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1 Introduction

The concept of blockwise-dependence was introduced by Mdricz [1]. Méricz’s [1] and
Gaposhkin [2] showed that some properties of sequences of independent random vari-
ables can be applied to sequences consisting of independent blocks. Huan et al. [3] ex-
tended the strong laws of large numbers to blockwise-martingale difference arrays in
Banach spaces. Recently, Moricz et al. [4] introduced the concept of blockwise M-depen-
dence for a double array of random variables and established a version of the Kolmogorov
SLLN for double arrays of random variables which are blockwise M-dependent. The re-
sults of Méricz and Stadtmiiller and Thalmaier [5] were generalized by Stadtmiiller and
Thanh [6].

The aim of this paper is to investigate inequalities for sums of random fields and the
strong law of large numbers of arbitrary random fields taking values in a Banach space.
In Section 2, we introduce o-strong adapted random fields, a-strong® adapted random
fields, blockwise o-martingale difference fields and prove some useful lemmas. In Sec-
tion 3, inequalities for sums of «-strong adapted random fields and «-strong* adapted
random fields in p-uniformly smooth Banach spaces are given. Section 4 contains the main
results including the SLLN for a such blockwise «-martingale difference field taking values
in a p-uniformly smooth Banach space, in which the results of [3, 6, 7] will be generalized.

Throughout this paper, the symbol C will denote a generic constant (0 < C < co) which
is not necessarily the same one in each appearance.

2 Preliminaries and some useful lemmas

Let [E be a real separable Banach space. I is said to be p-uniformly smooth (1 < p < 2) if
there exists a finite positive constant C such that for all E-valued martingales {S,;1 <n <
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E|Sull? < CY ElSy - Spa|I”. (21)

n=1

Clearly, every real separable Banach space is 1-uniformly smooth and the real line (the
same as any Hilbert space) is 2-uniformly smooth. If a real separable Banach space is
p-uniformly smooth for some 1 < p <2 then it is r-uniformly smooth for all r € [1, p).

Let d be a positive integer, the set of all integer d-dimensional lattice points will be de-
noted by Z¢ and the set of all positive integer d-dimensional lattice points will be de-
noted by N, For m = (my,...,mg) € Z% n = (ny,...,ny) € 2%, o = (ay,...,aq) € R? de-
note [m,n) = ]_[il[mi,ni) is a d-dimensional rectangle, m+n = (m; + m,...,my + ny),
m-n=(m —m,...,mg - ng), 2 = (2",...,2"), |n%| = [[4, n, 1= (1,...,1) € N4 We
writtm <n(orn>m)ifm; <n;,1<i<d;m<nifm=n,and m #n. For x > 0, let [x]
denote the greatest integer less than or equal to x, we use log* x to denote the log(x V 1)
(the logarithms are to base 2).

For nondecreasing sequences of positive integers {a;(k), k > 1} (1 < i < d), for n € N,
let a(n) = (a1(m),...,a4(ny)).

Let (2, F,P) be a probability space, E be a real separable Banach space, and B(E) be
the o-algebra of all Borel sets in E. Let {X),n <k <N} be a field of E-valued random
variables and {Fy, n < k < N} be a field of nondecreasing sub-o -algebras of F with re-
spect to the partial order < on N¥ such that Xy is Fi.-measurable for all n < k < N, then
{Xx, Fron < k < N} is said to be an adapted field.

Let {Xx, Fx,n < k < N} be an adapted field, we adopt the convention that Fy = {#J, 2} if
k' n. ForkeZ? (k<N -1) set

}'{; =o{]~"1:l= (hyesla), bl < ki (j #i) and [; =ki}
foralll <i<d,and
Fi=o|F):1<i<d).
The adapted field {Xy, Fx, n < k < N} is said to be a-strong adapted (or strong adapted)
if E(XilFY o) (or QX Fyfy)) s Fi-measurable foralln <1<k <N,and1<i<d.
The adapted field {Xyx, Fx,n <k <N} is said to be «-strong* adapted (or strong*

adapted) if {Xyl4, Fi,n < k < N} is a-strong adapted (or strong adapted) for all A € o (Xy).

Example 2.1 Let {X,,G, :1 < n < N} be an adapted sequence of E-valued random vari-
ables and set

X=X, ifk=(kk,...,k) and X, =0 ifk#(k,k,...,k);
Gu=Gr ifk=(kk,...,k) and G ={0,Q} ifk#(kk,... k).
Let Fi = o{G,1 <k} for all k> 1, then EXulul|Fy |) = EXilalGr-1) € Gk = Fi if k =

(k,k, ..., k), EXida|Fy_y) = 0 if otherwise, for all A € 0(Xy) and 1 <k <N = (N,...,N),
s0 {Xi, Fk: 1 <k <N} is a strong* adapted field.
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Example 2.2 Let {Yj, n <k < N} be a field of independent random variables. Put Fy =
o(Y;,i<k)and X = Hiﬁk Y;, so {Xi, n < k < N} is nota field of independent random vari-
ables. If E|Xy| < oo for all n < k < N, then {Xy, Fx,n < k < N} is a strong* adapted field.

The adapted field {Xx, Fx,n <k <N} is said to be an o-martingale difference field if
E(Xu| Fy_quo) =0 foralln<k<Nand1<i<d.

When a(k) = (M, ..., M;) =M for all n < k < N then the adapted field {X, Fi,n <k <
N} is said to be an M-martingale difference field.

When a(k) =1 for all n < k < N then the field {Xx, Fx,n < k < N} is a martingale differ-
ence field which was introduced by Huan et al. [3] in case d = 2.

Remark 2.3
o Let {Xx, Fx:n < k < N} be a field of martingale differences, then it is strong adapted,
but it is not necessarily a strong™ adapted field.
« Let {Xi, k € Z%) be a field of m-dependence random variables with mean 0. Put
Fr=0X,1<xk)and M = (m,...,m), then E(Xk|-7'—1i,M) =EX =0 forall k € Z¢,
1 <i <d. Therefore, {Xy, Fi, k € Z?%} is a field of M-martingale differences.

Example 2.4 Let {X;, k € Z%) be a field of independent random elements with mean 0. Put
Fi =0 (X,1<Kk), then E(Xy| Ff ;) = 0 for all k € Z¢, 1 < i < d. Therefore, {X, Fi, k € Z%}
is a field of martingale differences and a strong* adapted field.

Set Yk = X 11-ao<i<k X1> then {Yi, Fio k € 74 is a field of -martingale differences.

Example 2.5 Let {Y,k € N%} be a field of independent random variables with mean 0.
Put Fi = o (¥},1 < Kk)and Xj = Hlik Y1, so {Xi, k € N} is not a field of independent random
variables. If E|X| < oo for all k > 1, then E(Xx| F}. ) = 0, EXulul Fyf ) = E(Xula) € Fi for
all A € 0(Xy), k= 1,1 < i < d. Therefore, {Xj, Fi, k € N4} is a field of martingale differ-

ences and a strong* adapted field.

For strictly increasing sequence of positive integers {w;(k), k > 1}, with w;(1) =1 (1 <i <
d), and k € N, we set

w(k) = (o1(k), ..., wa(ka)), Ak = [0(k), o(k +1)).

The adapted field {Xy, Fi, k € N} is said to be a blockwise-adapted field (respectively,
blockwise-a-strong adapted, blockwise-a-strong™ adapted, blockwise-a-martingale differ-
ence field, blockwise-M-martingale difference field, blockwise-martingale difference field)
with respect to the blocks {Ay, k € N4} if for each k € N?, {Xy, Fi, k € Ay} is an adapted
field (respectively, a-strong adapted, a-strong™ adapted, «-martingale difference field,

M-martingale difference field, martingale difference field).
Example 2.6 Let Xy, Fi, Yy as in Example 2.4. Set Z; = Y; ,x,; and Gi = 0 (Zy; 2K < u < i),
2K <j<2K1 k>0 then {Z,,Gy;n>1} is a blockwise-a-martingale differences and a

blockwise-«-strong* adapted field with respect to the blocks I—[Z=1 (2K, 2k+1),

To prove the main result we need the following lemmas.
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Lemma 2.7 Let E be a real separable p-uniformly smooth Banach space for some 1 <
p < 2. Then there exists a positive constant C such that all strong adapted random fields
{Xio Fion <k <N} in E we have

E ’. .

L‘;‘fé‘N > (G-E(lF H }<c > ElXl (22)
n<i<k n<k<N

Proof We set

Si= Y (Xi- E(GIFL))-

1=<i=<k

Firstly, for d = 1, note that {max;<;<x ||S;||, F« : # < k < N} is a nonnegative sub-martingale.
Applying Doob’s inequality and by (2.1), we have (2.2). We assume that (2.2) holds for d -1,
we wish to show that it holds for d.

Denote k = (K, k;); k = (n',15); N = (N, N,); with K, n’, N’ € N41; set

Yi, = n/g}(?fN, H (K5kz) H

for each ny; < k; < Ny, we have

E(Sut Fiteyny) = E(Saskg | Fig 1)
+ Z (E(Xaerp — E(Xaesky | F e “Lky— 1)|]:k’kd 1))
n’<k'<N’

= Siky-1)5

that means that for each n’ <k’ <N’ then {Sy; d);f(”li(, s P Md = ks < N}, we find that
(Y Faeiky) : 1a < ka < Ng} is a nonnegative sub-martingale sequence. Applying Doob’s

inequality, we obtain

E max |[SauyllP =E max Y{ <C- EYf, =CE max Saeg 1P
ka <k'<

n=(K k;)<N ny<kg<Ny
Set
ch(i,—l = Z Xwiky)s Fal - (]rafkd ng <kz< Nd).
ng<k;<Nj
We note that ]-"ik, (]-'lf, b ]-'k, k) = (Flf,‘l)*, for all ny < k; <Ny, 1<i<d, then

{Xl‘f, LS dl.p <K < N’} is a strong adapted field. Therefore, by the inductive assumption
and inequality (2.1) we have

p

Z Xw'iky) _E(X(k’;kd)|]:(>:<’—1vkd_l))
ng<kg=<Ng4

E[ max Swe; 1’]<C-
Lmax  [Sac | < >

n’' <k’<N’

=C Z E| X« - E(Xal Fiy) [P < € Z E|| Xx|”.

1<k=<n 1<k=n

Page 4 of 14
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Remark 2.8 If {Xy; k > 1} is an E-valued martingale difference field, from Lemma 2.7, we
obtain Lemma 2.4 in [3] for d = 2 and Corollary 3.2 in [8] for d > 2 (with p = q).

We note that if { X, Fi : n < k < N} is strong adapted, when d = 1 then {Xi - E(Xi|F} ),
Fi:n < k < N} is a sequences of martingale differences, but when d > 1 then {Xi —
E(Xi|Fy_1), Fx : n <k < N} is not necessarily a field of martingale differences, because
Xy — E(Xx|Fi_;) may not be Fi-measurable (see [9], Example 3.1).

Lemma 2.9 Letl<p <2,a=(n,...,ay) where oy,...,0  are positive constants, 1 = o1 =

=0y <Og < - < og and X be a random variable taking values in a real separable
Banach space E. Then there exists a positive constant C such that

1 [n*?
Z [n®|? / P{||X||P = t} at<C- (E||X|| 10gﬁ1r—1 X + 1),
n>1 0

(ii) P{IX|| = t}dt < C-E|IX| log? | X]I.

I°‘|

n>1

Proof Denote d(k) = anmnq:k 1, by Lemma 3.1 of Gut [10] we have

i dj) C(log k)q’l'

P > Jep-1

Hence, we have

1 [n* P
> — / PlIIX|IP > t} dt
— [n*? Jo
1 1 [P )
S;nﬂf;mw/l PP = t) e

1 [n* P
<C+ CZ e /1 PlIX|)P > ¢} dt

o [k 13-y
1
SCHC Y AN E(IXIP1( < 11Xl <j +1))
kngi15ang=1 kv qu+1 % j=1
[kno{ii+l !
* d(k " - ,
<c+C Z T n‘md — #P{IX = )
Hgslrmlid q+1 ' j=1
- ] [”Zi’fl"'”?] = d(k)
<C+C Z P g Z j"‘lP{||X||Zj}Zk—p
ngsteang=1 Pqrl Mg j=1 k=1
o0 o0 o0
1 . . d(k)
vC Y o 2 SPIXIZ) Y S
L © g kelitmg g
> 1
<C+C Y mrw Z(logz)" 'P{|IX]| = j} < C + CEIX|| log?™ | X].

Agileoig=1 " q+1 iy j=1
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Now we prove (ii). We have by Lemma 3 of Stadtmiiller and Thalmaier [5]

i1 ~Ng—1
g0) = > 1~ Cli((;’g_] i)! asj— oo.

gl «, .
15”1"'”‘1'”1731 "'nddfj

Denote Ag(j) = g(j) — g(j — 1), we get

]

P{IX|| >t} dt

—Z  Ae0) f {I1X1 = ¢} dt = Ag(k)Z f {I1X1 > t}d

J

<Z Ag(kz {;<||X||<;+1}=Zip{fs||X||<j+1}Z§Ag<k)
j=1

k=1

[e’e] j-1
<CY jPli<IXl<j+1} Z(% - ﬁ>k(logk)q !

j=1 k=1
+C Y Plj < |IX] <j +1}j(log))*
j=1
00 j 1
=C jPY= Xl <j+ 1}(og)"™" 3 =
j=1 k=1
o0
+C Y Plj < |IX] <j+1}j(logj)*™"
j=1

[o¢]
<CY P{j <Xl <j+1}jllog))* < CE|X||log? |IX].
j=1

Lemma 2.10 Let {an, n > 1} be a nondecreasing field of positive constants such that

1< hmlnf — < hmsup <M. (2.3)

n<m=n+l gy, n<m=n+1 %n

If {xn,n > 1} is a field of constants and
lim %, =0,
|n|]—o00

then

=0.

2 : j+1%;

1<j=<k

1
lim — sup
[n]—00 dp k<n

Proof First, we prove that

— Z a5 < C. (2.4)

1<J<n

Page 6 of 14
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By (2.3), there exist a constant 0 < § < 1 and ng such that for all m > n > ny then :—; <6é.
We have foralln > 1

1
— <M < M| |ng| +
Z Aj+1 = P Z aj1 = (l ol (1 8)d>

1<,<n 1<j=<n

and we have (2.4).
For every € > 0, there exists N > 0 such that for all [n| > N, [x,| < & so that

§ :“Hli § :aHli

1=j=k ljil<k

— sup
A4n k=n

< — sup
An |k|<N

The conclusion of the lemma follows upon letting |n| — oo and then € — 0. O

3 Inequalities for sums of adapted random fields
The first theorem characterizes the p-uniformly smooth Banach spaces.

Theorem 3.1 Let 1 < p <2 and E be a separable Banach space, then the following three
statements are equivalent:
(i) E is p-uniformly smooth.
(ii) There exists a positive constant C such that for all a-strong adapted random fields
{Xo Fisn <k <m} in E we have

Lrjlka}m ZkX - E(XilF ) ]
<Cloe??(m)| > ElX?. (3.1)

n<k<m
Proof We first prove the implication ((i) = (ii)). If m — n < a(m), (3.1) is trivial.
If m —n > «(m), note that if {«(k),k > 1} is a nondecreasing field of positive, for all
n=<i<a(m)+n-1then
{ X w-n)a(m)> Fiua(m)+airuam)i 0 < i+ (@ —1)a(m) < m}
are o-strong adapted fields. Set

={k0=<ka(m)+ixm-n} and Yi=Xi-E(XulF o)

Then we have

(nr<nka<xm Z X E X| ) )
n=<i=<k
p
SE( > max Z Yau(m)sisn )
0<i=<a(m)-1 0=<u=<k

§ Yuot m)+i+n

0=<u=<k

< a”_l(m)( Z Emax

0<i=<a(m)-1

)
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< Ca?Y(m) Z (ZE”Yka(m)Jan”p)

0<i=<a(m)-1 “keA;

=Co?(m) > EIX:|l? by (22), (3.2)

again establishing (3.1). If \/;il(mi —n; < o;(m;)), the proof is similar to (3.2).

((ii) = (i)) Let {X,,, G,, n > 1} be a martingale difference sequence in E.
Forn' > 1, n; > 1, put

Xy =Xn, ifn'=1 and Xgyy)=0 ifn' >1,
]:(n’;nd) = gn/,

Then {X,, Fn,n > 1} is an a-strong adapted field with «(n) = 1 by (ii); we have (2.1) and
then E is p-uniformly smooth. d

From now on, let {I';(k), k > 1} be strictly increasing sequences of positive integers with
I'i(1) =1 (1 <i <d). For m € N% n € N*¢, we introduce the following notations:

[(n) = (T10m),..., Ta(na)), =[I'(m),F(m+1)),  Al=ANA"Y,

Im={n: AR #0}, Cm = card Iy,

i) =) adyum), - ¢i(n) = maxe (K),

k>1
= l 1 (I = l ’
@>(n) = g\a k+1))| - clpk(m),  $a(n) max ¢ (k)

where I, denotes the indicator function of the set A®; Kk e N9,
Let { Xy, Fa; 0 € N?} be a blockwise-a-adapted field taking values in the Banach space E
with respect to the blocks {Ay; n € N%}, we put

Theorem 3.2 Let E be a p-uniformly smooth Banach space (1 < p <2). Then there exists
a positive constant C such that for all strong blockwise-a-strong adapted random fields
{Xn, Fn; > 1} in E with respect to the blocks { Ay, k > 1} and every nondecreasing field of
positive constants {ay,n > 1} we have

Y ——ET CZ—EHX ”. (33)

n>1 aF(n+l)¢§ (F(n)) n=1

Y Xi-E(XGIFp)

I'(n)<i=<k

T, = sup
keAn

Proof For m € N%, n € Iy, we set
(i) = minfj:j € [w;(m;), wi(n; + 1)) O [Ti(my), Ty(m; + 1))},

> x|

P <izu

= (), @), TR = max

ue AR

Page 8 of 14
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We have Tr, <) T™ for m € N?. Applying the C, inequality, we have

nely

E(Tw)? C{:n—l ;
E(T™
d?(m+1)¢§’l(r(m)) S a?(m+1)¢2(r(m))p—1 Z ( n)

nely

cf, -C - |aP1(I( m+1))|
E|IX;|? (by Lemma 2.7)
(ﬂr m+1))? (@2(T" (m Z Z (by

kelm ieAR
E|IX;|IF <C —E XillP
> EIXl| Z 1G17. -
I'(m+1) jeam 1€Am

When «(i) = M for all i > 1, with a note that ¢,(m) = [M|¢;(m) for all m > 1, we have
the following corollary.

Corollary 3.3 Let E be a p-uniformly smooth Banach space (1 < p < 2). Then there exists
a positive constant C such that for all strong blockwise-M-adapted random fields { Xy, Fp :
n > 1} in E with respect to the blocks { Ak, k > 1} and every nondecreasing field of positive
constants {ay,n > 1} we have

Y ET=CY —EnX ”. (3.4)

n>1 al“ n+l) (,01 (F(n)) n>1

Theorem 3.4 E is a p-uniformly smooth Banach space (1 < p < 2), {Xy, Fo,n>1} is
a blockwise o-strong*-adapted random field in E with respect to the blocks {Ay, k > 1}.
{Vn(x) € R*} is a field of a positive Borel function which has the following property:

1//n(u)
V)\" 1»[/n(V) -

— forallu>=v>0, (3.5)

where Cy > 1, Dy > 1, Ap > 1, 0 < up < p. {an,n > 1} is a nondecreasing field of positive
constants satisfying (2.3). Then there exists a positive constant C such that for all € > 0, we
have

> P(Ta = carmmey " () <C Y~ An w (36)

nx1 n>1
where A, = max{cin,Dn}.
Proof For each n > 1, set

Yo=Xal(IXall < @), Zn=Xal (| Xall > an),

Y Yi-E(YilF )|

['(n)=<ix<k

U, = sup
keAn

Va = sup

Zi - E(Zi |‘7:ita(i))
keAn

I'(n)<ixk

Since {Xp, Fn,n > 1} is a blockwise-a-strong* adapted field with respect to the blocks
{Am,m > 1}, it is clear that {Yy, Fn,n > 1} and {Z,, F,n > 1} are blockwise a-strong
adapted fields with respect to the blocks { A, m > 1}. Moreover, for n € N,

Xn +E(Xn|-7:n—a(n)) = (Yn +E(Yn|fn—a(n))) + (Zn +E(Zn|fn—a(n)))~
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Then Ty, < U, + V, for all n > 1. By the Markov inequality, we have

ZP(Tn = €41 (n+1)P (p 1)/p(l—‘(n)))

n>1
1 1 1 1
B . Sy
2er dlli(n+1)§02 (F(n)) 2e ar(n+1)

n>1 n>1

EVy.

By Theorem 3.2, we have

1
E [ 1
n>1 ap [(n+1) (pg 1(F(n)) "

CZEHU oy

n>1 n>1 dn
Eym(llYall) Eym (I Xall)
<C E <C D, <C An .
; ‘ ; (ﬂn ; Wn(ﬂn)
Next, by Theorem 3.2,
1
> EVa
n>-1 I'(n+1)
E||Va
CZ || I CZE‘
n>1 n>1
L EYn(lZal) ||) EYrn (1 Xall)
<C E < An 7.
; H N ; Ca I/fn n) ; Yn (@n)

Then (3.7), (3.8), and (3.9) yield (3.6).

Page 10 of 14

(3.7)

(3.8)

(3.9)

O

Remark 3.5 The field of functions {{/,,, n > 1} with ¥, (x) = |x|” satisfies the property (3.5).

Recall that the field of E-valued random variables { Xy, n € N} is said to be stochastically

dominated by an E-valued random variable X if, for some 0 < C < 0o,
P{|IXall > x} < CP{|IX]| > x}

foralln € N4 and x > 0.

Theorem 3.6 Let {X,, Fn;n € N} be a blockwise-a-strong* adapted field with respect
to the blocks {Ax, k> 1} in a real separable p-uniformly smooth Banach space E with

l<p<2.Letay,...,aq be positive constants satisfying min{o, ..., a4} = 1, let q be the num-

ber of integers s such that a; = 1 = min{ay,...,oq}. If {Xn;n € N%} is stochastically domi-

nated by an E-valued random variable X. Then

ZP (Tn >6|F°‘(n+l)|<p(p 1/"(1“(n))) < C(E|IX| log? [IX|| +1).

n>1
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Proof For each n > 1, set

Yo =Xal(] “)s Zn=Xal(I|Xall > |n]),
U, = sup Z Y- E(YilF ui) ||
keAn n)<i<k
= Zi — EZ .
Ve kseuAp Z Fiaw)

n)<i<k

Since {Xpn, Fn,n > 1} is a blockwise-a-strong™* adapted field with respect to the blocks
{Am,m > 1} then it is clear that {Y},, 7, n > 1} and {Z,, /5, n > 1} are blockwise-a-strong
adapted fields with respect to the blocks { A, m > 1}. Moreover, for n € N,

Xn + E(Xn|]:n—a(n)) = (Yn + E(Ynl}—n—a(n))) + (Zn + E(Zn|]:n—a(n)))~

Then T, < Uy + V; for all n > 1. By the Markov inequality, Theorem 3.2, and Lemma 2.9,

we have

ZP (Ta=€|T(n+1 |<p(p Dlp (M(m))

n>1

o 1 2 1
= By 2y L gy,
<epz|r(n+1)|p T (n)) “+6§|F(n+1)|

n>1

=C) e alpEllY Al +CY a|E||Zna||

n>1 n>1

<CZ| alpE”X” X ne ) +CZ| a|EIIXIII 1X1<Ine ]}

n>1 n>1
<CY PlIX| = |n*|} +CZ| T PlIx| >t}d
n>1 n>1

1 [n*1P
C PHIX|P > ¢t} de
; nzzlm“"’/o {117 > 1}
<
T

n>1

[n% \p
Pz d)der Y 5 | el

< C(EIIX|og? X[ +1). O

[n%|

4 Application to the strong law of large numbers
By applying theorems in Section 3 we establish some results of strong laws of large num-
bers for fields of blockwise-«-martingale differences with values in a p-uniformly smooth
Banach space.

In the rest of this paper, we denote by {Xy, Fy : n > 1} the blockwise-a-martingale dif-
ference field with respect to the blocks {Ay, k > 1}. When a(k) = M for all k, it is called a
strong blockwise-M-martingale difference field, and we set

Sk = Z X;.

1<i<k
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Let {a,,n > 1} be a nondecreasing field of positive constants such that

1< hmlnf —— < limsup Ar(m) < 00. (4.1)

n<m=n+l1 ﬂF( ) n<m=n+1 %I (n)

Theorem 4.1 Let 1 < p <2, and let E be a separable Banach space, then the following
three statements are equivalent:
(i) E is p-uniformly smooth.
(i) {Xn, Fnon > 1} is a blockwise-a-martingale difference field in E with respect to the
blocks {A, k > 1}, {an, n > 1} is a nondecreasing field of positive constants satisfying
(4.1). If

1
> —EIXall” < o0, (4.2)

n>1 n

then we have

————— max ||S]| = 0 a.s. as|n|— 0. (4.3)
ang? "' (n) 1=k=n

(iii) {Xn, Fn:n > 1} is a blockwise-M-martingale difference field in E with respect to the
blocks { Ay, k =1}, {an, n = 1} is a nondecreasing sequence of positive constants
satisfying (4.1). If (4.2) holds, then we have

1

_ Skll— 0 a.s. as|n|— 0.
an(¢1(n))(p1,plk X || Skll [n]

Proof ((i) = (ii)) By (4.2) and Theorem 3.2, we have

n

AT (n+1) ¢2 (l’l)

— 0 as.

For n > 1, let m > 0 be such that n e A™, by Lemma 2.9, we have

1
0<——F——————sup X
ﬂn(¢2(n))(p71)/p k=<n I;k '
T;
sup Z ar( ,+1 ‘ — 0 a.s.
AT (m) k<m 1=i<k 1+1)¢2

((ii) = (iii)) When (k) = M for all k > 1, with a note that ¢ (m) = |[M|¢;(m) for allm > 1.
We have (4.3).

((iii) = (i)) Assume that (iii) holds. Let {X,,G,,n > 1} be a martingale difference se-
quence in E such that

i E| |X "

n=1
Forn>1, put X, = X,,, if n; =1 (2 <i < d) and X,, = 0 if there exists a positive integer i
(2 <i<d)suchthatn; > 2,

Fn=G, foralln=(m,...,ng) e N4,
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Then {X,, Fo,n = 1} is a blockwise-1-martingale difference field with respect to the blocks
T1%,125,2%) in E and 300, Elal? _ y~oo ERXIZ oo Tet gy, = |n| for all n > 1. Then

n>1 " |nf? b

(4.1) and (4.2) hold. Thus, by (iii),

1
e 2 im0 as.

1<i<n

Note that ¢;(n) =1, n > 1, and we have

lim — X;i=0 as.
|n|—o00 |n| Z

1<i<n

Taking n; =1 for all 2 < i < d and letting n; — oo, we obtain

n

1
lim — X;=0 as.
n—>00 my ; !

Then by Theorem 2.2 of Hoffmann-Jergensen and Pisier [11], E is p-uniformly smooth.
O

Remark 4.2 In Theorem 4.1, whend =2, a(n) =1, A = ]_[Z=1 [2K, 2%+1) we have the result
in Theorem 3.2 in [3]. Whend =2, a(n) =M, E=R, Ay = ]_[Z=1 [2K,2K1), {X;n =1} is a
double of mean zero random variables and we have a part of Theorem 3.1 in [6].

{Xn, Fn;n = 1} is said to be a strong™ blockwise-o-martingale difference field if it is a
blockwise-«-strong* adapted field as well as a blockwise-a-martingale difference field.

Theorem 4.3 Let1 < p <2, and let E be a separable Banach space, then the following two
statements are equivalent:
(i) E is p-uniformly smooth.
(ii) {Xn, Fn,n > 1} isa strong* blockwise-a-martingale difference field in E with respect
to the blocks { Ay, k = 1}, {{n, n > 1} is a field of positive Borel functions satisfying

35). If
Eyn(I1Xall)
A, , 4.
HZ; wn(ﬂn) =0 (4.4)

where Ay, = max{cin,Dn}, then we have (4.3).

Proof ((i) = (ii)) By Theorem 3.4 and by the same argument as in the proof of Theo-
rem 4.1.

((ii) = (i)) Assume that (ii) holds. Let {X},, G,, n > 1} be a martingale difference sequence
in [E such that

= E|1 X, 1P
— <X

P
n=1 n

Forn>1, put X, = X,,, if n; =1 (2 <i < d) and X,, = 0 if there exists a positive integer i
(2 <i<d)suchthatn; > 2,

Fn=G, foralln=(m,...,ng) e N4,
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Then {X,, Fn,n > 1} is a blockwise-1-martingale difference and strong* adapted field with
respect to the blocks ]_[Z:1 [2%,2%1) in IE and we have Y ElXal? _ S EXul® o 5o, Put

n>1 |n? n=1 n?
Yn(®) =2, An =1, tn =p, Cu =1, Dy, =1, n > 1 and a, = |n| for all n > 1. Thus, by (ii) and
by the same argument as in the proof of Theorem 4.1, we have (i). O

Theorem 4.4 Let {X,,, Fn;n > 1} be a blockwise-a-strong* adapted field with respect to the
blocks { Ax,k = 1} in a real separable p-uniformly smooth Banach space E with 1 <p <2.
Let o,...,04 be positive constants satisfying min{os,...,aq} = 1, let g be the number of
integers s such that as = 1 = min{ay, ..., a4} If {Xn;n € N} is stochastically dominated by
an E-valued random variable X such that E(||X||log? | X||) < co. Then

m max ISkl = O a.s. as |[n| — 0. (4.5)
Y} <k=

Proof Using Theorem 4.3 and by the same argument as in the proof of Theorem 4.1, we
have (4.5). O

Remark 4.5 In Theorem 4.3, whend =2, a(n) =1, A = A¥ = ]_[Z=1 [2K,2%+1) we have the
result in Theorem 3.2(ii) in [7].
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