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Abstract
In the present paper, we propose several kinds of adaptively relaxed iterative
algorithms with a new step size for solving the split feasibility problem in real Hilbert
spaces. The proposed algorithms never terminate, while the known algorithms
existing in the literature may terminate. Several weak and strong convergence
theorems of the proposed algorithms have been established. Some numerical
experiments are also included to illustrate the effectiveness of the proposed
algorithms.
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1 Introduction
Since its inception in , the split feasibility problem SFP [] has been attracting re-
searchers’ interest [, ] due to its extensive applications in signal processing and image re-
construction [], with particular progress in intensity-modulated radiation therapy [, ].
Let H and H be real Hilbert spaces, C and Q be nonempty closed convex subsets of

H and H, respectively, and A : H → H a bounded linear operator. Then SFP can be
formulated as finding a point x̂ with the property

x̂ ∈ C and Ax̂ ∈Q. (.)

The set of solutions for SFP (.) is denote by � = C ∩A–(Q).
Over the past two decades years or so, the researchers invested and designed various

iterative algorithms for solving SFP (.); see [–]. The most popular algorithm, among
them, is Byrne’s CQalgorithm,which generates a sequence {xn} by the recursive procedure

x ∈ H, xn+ = PC
(
xn – τnA∗(I – PQ)Axn

)
, n≥ , (.)

where the step size τn is chosen in the open interval (, /‖A‖), while PC and PQ are the
orthogonal projections onto C and Q, respectively.
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We remark in passing that Byrne’s CQ algorithm (.) is indeed a special case of the
classical gradient projection method (GPM). To see this, let us define f :H → R by

f (x) =


∥∥(I – PQ)Ax

∥∥, (.)

then the convex objective f is differentiable and has a Lipschitz gradient given by

∇f (x) = A∗(I – PQ)Ax. (.)

We consider the following convex minimization problem:

min
x∈C f (x). (.)

It is well known that x̂ ∈ C is a solution of problem (.) if and only if

〈∇f (x̂),x – x̂
〉 ≥ , ∀x ∈ C. (.)

Also, we know that (.) holds true if and only if

x̂ = PC(I – τ∇f )x̂, ∀τ > . (.)

Note that if � 
= ∅, then x̂ ∈ � ⇔ f (x̂) =minx∈C f (x) ⇔ (.) holds ⇔ (.) holds. Conse-
quently, we can utilize the classical gradient projection method (GPM) below to solve SFP
(.):

x ∈ C, xn+ = PC
(
xn – τn∇f (xn)

)
, n≥ , (.)

where τn ∈ (, /L), while L is the Lipschitz constant of ∇f . Noting that L = ‖A‖, we see
immediately that (.) is exactly CQ algorithm (.).
We note that, in algorithms (.) and (.) mentioned above, the choice of the step size

τn depends heavily on the operator (matrix) norm ‖A‖. This means that for actual im-
plementation of CQ algorithm (.), one has first to know at least an upper bound of the
operator (matrix) norm ‖A‖, which is in general difficult. To overcome this difficulty, sev-
eral authors proposed several various of adaptive methods, which permit the step size τn

to be selected self-adaptively; see [–].
Yang [] considered the following step size:

τn :=
ρn

‖∇f (xn)‖ , (.)

where {ρn} is a sequence of positive real numbers such that

∞∑
n=

ρn =∞,
∞∑
n=

ρ
n < ∞. (.)

Very recently, López et al. [] introduced another choice of the step size sequence {τn}
as follows:

τn :=
ρnfn(xn)

‖∇fn(xn)‖ , (.)
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where {ρn} is chosen in the open interval (, ). By virtue of the step size (.), López et
al. [] introduced four kinds of algorithms for solving SFP (.).
We observe that if ∇f (xn) =  for some n ≥ , then the algorithms introduced by López

et al. [] have to terminate in the nth step of iterations. In this case xn is not necessarily a
solution of the SFP (.), since xn may be not in C, Algorithm . in [] is such a case. To
make up the flaw, we introduce a new choice of the step size sequence {τn} as follows:

τn :=
ρnfn(xn)

(‖∇fn(xn)‖ + σn)
, (.)

where {ρn} is chosen in the open interval (, ) and {σn} is a sequence of positive numbers
in (, ), while fn and ∇fn are given by, respectively,

fn(x) =


∥∥(I – PQn )Ax

∥∥, (.)

∇fn(x) = A∗(I – PQn )Ax, (.)

where {Qn} will be defined in Section .
The purpose of this paper is to introduce a new choice of the step size sequence {τn}

that makes the associated algorithms never terminate. A new stop rule is also given, which
ensures that the (n + )th iteration xn+ is a solution of SFP (.) and the iterative process
stops. Several weak and strong convergence results are presented. Numerical experiments
are included to illustrate the effectiveness of the proposed algorithms and the applications
in signal processing of the CQ algorithm with the step size selected in this paper.
The rest of this paper is organized as follows. In the next section, some necessary con-

cepts and important facts are collected. The weak and strong convergence theorems of the
proposed algorithms with step size (.) are established in Section . Finally in Section ,
we provide some numerical experiments to illustrate the effectiveness and applications
of the proposed algorithms with step size (.) to inverse problems arising from signal
processing.

2 Preliminaries
Throughout this paper, we assume that SFP (.) is consistent, i.e., � 
= ∅. We denote by
R the set of real numbers. Let H and H real Hilbert spaces and the letter I the identity
mapping on H or H. If f :H → R is a differentiable (subdifferentiable) functional, then
we denote by∇f (∂f ) the gradient (subdifferential) of f . Given a sequence {xn} inH ,ww(xn)
(resp. ‘xn ⇀ x’) denotes the strong (resp. weak) convergence of {xn} to x. The symbols 〈·, ·〉
and ‖ · ‖ denote inner product and norm of Hilbert spaces H and H, respectively. Let
T :H → H be a mapping. We use Fix(T) to denote the set of fixed points of T . We also
denote by dom(T) the domain of T .
Some equalities in Hilbert spaceH play very important roles for solving linear and non-

linear problems arising from real world.
It is well known that in a real Hilbert space H, the following two equalities hold:

‖x± y‖ = ‖x‖ ± 〈x, y〉 + ‖y‖, (.)
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Zhou and Wang Journal of Inequalities and Applications 2014, 2014:448 Page 4 of 22
http://www.journalofinequalitiesandapplications.com/content/2014/1/448

for all x, y ∈ H.

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, (.)

for all x, y ∈ H and t ∈R.
Recall that a mapping T : dom(T) ⊂H →H is said to be
(i) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, (.)

for all x, y ∈ dom(T);
(ii) firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥, (.)

for all x, y ∈ dom(T);
(iii) λ-averaged if there exist some λ ∈ (, ) and another nonexpansive mapping

S :H →H such that

T = ( – λ)I + λS. (.)

The following proposition describes the characterizations of firmly nonexpansive map-
pings (see []).

Proposition . Let T : dom(T) ⊂H →H be a mapping. Then the following statements
are equivalent.

(i) T is firmly nonexpansive;
(ii) I – T is firmly nonexpansive;
(iii) ‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉 for all x, y ∈ H;
(iv) T is 

 -averaged;
(v) T – I is nonexpansive.

Recall that themetric (nearest point) projection formH onto a nonempty closed convex
subset C of H is defined as follows: for each x ∈ H, there exists a unique point PCx ∈ C
with the property:

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C. (.)

Now we list some basic properties of PC below; see [] for details.

Proposition .

(p) Given x ∈H and z ∈ C. Then z = PCx if and only if we have the inequality

〈x – z, y – z〉 ≤ , ∀y ∈ C; (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/448
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(p)

‖PCx – PCy‖ ≤ 〈x – y,PCx – PCy〉, for all x, y ∈H; (.)

(p)

∥∥(I – PC)x – (I – PC)y
∥∥ ≤ 〈

(I – PC)x – (I – PC)y,x – y
〉
, (.)

for all x, y ∈H.
(p) PC – I is nonexpansive;
(p)

‖PCx – PCy‖ ≤ ‖x – y‖ – ∥∥(I – PC)x – (I – PC)y
∥∥, x, y ∈H; (.)

in particular,
(p)

‖PCx – y‖ ≤ ‖x – y‖ – ∥∥(I – PC)x
∥∥, for all x ∈H and y ∈ C. (.)

From (p), (p), and (p), we see immediately that both PC and (I – PC) are firmly non-
expansive and 

 -averaged.
Recall that a function f :H →R is called convex if

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y), ∀λ ∈ (, ),∀x, y ∈H.

It iswell known that a differentiable function f is convex if and only if we have the relation

f (z) ≥ f (x) +
〈∇f (x), z – x

〉
, ∀z ∈H.

Recall that an element ξ ∈H is said to be a subgradient of f :H →R at x if

f (z) ≥ f (x) + 〈ξ , z – x〉, ∀z ∈H.

If the function f :H → R has at least one subgradient at x, it is said to be subdifferen-
tiable at x. The set of subgradients of f at the point x is called the subdifferential of f at x,
and is denoted by ∂f (x). A function f is called subdifferentiable if it is subdifferentiable
at every x ∈ H. If f is convex and differentiable, then ∂f (x) = {∇f (x)} for every x ∈ H.
A function f is called subdifferentiable if it is subdifferentiable at every x ∈H. If f is con-
vex and differentiable, then ∂f (x) = {∇f (x)} for every x ∈H. A function f :H →R is said
to be weakly lower semi-continuous (w-lsc) at x if xn ⇀ x implies

f (x)≤ lim
n
f (xn).

f is said to be w-lsc on H if it is w-lsc at every point x ∈H.
It is well known that for a convex function f : H → R, it is w-lsc on H if and only if it

is lsc on H.
It is an easy exercise to prove the following conclusions (see [, ]).

http://www.journalofinequalitiesandapplications.com/content/2014/1/448
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Proposition . Let f be given as in (.). Then the following conclusions hold.
(i) f is convex and differentiable;
(ii) ∇f (x) = A∗(I – PQ)Ax, x ∈H;
(iii) f is w-lsc on H;
(iv) ∇f is ‖A‖-Lipschitz:

∥∥∇f (x) –∇f (y)
∥∥ ≤ ‖A‖‖x – y‖, x, y ∈H .

The concept of Fejér monotonicity plays a key role in establishing weak convergence
theorems. Recall that a sequence {xn} in H is said to be Fejér monotone with respect to
(w.r.t.) a nonempty closed convex subset C in H if

‖xn+ – z‖ ≤ ‖xn – z‖, ∀n≥ ,∀z ∈ C.

Proposition . (see [, ]) Let C be a nonempty closed convex in H. If the sequence
{xn} is Fejér monotone w.r.t. C, then the following hold:

(i) xn ⇀ x̂ if and only if ww(xn) ⊂ C;
(ii) the sequence {PCxn} converges strongly;
(iii) if xn ⇀ x̂ ∈ C, then x̂ = limn PCxn.

Proposition . (see []) Let {αn} be a sequence of nonnegative real numbers such that

αn+ ≤ ( – tn)αn + tnbn, n≥ ,

where {tn} is a sequence in (, ) and bn is a sequence in R such that
(i)

∑∞
n= tn =∞;

(ii) limnbn ≤  or
∑∞

n= |tnbn| < ∞. Then αn →  (n→ ∞).

3 Main results
Let c : H → R and q : H → R be convex functions and define level sets of c and q as
follows:

C =
{
x ∈H|c(x) ≤ 

}
and Q =

{
y ∈ H|q(y) ≤ 

}
. (.)

Assume that both c and q are subdifferentiable on H and H, respectively, and that ∂c
and ∂q are bounded mappings. Given an arbitrary initial data x ∈ H. Assume that xn is
the current value for n≥ . We introduce two sequences of half-spaces as follows:

Cn =
{
x ∈ H|c(xn) ≤ 〈ξn,xn – x〉}, (.)

where ξn ∈ ∂c(xn), and

Qn =
{
y ∈H|q(Axn) ≤ 〈ηn,Axn – y〉}, (.)

where ηn ∈ ∂q(Axn). Clearly, C ⊆ Cn and Q ⊆Qn for all n≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/448
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Construct xn+ via the formula

xn+ = PCn

(
xn – τn∇f (xn)

)
, (.)

where {τn} is given as (.),

fn(x) =


∥∥(I – PQn )Ax

∥∥ (.)

and

∇fn(x) = A∗(I – PQn )Ax, (.)

More precisely, we introduce the following relaxed CQ algorithm in an adaptive way.

Algorithm . Choose an initial data x ∈ H arbitrarily. Assume that the nth iterate xn
has been constructed then we compute the (n + )th iteration xn+ via the formula:

xn+ = PCn

(
xn – τn∇f (xn)

)
, n ≥ , (.)

where the step size τn is chosen in such a way that

τn :=
ρnfn(xn)

(‖∇fn(xn)‖ + σn)
, (.)

with  < ρn <  and  < σn < . If xn+ = xn for some n ≥ , then xn is a solution of the
SFP (.) and the iterative process stops; otherwise, we set n := n +  and go on to (.) to
compute the next iteration xn+.

We remark in passing that if xn+ = xn for some n ≥ , then xm = xn for all m ≥ n + ,
consequently, limm→∞ xm = xn is a solution of SFP (.). Thus, we may assume that the
sequence {xn} generated by Algorithm . is infinite.

Theorem . Assume that limnρn( – ρn) ≥ ρ > . Then the sequence {xn} generated by
Algorithm . converges weakly to a solution x̂ of SFP (.), where x̂ = limn→∞ P�xn.

Proof Let z ∈ � be fixed, and set yn = xn – τn∇fn(xn). By virtue of (.), (.), and Proposi-
tion .(p), we have

‖xn+ – z‖ = ‖PCnyn – z‖

≤ ‖yn – z‖ – ‖yn – PCnyn‖

=
∥∥xn – z – τn∇fn(xn)

∥∥ – ‖yn – PCnyn‖

= ‖xn – z‖ – τn
〈∇fn(xn),xn – z

〉
– ‖yn – PCnyn‖

+ τ 
n
∥∥∇fn(xn)

∥∥. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/448
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In view of Proposition ., we know that I – PQn are firmly nonexpansive for all n ≥ ,
and from this one derives

〈∇fn(xn),xn – z
〉
=

〈
(I – PQn )Axn,Axn –Az

〉
=

〈
(I – PQn )Axn – (I – PQn )Az,Axn –Az

〉
≥ ∥∥(I – PQn )Axn

∥∥ = fn(xn), (.)

from which it turns out that

‖xn+ – z‖ ≤ ‖xn – z‖ – τnfn(xn) + τ 
n
∥∥∇fn(xn)

∥∥ – ‖yn – PCnyn‖

= ‖xn – z‖ – ρnf n (xn)
(‖∇fn(xn)‖ + σn)

+
ρ
nf n (xn)

(‖∇fn(xn)‖ + σn)
∥∥∇fn(xn)

∥∥

– ‖yn – PCnyn‖

≤ ‖xn – z‖ – ρn( – ρn)
f n (xn)

(‖∇fn(xn)‖ + σn)
– ‖yn – PCnyn‖, (.)

which in turn allows us to deduce the following conclusions:
(i) {xn} is Fejér monotone w.r.t. �; in particular,
(ii) {xn} is a bounded sequence;
(iii)

∑∞
n= ρn( – ρn)f n (xn)/(‖∇fn(xn)‖ + σn) < ∞; and

(iv)

∞∑
n=

‖yn – PCnyn‖ < ∞. (.)

By Proposition .(i), to show that xn ⇀ x, it suffices to show that ww(xn) ⊂ �. To see
this, take x∗ ∈ ww(xn) and let {xnk } be a sequence of {xn} weakly converging to x∗. By our
assumption that limnρn( – ρn) ≥ ρ > , without loss of generality, we can assume that
ρn( – ρn) ≥ ρ

 for all n≥ . It follows from (.) (iii) that

fn(xn)
‖∇fn(xn)‖ + σn

→  (n→ ∞). (.)

Note that ‖∇fn(xn)‖ + σn ≤ ‖A‖‖xn – z‖ +  for z ∈ �. This, together with (.), im-
plies that fn(xn)→ , that is, ‖(I – PQn )Axn‖ → . By our assumption that ∂q is a bounded
mapping, we see that there exists a constantM >  such that ‖ηn‖ ≤M, ∀ηn ∈ ∂q(Axn).
Since PQn (Axn) ∈Qn, by the definition of Qn, we have

q(Axn) ≤
〈
ηn,Axn – PQn (Axn)

〉 ≤M
∥∥(I – PQn )Axn

∥∥ → . (.)

Noting that Axnk ⇀ Ax̂ and using the w-lsc of q, we have q(Ax∗) ≤ limkq(Axnk ) ≤ ,
which implies that Ax∗ ∈ Q. We next prove x∗ ∈ C. Firstly, from (.) (iv), we know that
‖yn – PCnyn‖ → . Notice that

‖yn – xn‖ =
∥∥τn∇fn(xn)

∥∥ ≤ fn(xn)
‖∇fn(xn)‖ + σn

· ‖∇fn(xn)‖
‖∇fn(xn)‖ + σn

≤ fn(xn)
‖∇fn(xn)‖ + σn

→ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/448
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we have

‖xn – PCnxn‖ ≤ ‖xn – yn‖ + ‖yn – PCnyn‖ + ‖PCnyn – PCnxn‖
≤ ‖xn – yn‖ + ‖yn – PCnyn‖ → .

Since ∂c is a bounded mapping, we haveM >  such that

‖ξ‖ ≤M, ∀ξn ∈ ∂c(xn).

Since PCn (xn) ∈ Cn, by the definition of Cn, we have

c(xn)≤ 〈ξn,xn – PCnxn〉 ≤M
∥∥(I – PCn )xn

∥∥ → .

Then w-lsc of C implies that c(x∗) ≤ limkc(xnk )≤ , thus x∗ ∈ C and ww(xn) ⊂ �, complet-
ing the proof. �

We introduce a little more general algorithm as follows.

Algorithm . Choose an initial data x ∈H arbitrarily. Assume that the nth iteration xn
has been constructed; then we compute the (n + )th iteration xn+ via the formula:

xn+ = βnxn + ( – βn)PCn

(
xn – τn∇f (xn)

)
, n ≥ , (.)

where the step size {τn} is as before and {βn} is a sequence in (, ) satisfying limnβn < .
If xn+ = xn for some n ≥ , then xn is a solution of the SFP (.) and the iterative process
stops; otherwise, we set n := n +  and go on to (.) to compute the next iteration xn+.

We have the following weak convergence theorem.

Theorem . Assume that limnρn( – ρn) ≥ ρ > . Then the sequence {xn} generated by
Algorithm . converges weakly to a solution x̂ of the SFP (.) where x̂ = limn→∞ P�xn.

Proof Let z ∈ � be fixed and set yn = xn – τn∇fn(xn). By virtue of (.), (.), (.), (.),
and Proposition .(p), we have

‖xn+ – z‖ = ∥∥βn(xn – z) + ( – βn)(PCnyn – z)
∥∥

= βn‖xn – z‖ + ( – βn)‖PCnyn – z‖ – βn( – βn)‖xn – PCnyn‖

≤ βn‖xn – z‖ + ( – βn)‖yn – z‖ – ( – βn)‖yn – PCnyn‖

= βn‖xn – z‖ + ( – βn)
∥∥xn – z – τn∇fn(xn)

∥∥

– ( – βn)‖yn – PCnyn‖

= βn‖xn – z‖ + ( – βn)‖xn – z‖ – ( – βn)τn
〈∇fn(xn),xn – z

〉
+ ( – βn)τ 

n
∥∥∇fn(xn)

∥∥ – ( – βn)‖yn – PCnyn‖

≤ ‖xn – z‖ – ( – βn)τnfn(xn) + ( – βn)τ 
n
∥∥τn∇fn(xn)

∥∥
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– βn( – βn)‖yn – PCnyn‖

≤ ‖xn – z‖ – ( – βn)ρn( – ρn)
f n (xn)

(‖∇fn(xn)‖ + σn)

– ( – βn)‖yn – PCnyn‖, (.)

which implies that
(i) {xn} is Fejér monotone w.r.t. �; in particular,
(ii) {xn} is a bounded sequence;
(iii)

∑∞
n= ( – βn)ρn( – ρn)f n (xn)/(‖∇fn(xn)‖ + σn) <∞; and

(iv)
∑∞

n= ( – βn)‖yn – PCnyn‖ < ∞.
By our assumptions on {βn} and {ρn}, we have fn(xn)

‖∇fn(xn)‖+σn
→  and yn – PCnyn → , the

rest of the arguments follow exactly form the corresponding parts of Theorem ., we
omit its details. This completes the proof. �

We remark that Theorem . generalizes Theorem ., that is, if we take βn ≡  in The-
orem ., then we can obtain Theorem .. It is really interesting work to compare con-
vergence rate of Algorithms . and ..
Generally speaking, Algorithms . and . have only the weak convergence in the frame

work of infinite-dimensional spaces, and therefore the modifications of Algorithms .
and . are needed in order to realize the strong convergence. Considerable efforts have
beenmade and several interesting results have been reported recently; see [–]. Below
is our modification of Algorithms . and ..

Algorithm . Choose an arbitrary initial data x ∈ H. Assume that the nth iteration
xn ∈H has been constructed. Set

yn = PCn

(
xn – τn∇f (xn)

)
, n≥ , (.)

with the step size τn given by (.), and define two half-spaces Yn and Zn by

Yn =
{
z ∈H : ‖yn – z‖ ≤ ‖xn – z‖ – ρn( – ρn)

f n (xn)
(‖∇fn(xn)‖ + σn)

}
, (.)

Zn =
{
z ∈H : 〈x – xn, z – xn〉 ≤ 

}
. (.)

The (n + )th iterate xn+ is then constructed in the formula:

xn+ = PYn∩Zn (x). (.)

If xn+ = xn for some n≥ , then xn is a solution of SFP (.) and the iterative process stops;
otherwise, we set n := n +  and go on to (.)-(.) to compute the next iteration xn+.

Theorem . Assume that limnρn( – ρn) ≥ ρ > . Then the sequence {xn} generated by
Algorithm . converges strongly to a solution x∗ of SFP (.), where x∗ = P�(x).

Proof Firstly, we show that

Yn ∩ Zn ⊇ � 
= ∅, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/448
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for all n ≥ . Indeed, in view of (.), we have � ⊂ Yn for all n ≥ . To show (.) holds,
it suffices to show that � ⊂ Zn for all n ≥ . We complete the proof by induction. Since
Z = H, � ⊂ Z. Assume that � ⊂ Zk form some k ≥ ; we plan to show � ⊂ Zk+. Since
� ⊂ Yk ∩ Zk , and Yk ∩ Zk 
= ∅ closed convex, xn+ = PYn∩Zn (x) is well defined. It follows
from Proposition .(p) that

〈xk+ – z,xk+ – x〉 ≤ , ∀z ∈ �. (.)

This implies that z ∈ Zk+ and hence � ⊂ Zk+. Consequently, � ⊂ Zn for all n ≥ , and
thus (.) holds true.
From the definition of Zn and Proposition .(p), we see that xn = PZnx. It then follows

from (.) that

‖xn – x‖ = ‖PZnx – x‖ ≤ ‖xn+ – xn‖ = ‖PZn+x – x‖ ≤ ‖P�x – x‖. (.)

This derives that limn ‖xn – x‖ exists, dented by d.
Noting that xn+ ∈ Zn, we have

〈xn+ – xn,xn – x〉 ≥ . (.)

By virtue of (.) and (.), we obtain

‖xn+ – x‖ – ‖xn – x‖ = ‖xn+ – xn‖ + 〈xn+ – xn,xn – x〉 ≥ ‖xn+ – xn‖. (.)

From this one derives that xn+ – xn →  (n→ ∞).
Since xn+ ∈ Yn, we have

‖yn – xn+‖ ≤ ‖xn – xn+‖ – ρn( – ρn)
f n (xn)

(‖∇fn(xn)‖ + σn)
, (.)

from which it turns out that

‖yn – xn+‖ ≤ ‖xn – xn+‖ →  (.)

and

ρn( – ρn)
f n (xn)

(‖∇fn(xn)‖ + σn)
≤ ‖xn – xn+‖ → . (.)

At this point, we show ww(xn)⊂ �. To end this, take x̂ ∈ ww(xn). Then there exists a sub-
sequence {xnj} of {xn} such that xnj

w−→ x̂. By our assumption that limnρn( – ρn) ≥ ρ > ,
from (.) we conclude that

fn(xn)
‖∇fn(xn)‖ + σn

→ , (.)

which implies that fn(xn) → , since {‖∇fn(xn)‖ + σn} is bounded. Notice that PQn (Axn) ∈
Qn, and ∂q is a bounded mapping, we have

q(Axn) ≤
〈
ηn,Axn – PQn (Axn)

〉 ≤M
∥∥(I – PQn )Axn

∥∥ → . (.)
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Since Axnj ⇀ Ax̂ and q is w-lsc on H, we derive

q(Ax̂) ≤ lim
j
q(Axnj ) ≤ ,

which implies that Ax̂ ∈Q.
We next show x̂ ∈ C. Indeed, from (.) we have

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖ → . (.)

From (.), we have also

τn
∥∥∇fn(xn)

∥∥ =
ρnfn(xn)

‖∇fn(xn)‖ + σn
· ‖∇fn(xn)‖
‖∇fn(xn)‖ + σn

≤ fn(xn)
‖∇fn(xn)‖ + σn

→ . (.)

Consequently, it follows from (.) and (.) that

‖xn – PCnxn‖ ≤ ‖xn – yn‖ + ‖yn – PCnxn‖
≤ ‖xn – yn‖ + τn

∥∥∇fn(xn)
∥∥ → . (.)

Since PCn (xn) ∈ Cn, noting ∂c is a bounded mapping, we immediately obtain

c(xn)≤ 〈ξn,xn – PCnxn〉 ≤M
∥∥(I – PCn )xn

∥∥ → .

Then the w-lsc of c ensures that

c(x̂) ≤ lim
j
c(xnj ) ≤ ,

fromwhich it turns out that x̂ ∈ C, and thus x̂ ∈ �. It follows from (.) that x̂ ∈ Zn, which
implies that

〈x – xn, x̂ – xn〉 ≤ , (.)

for all n ≥ . Thus, from (.) we obtain

‖xn – x̂‖ ≤ 〈x̂ – x, x̂ – xn〉, (.)

in particular, we have

‖xnj – x̂‖ ≤ 〈x̂ – x, x̂ – xnj〉,

consequently, xnj → x̂, since xnj
w−→ x̂.

At this point, by virtue of (.), we have

〈x – xn, z – xn〉 ≤ , ∀z ∈ �, (.)
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in particular, we have

〈x – xnj , z – xnj〉 ≤ , ∀z ∈ �. (.)

Thus, upon taking the limit as j → ∞ in (.), we obtain

〈x – x̂, z – x̂〉 ≤ , ∀z ∈ �. (.)

This implies that x̂ = P�x by Proposition .(p). Therefore {xn} converges strongly to
x̂ = P�x because of the uniqueness of P�x. This completes the proof. �

Algorithm . Choose an arbitrary initial data x ∈ H. Assume that the nth iteration
xn ∈H has been constructed. Set

yn = βnxn + ( – βn)PCn

(
xn – τn∇f (xn)

)
, (.)

with the step size τn given by (.) and the relaxed factor βn in [, ) satisfying limnβn < .
Define two half-spaces Yn and Zn by

Yn =
{
z ∈H : ‖yn – z‖ ≤ ‖xn – z‖ – ρn( – ρn)

f n (xn)
(‖∇fn(xn)‖ + σn)

– ( – βn)
∥∥xn – τn∇fn(xn) – PCn

(
xn – τn∇fn(xn)

)∥∥
}
, (.)

Zn =
{
z ∈H : 〈x – xn, z – xn〉 ≤ 

}
. (.)

The (n + )th iteration xn+ is then constructed by the formula:

xn+ = PYn∩Zn (x). (.)

If xn+ = xn for some n≥ , then xn is a solution of SFP (.) and the iterative process stops;
otherwise, we set n := n +  and go on to (.)-(.) to compute the next iteration xn+.

Along the proof lines of Theorem . we can prove the following.

Theorem . Assume that limnρn( – ρn) ≥ ρ > ; then the sequence {xn} generated by
Algorithm . converges strongly to a solution x∗ of SFP (.), where x∗ = P�(x).

The proof of Theorem . is similar to that of Theorem ., and therefore we omit its
details.
We next turn our attention to another kind of algorithm.

Algorithm. Choose an arbitrary initial data x ∈H. Assume that the nth iteration xn ∈
H has been constructed; then we compute the (n + )th iteration xn+ via the recursion:

xn+ = PCn

(
αng(xn) + ( – αn)

(
xn – τn∇f (xn)

))
, n≥ , (.)

where the step size τn is given by (.), g : H → H is a contraction with contractive
coefficient δ ∈ (, ), and {αn} is a real sequence in (, ). If xn+ = xn for some n ≥ , then
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xn is an approximate solution of SFP (.) (he approximate rule will be given below) and
the iterative process stops; otherwise, we set n := n +  and go on to (.) to compute the
next iteration xn+.

We point out that if xn+ = xn for some n≥ , then (.) reduces to

xn = PCn

(
αng(xn) + ( – αn)

(
xn – τn∇f (xn)

))
, n≥ . (.)

This implies that xn ∈ Cn and hence xn ∈ C. Write

e(xn, τn) =
∥∥xn – PCn (xn – τn∇fn(xn)

∥∥.
Then it follows from (.) that

e(xn, τn) ≤ αn
∥∥g(xn) – xn + τn∇fn(xn)

∥∥, n≥ . (.)

Such an xn is called an approximate solution of SFP (.). If e(xn, τn) = , then xn is a solution
of SFP (.).

Theorem . Assume that {αn} and {ρn} satisfy conditions (C) αn → ,
∑∞

n= αn =∞
and (C) limnρn(–ρn) > , respectively.Then the sequence {xn} generated byAlgorithm .
converges strongly to a solution x∗ of SFP (.), where x∗ = P�g(x∗), equivalently, x∗ solves
the following variational inequality:

〈
(I – g)x∗,x – x∗〉 ≥ , ∀x ∈ �. (VI)

Proof First of all, we show there exists a unique x∗ ∈ � such that x∗ = P�g(x∗). Indeed, since
P�g : H → H is a contraction with the contractive coefficient δ ∈ (, ), by the Banach
contractive mapping principle, we conclude that there exists a unique x∗ ∈ H such that
x∗ = P�g(x∗) ∈ �, equivalently, x∗ solves the following variational inequality:

〈
(I – g)x∗,x – x∗〉 ≥ , ∀x ∈ �. (VI)

Write yn = xn – τn∇fn(xn) and zn = αngxn + ( – αn)yn. Then (.) can be rewritten as

xn+ = PCnzn. (.)

Noting that x∗ ∈ � and Q ⊆Qn for all n≥ , we have Ax∗ ∈Qn for all n≥ , and hence

(I – PQn )Ax
∗ = .

Since I – PQn is firmly nonexpansive, we have

〈∇f (xn),xn – x∗〉 = 〈
(I – PQn )Axn,Axn –Ax∗〉

=
〈
(I – PQn )Axn – (I – PQn )Ax

∗,Axn –Ax∗〉
≥ ∥∥(I – PQn )Axn

∥∥ = fn(xn). (.)
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By virtue of (.) and (.), we obtain

∥∥yn – x∗∥∥ =
∥∥xn – x∗ – τn∇fn(xn)

∥∥

=
∥∥xn – x∗∥∥ – τn

〈∇fn(xn),xn – x∗〉 + τ 
n
∥∥∇fn(xn)

∥∥

≤ ∥∥xn – x∗∥∥ – τnfn(xn) + τ 
n
∥∥∇fn(xn)

∥∥

=
∥∥xn – x∗∥∥ – ρn

f n (xn)
(‖∇fn(xn)‖ + σn)

+
ρ
nf n (xn)

(‖∇fn(xn)‖ + σn)
· ‖∇fn(xn)‖
(‖∇fn(xn)‖ + σn)

≤ ∥∥xn – x∗∥∥ – ρn( – ρn)
f n (xn)

(‖∇fn(xn)‖ + σn)
, (.)

in particular, we have

∥∥yn – x∗∥∥ ≤ ∥∥xn – x∗∥∥, (.)

for all n ≥ .
We now estimate ‖zn – x∗‖. By virtue of definition of the norm ‖ · ‖ and Schwarz’s

inequality, we obtain

∥∥zn – x∗∥∥ =
〈
zn – x∗, zn – x∗〉

= αn
〈
g(xn) – x∗, zn – x∗〉 + ( – αn)

〈
yn – x∗, zn – x∗〉

= αn
〈
g(xn) – g

(
x∗), zn – x∗〉 + αn

〈
g
(
x∗) – x∗, zn – x∗〉

+ ( – αn)
〈
yn – x∗, zn – x∗〉

≤ δαn


∥∥xn – x∗∥∥ +

αn


∥∥zn – x∗∥∥ + αn

〈
g
(
x∗) – x∗, zn – x∗〉

+
 – αn


∥∥yn – x∗∥∥ +

 – αn


∥∥zn – x∗∥∥,

from which it turns out that

∥∥zn – x∗∥∥ ≤ δαn
∥∥xn – x∗∥∥ + αn

〈
g
(
x∗) – x∗, zn – x∗〉 + ( – αn)

∥∥yn – x∗∥∥. (.)

Substituting (.) into (.) yields

∥∥zn – x∗∥∥ ≤ [
 –

(
 – δ

)
αn

]∥∥xn – x∗∥∥ + αn
〈
g
(
x∗) – x∗, zn – x∗〉

– ( – αn)ρn( – ρn)
f n (xn)

(‖∇fn(xn)‖ + σn)
. (.)

By virtue of Proposition .(p), (.), and (.), noting that x∗ ∈ C ⊂ Cn for all n ≥ ,
we have

∥∥xn+ – x∗∥∥ =
∥∥PCnzn – x∗∥∥

≤ ∥∥zn – x∗∥∥ – ‖zn – PCnzn‖
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≤ [
 –

(
 – δ

)
αn

]∥∥xn – x∗∥∥ + αn
〈
(g – I)x∗, zn – x∗〉

– ( – αn)ρn( – ρn)
f n (xn)

(‖∇fn(xn)‖ + σn)
–

∥∥(I – PCn )zn
∥∥. (.)

We next show that {xn} is bounded. Using (.) and (.), we have

∥∥xn+ – x∗∥∥ ≤ αn
∥∥g(xn) – x∗∥∥ + ( – αn)

∥∥yn – x∗∥∥
≤ δαn

∥∥xn – x∗∥∥ + αn
∥∥g(x∗) – x∗∥∥ + ( – αn)

∥∥xn – x∗∥∥
=

[
 – ( – δ)αn

]∥∥x – x∗∥∥ + ( – δ)αn
‖g(x∗) – x∗‖

 – δ

≤max

{∥∥x – x∗∥∥, ‖g(x∗) – x∗‖
 – δ

}
=M,

for all n ≥ , therefore {xn} is bounded; so are {yn} and {zn}.
Finally, we show that xn → x∗ (n→ ∞).
Set sn = ‖xn – x∗‖ and assume that ρn( – ρn)≥ ρ for all n≥ . Then (.) reduces to

sn+ – sn +
(
 – δ

)
αnsn + ( – αn)ρ

f n (xn)
(‖∇fn(xn)‖ + σn)

+
∥∥(I – PCn )zn

∥∥

≤ αn
〈
(g – I)x∗, zn – x∗〉. (.)

We consider two possible cases.
Case . {sn} is eventually decreasing, i.e., there exists some integer n ≥  such that

sn+ ≤ sn for all n ≥ n,

which means that limn sn exists. Note that {zn} is bounded and αn → . Letting n → ∞
in (.) yields fn(xn)

‖∇fn(xn)‖+σn
→  and (I – PQn )zn → . Since {‖∇fn(xn) + σn‖} is a bounded

sequence, we conclude that fn(xn) →  and hence

(I – PQn )Axn → . (.)

Observe that ‖zn – yn‖ ≤ αn‖g(xn) – yn‖ ≤ αnM → ,

‖yn – xn‖ = τn
∥∥∇fn(xn)

∥∥ =
ρnf n (xn)

(‖∇fn(xn)‖ + σn)
∥∥∇fn(xn)

∥∥

≤ f n (xn)
(‖∇fn(xn)‖ + σn)

→ ,

and

‖xn – PCnxn‖ ≤ ‖xn – zn‖ + ‖zn – PCnzn‖ + ‖PCnzn – PCnxn‖
≤ ‖xn – zn‖ +

∥∥(I – PCn )zn
∥∥ → . (.)

We may assume that

lim
n

〈
(g – I)x∗, zn – x∗〉 = lim

n

〈
(g – I)x∗,xn – x∗〉 = lim

k→∞
〈
(g – I)x∗,xnk – x∗〉. (.)
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Without loss of generality, we assume that xnk ⇀ x̂ (k → ∞); then Axnk ⇀ Ax̂ (k → ∞).
Since PQnk

Axnk ∈ Qnk , {ηnk } ⊂ ∂q(Axnk ) is a bounded sequence and (I – PQnk
)Axnk → 

(k → ∞) by (.), we deduce that

q(Axnk ) ≤
〈
ηnk ,Axnk – PQnk

(Axnk )
〉 ≤ ‖ηnk‖

∥∥(I – PQnk
)Axnk

∥∥ → ,

as k → ∞, then w-lsc of q implies that

q(Ax̂) ≤ lim
k
q(Axnk ) ≤ ,

and thus Ax̂ ∈Q.
On the other hand, since PCnk

(xnk ) ∈ Cnk , {ξnk } ⊂ ∂c(xnk ) is a bounded sequence, and
(I –CQnk

)xnk →  by (.), we derive

c(xnk ) ≤ 〈ξnk ,xnk – PCnk
xnk 〉 ≤ ‖ξnk‖

∥∥(I – PCnk
)xnk

∥∥ → 

as k → ∞, then w-lsc of c implies that

c(x̂) ≤ lim
k
c(xnk ) ≤ ,

and thus x̂ ∈ C. Consequently, x̂ ∈ C ∩ A–(Q) = �. It follows from (.) and Proposi-
tion .(p) that

lim
n

〈
(g – I)x∗, zn – x∗〉 = 〈

(g – I)x∗, x̂ – x∗〉 ≤ . (.)

Taking into account of (.), we have

sn+ ≤ [
 –

(
 – δ

)
αn

]
sn + αn

〈
(g – I)x∗, zn – x∗〉. (.)

Applying Proposition . to (.), we derive that sn →  as n → ∞, i.e., xn → x∗ as
n→ ∞.
Case . {sn} is not eventually decreasing. In this case, we can find an integer n ≥ 

such that sn < sn+. Define J(n) := {n ≤ k ≤ n : sk < sk+}, n > n. Then J(n) 
= ∅ and J(n) ⊆
J(n + ). Define τ : N→N by

τ (n) :=max J(n), n > n.

Then τ (n) → ∞ as n → ∞, sτ (n) ≤ sτ (n)+ for all n > n and sn ≤ sτ (n)+ for all n > n; see
[] for details.
Since sτ (n) ≤ sτ (n)+ for all n > n, it follows from (.) that

sτ (n+) – sτ (n) → ,
ρf n (xn)

(‖∇fn(xn)‖ + σn)
≤Mατ (n) → 

and ‖(I – PCτ (n) )zτ (n)‖ →  as n→ ∞.
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At this point, by virtue of a similar reasoning to the corresponding parts in case , we
can deduce that limn〈(g – I)x∗, zτ (n) – x∗〉 = limn〈(g – I)x∗,xτ (n) – x∗〉 ≤ .
Noting that sτ (n) ≤ sτ (n)+, it follows from (.) that

sτ (n) ≤ 
 – δ

〈
(g – I)x∗, zτ (n) – x∗〉,

from which one derives that limnsτ (n) ≤ , and hence sτ (n) →  as n → ∞. From this it
turns out that sτ (n)+ →  as n → ∞, since sτ (n)+ – sτ (n) →  as n → ∞. Consequently,
sn → , as n→ ∞, since  ≤ sn ≤ sτ (n)+ →  as n→ ∞. This completes the proof. �

By using an argument like the method in Theorem ., we have the following more
general algorithm and convergence theorem.

Algorithm . Choose an arbitrary initial data x ∈ H. Assume that the nth iteration
xn ∈H has been constructed; thenwe compute the (n+)th iteration xn+ via the recursion

xn+ = βnxn + ( – βn)PCn

[
αng(xn) + ( – αn)

(
xn – τn∇f (xn)

)]
, n ≥ , (.)

where {βn} is a real sequence in [, ) satisfying limnβn < , {αn} is a real sequence in (, )
satisfying conditions (C) αn →  and (C)

∑∞
n= αn =∞, g :H →H is a contraction with

contractive coefficient δ ∈ (, ) and τn is given by (.). If xn+ = xn for some n ≥ , then
xn is an approximate solution of SFP (.) and the iterative process stops; otherwise, we
set n := n +  and go on to (.) to compute the next iteration xn+.

Theorem. Assume that limnρn(–ρn) > ; the sequence generated by algorithm (.)
converges strongly to a solution x∗ of the SFP (.), where x∗ = P�g(x∗), equivalently, x∗ is a
solution of the following variational inequality:

〈
(I – g)x∗,x – x∗〉 ≥ , ∀x ∈ �. (VI)

4 Numerical experiments
In this section, we consider two typical numerical experiments to illustrate the perfor-
mance of step size (.) with CQ-like algorithms. Firstly, we introduce a linear observa-
tion model as follows, which covers many problems in signal and image processing:

y = Ax + ε, x ∈ RN , (.)

where y ∈ RM is the observed or measured data with noisy ε. A : RN → RM denotes the
bounded linear observation operator. A is sparse and the range of it is not closed in most
inverse problems, thus A is often ill-condition and the problem is also ill-posed. When x
is a sparse expansion, finding the solutions of (.) can be seen as finding a solution to the
least-square problem

min
x∈RN



‖y –Ax‖ subject to ‖x‖ < t, (.)

for any real number t > .
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When we set C = {x ∈ RN : ‖x‖ ≤ t} and Q = {y}, it is a particular case of SFP (.); see
[]. Therefore, we continue by applying the CQ algorithm to solve (.). We compute the
projection onto C through a soft thresholding method; see [, –].
Next, according to the examples in [, ], we also choose two similar particular prob-

lems: compressed sensing and image deconvolution, which can be covered by (.). The
experiments compare the performances of the proposed step size (.) with the step size
in [], and analysis some properties of (.).

4.1 Compressed sensing
In a general compressed sensing model, we set the hits of a signal x ∈ RN is N = . There
existm= spikes with amplitude ± distributed in the whole domain randomly. The plot
can be seen on the top of Figure . Then we set the observation dimension M =  and a
matrix A withM×N order is also generated arbitrarily. A standard Gaussian distribution
noise with variance σ 

ε = – is added. Let t= in (.).
For the step sizes (.) and (.), we always set the constant ρ = . For Algorithm .,

we set βn = .. All the processes are started with initial signal x =  and finished with the
stop rule

‖xn+ – xn‖/‖xn‖ < –.

We calculated the mean squared error (MSE) for the results

MSE = (/N)
∥∥x∗ – x

∥∥,
where x∗ is an estimated signal of x.
The second and third plots in Figure  correspond to the results with step sizes (.)

and (.) to Algorithm ., respectively. The recovered result by Algorithm . with step
size (.) is shown in the fourth plot. Especially for the fifth, when we set βn = (n + )–k ,
k = , , , . . . , when we have k ≥  the iteration steps of Algorithm . start to approach
the number in the second plot, and the restored precision is a little poorer than the others.
For (.) we firstly set σn = σ = .; then in order to study its effect to the convergence

speed of the CQ algorithm, we let it be σn = (n + )–l , l ≥  is an integer. In Figure  we
can find that when l ≥  the best MSE curves can be obtained, and it starts to change less.
Therefore, σn should be as little as possible.

4.2 Image deconvolution
In this subsection, we continue by applying Algorithms . and . to recover the blurred
Cameraman image. In the experiments, from [, ] we employ Haar wavelets and the
blur point spread function hij = (+ i + j)–, for i, j = –, . . . , ; the noise variance is σ  = .
The size of the image isN =M = . The threshold value is hand-tuned for the best SNR
improvement. t is the sum of all the original pixel values.
We observe the performance of σn in (.); see Figure . We find that at the beginning

several steps there are similar SNR curves, however, after  iterations, σ = . is similar
with (.). When  ≤ l < , the curves are worse than the others. While we set l ≥  the
curve starts to be consistent with the curve of (.). Therefore, we also know that σn

should be better as little as possible.
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Figure 1 Compressed sensing problem, from top to bottom: original signal, results of CQ algorithm
with step sizes (1.11), (1.12), and Algorithm 3.3.

Figure 2 The performance curves of MSE to different σn in 100 iterations. The line with squares is
corresponding to σn = 0.5, x corresponding to l=1, circles to l=4, points to l=16.

5 Conclusion remarks
In this paper we have proposed several kinds of adaptively relaxed iterative algorithms
with a new variable step size τn for solving SFP (.). The feature is that the new variable
step size τn contains a sequence of positive numbers in its denominator. Because of this,
the proposed algorithms with relaxed iterations will never terminate at any iteration step.
On the other hand, unlike the previous known algorithms, our stop rule is that the related
iteration process will stop if xn+ = xn for some n≥ .
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Figure 3 The performance curves of SNR to different σn in 70 iterations. The line with squares
corresponds to (1.11), x to l = 1, triangles to l = 3, circles to l = 16.

By means of new analysis techniques, we have proved several kinds of weak and strong
convergence theorems of the proposed algorithms for solving SFP (.), which improved,
extended, and complemented those existing in the literature. We remark that all conver-
gence results in this paper still hold true if we use the step size τn given by (.) to replace
the step size given by (.). In such a case, the stop rules should be modified. We would
like to point out that our Theorems . and . are closely related to a sort of variational
inequalities.
Finally, numerical experiments have been presented to illustrate the effectiveness of the

proposed algorithms and applications in signal processing of the algorithms with the step
size selected in this paper. The numerical results tell us that the changes of the choice of
the step size σn given by (.) may affect the convergence rate of the iterative algorithms,
and σn should be chosen as small as possible; for instance, we can choose σn such that
σn →  as n → ∞.
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