



}
+ δ

{
k ≤ n :

 + α

[n]qk
≥ ε



}
.

By (.) it is clear that

st- lim
n

(
qα+
n [n + p]qn
[n +  + β]qn

– 
)
= 

and

st- lim
n

 + α

[n]qn
= .

So we have

st- lim
n

∥∥K (α,β)
n,qn (e; ·) – e

∥∥
C[,] = . (.)

Finally, in view of (.), one can write

∥∥K (α,β)
n,qn (e; ·) – e

∥∥
C[,]

≤
∣∣∣∣ [n + p]qn [n + p – ]qn

[n +  + β]qn
qα+n – 

∣∣∣∣
+

[n + p]qn
[n +  + β]qn

(


[]qn
qα+
n + q+α

n
(
[α]qn + qα

n
))

+


[n +  + β]qn

(


[]qn
+
qn[α]qn
[]qn

+ qn[α]

qn

)
.

Using (.),


[]qn

qα+
n + q+α

n
(
[α]qn + qα

n
) ≤  + α,


[]qn

+
qn[α]q
[]q

+ q[α]q ≤ ( + α),

and

qn[n + p – ]qn = [n + p]qn – ,

we can write

∥∥K (α,β)
n,qn (e; ·) – e

∥∥
C[,]

≤ [n + p]qnqα+n
[n +  + β]qn

+
∣∣∣∣q

α+
n [n + p]qn
[n +  + β]qn

– 
∣∣∣∣ + ( + α)[n + p]qn

[n +  + β]qn
+

( + α)

[n +  + β]qn
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≤
∣∣∣∣q

α+
n [n + p]qn
[n +  + β]qn

– 
∣∣∣∣ + ( + α)

[n]qn

(
 +

[p]qn
[n]qn

)
+
( + α)

[n]qn

=: θn + γn + ηn.

Then, from (.), we have

st- lim
n

θn = st- lim
n

γn = st- lim
n

ηn = . (.)

Here, for given ε > , let us define the following sets:

T =
{
k :

∥∥K (α,β)
n,qk (e; ·) – e

∥∥
C[,] ≥ ε

}
,

T =
{
k : θk ≥ ε



}
, T =

{
k : γk ≥ ε



}
, T =

{
k : ηk ≥ ε



}
.

It is clear that T ⊆ T ∪ T ∪ T. So we get

δ
{
k ≤ n :

∥∥K (α,β)
n,qk (e; ·) – e

∥∥
C[,] ≥ ε

}

≤ δ

{
k ≤ n : θk ≥ ε



}
+ δ

{
k ≤ n : γk ≥ ε



}
+ δ

{
k ≤ n : ηk ≥ ε



}
.

By condition (.), we have

δ
{
k ≤ n :

∥∥K (α,β)
n,qk (e; ·) – e

∥∥
C[,] ≥ ε

}
= ,

which implies that

st- lim
n

∥∥K (α,β)
n,qn (e; ·) – e

∥∥
C[,] = . (.)

In view of (.), (.) and (.), the proof is complete. �

5 Rates of convergence
Let f ∈ C[,p+] for any t ∈ [,p+] and x ∈ [, ]. Thenwe have |f (t)– f (x)| ≤ ω(f , |t–x|),
so for any δ > , we get

ω
(
f , |t – x|) ≤

⎧⎨
⎩

ω(f , δ), |t – x| < δ,

ω(f , (t–x)


δ
), |t – x| ≥ δ.

Owing to ω(f ,λδ)≤ ( + λ)ω(f , δ) for λ > , it is obvious that we have

∣∣f (t) – f (x)
∣∣ ≤ (

 + δ–(t – x)
)
ω(f , δ) (.)

for any t ∈ [,p + ], x ∈ [, ] and δ > .
Now, we give the convergence rate of K (α,β)

n,q (f ;x) to the function f ∈ C[,p + ] in terms
of the modulus of continuity.
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Theorem . Let q = qn,  < qn < , be a sequence satisfying (.), then for any function
f ∈ C[,p + ], x ∈ [, ], we have

∣∣K (α,β)
n,qn (f ;x) – f (x)

∣∣ ≤ ω
(
f ,

√
δ
p
n,qn (x)

)
,

where δ
p
n,qn (x) is given by (.).

Proof Using the linearity and positivity of the operator K (α,β)
n,q (f ;x) and inequality (.), for

any f ∈ C[,p + ] and x ∈ [, ], we get

∣∣K (α,β)
n,q (f ,x) – f (x)

∣∣ ≤ K (α,β)
n,q

(∣∣f (t) – f (x)
∣∣;x)

≤ (
 + δ–K (α,β)

n,q
(
(t – x);x

))
ω(f , δ). (.)

Take q = qn,  < qn < , be a sequence satisfying condition (.) and choose δ =
√

δ
p
n,qn (x)

in (.), the desired result follows immediately. �

Finally, we give the rate of convergence of K (α,β)
n,q (f ;x) with the help of functions of the

Lipschitz class. We recall a function f ∈ LipM(λ) on [,p + ] if the inequality

∣∣f (t) – f (x)
∣∣ ≤M|t – x|λ, t,x ∈ [,p + ] (.)

holds.

Theorem . Let f ∈ LipM(λ) on [,p + ],  < λ ≤ . Let q = qn,  < qn <  be a sequence
satisfying the conditions given in (.). If we take δ

p
n,qn (x) as in (.), then we have

∣∣K (α,β)
n,qn (f ;x) – f (x)

∣∣ ≤M
(
δpn,qn (x)

)λ/, x ∈ [, ].

Proof Let f ∈ LipM(λ) on [,p + ],  < λ ≤ . Since K (α,β)
n,qn (f ;x) is linear and positive, by

using (.), we have

∣∣K (α,β)
n,qn (f ;x) – f (x)

∣∣ ≤ K (α,β)
n,qn

(∣∣f (t) – f (x)
∣∣;x) ≤ K (α,β)

n,qn

(|t – x|λ;x).

If we take p′ = 
λ
, q′ = 

–λ
and apply the Hölder inequality, then we obtain

∣∣K (α,β)
n,qn (f ;x) – f (x)

∣∣ ≤M
(
K (α,β)
n,qn

(
(t – x);x

))λ/ ≤M
(
δpn,qn (x)

)λ/. �
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