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Abstract
In this paper, we prove the existence of solutions for a variational-like inequality and a
generalized variational-like inequality in the relaxed η-α pseudomonotone and
strictly η-quasimonotone cases in Banach spaces by using the KKM technique. The
results presented in this paper improve and extend some corresponding results of
several authors.
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1 Introduction
The variational inequality was first introduced and studied in the finite-dimensional Eu-
clidean space by Giannessi []. Variational inequality problems play a critical role in many
fields of science, engineering, and economics. In the last four decades, since the time of
the celebrated Hartman-Stampacchia theorem (see [, ]), the existence of a solution of a
variational inequality, a generalized variational inequality, and other related problems has
become a basic research topic which continues to attract the attention of researchers in
applied mathematics (see for instance [–], and the references therein).
In , Chang et al. [] introduced and studied the problem of the existence of solu-

tions and the perturbation problem for some kind of variational inequalities with mono-
tone and semimonotone mappings in nonreflexive Banach spaces. Recently, Verma []
studied a class variational inequality relaxed monotone mapping. Moreover, Fang and
Huang [] obtained the existence of solutions for variational-like inequalities with re-
laxed η-α monotone mappings in reflexive Banach spaces. In , Facchinei and Pang
[, ] used the degree theory to obtain a necessary and sufficient condition of variational
inequality problems for continuous pseudomonotone mappings in a finite-dimensional
space. In , Kien et al. [] proposed some extensions of the results of Facchinei and
Pang [, ] to the case of variational inequalities and generalized variational inequalities
in infinite-dimensional reflexive Banach spaces.
On the other hand, Bai et al. [] introduced the new concept of relaxed η-α pseu-

domonotone mappings. By using the KKM technique, they obtain some existence results
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for variational-like inequalities with relaxed η-α pseudomonotone mappings in reflex-
ive Banach spaces. In , Wu and Huang [] introduced the two new concepts of
relaxed η-α pseudomonotonicity and relaxed η-α demipseudomonotonicity in Banach
spaces. In , Pourbarat and Abbasi [] tried to replace some conditions of the work
of Wu and Huang [] with some new conditions. Moreover, they present the solvability
of variational-like inequalities with relaxed η-α monotone mappings in arbitrary Banach
spaces (see also in [, –] and [–]).
Inspired and motivated by [], we introduce a new definition of relaxed η-α pseu-

domonotone mappings and prove the existence of solutions for variational-like inequality
and generalized variational-like inequality with relaxed η-α pseudomonotone mappings
and strictly η-quasimonotone mappings in Banach spaces by using KKM technique. The
results presented in this paper improve and extend some corresponding results of several
authors.

2 Preliminaries
Let X be a real reflexive Banach space with dual space X∗ and 〈·, ·〉 denoted the pairing
between X∗ and X. Let K be a nonempty subset of X, and X denote the family of all the
nonempty subset of X and � : K → X∗ and η : K ×K → X be mappings. The generalized
variational-like inequality defined by K and �, denoted by GVLI(K ,�), is the problem of
finding a point x ∈ K such that

∃x∗ ∈ �(x),
〈
x∗,η(y,x)

〉 ≥  ∀y ∈ K . (.)

The set of all x ∈ K satisfying (.) is denoted by SOL(K ,�). If �(x) = {F(x)} for all x ∈ K ,
where F : K → X∗ is a single-valued mapping, then the problem GVLI(K ,�) is called a
variational-like inequality and the abbreviation VLI(K ,F) is the problem of finding an
x ∈ K such that

〈
F(x),η(y,x)

〉 ≥  ∀y ∈ K . (.)

We introduce the definition of relaxed η-α pseudomonotone for α mapping which
comes from a family of functions which contains all mappings α given in []. In fact, the
new definition is an extension of Definition . in []. Then we recall some definitions
and results which are needed in the sequel.
We introduce the family

A =
{
α: α : X →R; lim sup

t→+

α(tη(x, y))
t

=  ∀(x, y) ∈ K ×K
}
.

We note that if α(tx) = k(t)α(x), for all x ∈ X where k is a function from (,∞) to (,∞)
with limt→

k(t)
t = , then α ∈ A.

Definition . The mapping F : K → X∗ is said to be:
(i) Relaxed η-α pseudomonotone if there exist η : K ×K → X and α : X →R with

α ∈ A, such that for every distinct points x, y ∈ K ,

〈
F(y),η(x, y)

〉 ≥  ⇒ 〈
F(x),η(x, y)

〉 ≥ α
(
η(x, y)

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/442
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If η(x, y) = x – y for all distinct points x, y in K , then (.) becomes

〈
F(y),x – y

〉 ≥  ⇒ 〈
F(x),x – y

〉 ≥ α(x – y),

and F is said to be relaxed α pseudomonotone.
(ii) Strictly η-quasimonotone if there exist η : K ×K → X such that for every distinct

points x, y ∈ K ,

〈
F(y),η(x, y)

〉
>  ⇒ 〈

F(x),η(x, y)
〉
> . (.)

If η(x, y) = x – y for all distinct points x, y in K , then (.) becomes

〈
F(y),x – y

〉
>  ⇒ 〈

F(x),x – y
〉
> ,

and F is said to be strictly quasimonotone.

Definition . The mapping � : K → X∗ is said to be:
(i) Relaxed η-α pseudomonotone if there exist η : K ×K → X and α : X →R with

α ∈ A,

〈
y∗,η(x, y)

〉 ≥ , ∃y∗ ∈ �(y)

⇒ 〈
x∗,η(x, y)

〉 ≥ α
(
η(x, y)

)
, ∃x∗ ∈ �(x),∀x, y ∈ X.

(ii) Strictly η-quasimonotone if there exist η : K ×K → X such that

〈
F(y),η(x, y)

〉
> , ∃y∗ ∈ �(y)

⇒ 〈
F(x),η(x, y)

〉
> , ∃x∗ ∈ �(x),∀x, y ∈ X.

Example . If F : (–∞, ] → [, +∞) define by F(x) = x and

η(x, y) = |x – y| ∀x, y ∈ (–∞, ],

where c > , then the mapping F is a relaxed η-α pseudomonotone mapping with

α(z) =

⎧⎨
⎩–[|z|], z > ,

[|z|], z ≤ .

But it is not a relaxed α-pseudomonotonemapping. In fact, if we let x = –, y = , 〈F(y),x–
y〉 ≥ , but 〈F(x),x – y〉 < α(x – y), which is a contradiction.

Example . If F : (–∞, ) →R define by F(x) = x –  and

η(x, y) = –c(x – y) ∀x, y ∈ (–∞, ),

where c > . Then the mapping F is strictly η-quasimonotone but fails to be strictly quasi-
monotone since if x ∈ (–, ) and y < –, then we have 〈F(y),x– y〉 ≥  but 〈F(x),x– y〉 < .
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Definition . ([]) Let F : K → X∗ and η : K ×K → X be two mappings. F is said to be
η-hemicontinuous if, for any fixed x, y ∈ K , the mapping f : [, ] → (–∞, +∞) defined by
f (t) = 〈F(x + t(y – x)),η(y,x)〉 is continuous at +.
If η(x, y) = x – y ∀x, y ∈ K , then F is said to be hemicontinuous.

Definition . ([]) A mapping F : K → X is said to be a KKM mapping if, for any
{x, . . . ,xn} ⊂ K , co{x, . . . ,xn} ⊂ ⋃n

i= F(xi), where co{x, . . . ,xn} denotes the convex hull of
x, . . . ,xn.

Lemma . ([]) Let K be a nonempty subset of a Hausdorff topological vector space X
and let F : K → X be a KKMmapping. If F(x) is closed in X for every x in K and compact
for some x ∈ K , then

⋂
x∈K

F(x) �= ∅.

Lemma . (Michael selection theorem []) Let X be a paracompact space and Y be a
Banach space.Then every lower semicontinuousmultivaluedmapping fromX to the family
of nonempty, closed, convex subsets of Y admits a continuous selection.

3 Generalized variational-like inequality with relaxed η-α pseudomonotone
mappings

In this section, we will discuss the existence of solutions for the following variational-like
inequality and generalized variational-like inequality with relaxed η-α pseudomonotone
mappings.

Theorem. Let K be a nonempty closed convex subset of a real reflexive Banach space X.
Let F : K → X∗ and η : K ×K → X be mappings. Assume that:

(i) F is an η-hemicontinuous and relaxed η-α pseudomonotone;
(ii) η(x,x) =  for all x ∈ K ;
(iii) η(tx + ( – t)z, y) = tη(x, y) + ( – t)η(z, y) for all x, y, z ∈ K , t ∈ [, ].

Then x ∈ K is a solution of VLI(K ,F) if and only if

〈
F(y),η(y,x)

〉 ≥ α
(
η(y,x)

) ∀y ∈ K . (.)

Proof Suppose that x ∈ K is a solution of VLI(K ,F). Since F is relaxed η-α pseudomono-
tone, we have

〈
F(y),η(y,x)

〉 ≥ α
(
η(y,x)

) ∀y ∈ K ,

and hence x ∈ K is a solution of (.). Conversely, suppose that x ∈ K is a solution of (.)
and y ∈ K be any point. Letting xt = ty + ( – t)x, t ∈ (, ], we have xt ∈ K . It follows from
(.) that

〈
F(xt),η(xt ,x)

〉 ≥ α
(
η(xt ,x)

)
. (.)
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By the conditions of η, we have

〈
F(xt),η(xt ,x)

〉
=

〈
F(xt),η

(
ty + ( – t)x,x

)〉
= t

〈
F(xt),η(y,x)

〉
+ ( – t)

〈
F(xt),η(x,x)

〉
= t

〈
F(xt),η(y,x)

〉
. (.)

It follows from (.) and (.) that

t
〈
F(xt),η(y,x)

〉
=

〈
F(xt),η(xt ,x)

〉 ≥ α
(
η(xt ,x)

) ∀t ∈ (, ].

So, we have

〈
F(xt),η(y,x)

〉 ≥ α(η(xt ,x))
t

=
α(tη(y,x))

t
∀t ∈ (, ].

Letting t → +, we get

〈
F(x),η(y,x)

〉 ≥  ∀y ∈ K . �

Theorem . Let X be a real reflexive Banach space and K ⊂ X be a closed convex set. Let
F : K → X∗ and η : K ×K → X be are mappings. Assume that:

(i) F is a relaxed η-α pseudomonotone mapping and η-hemicontinuous;
(ii) η(x,x) =  for all x ∈ K ;
(iii) η(tx + ( – t)z, y) = tη(x, y) + ( – t)η(z, y) for all x, y, z ∈ K , t ∈ [, ] and η is lower

semicontinuous;
(iv) α : X →R is lower semicontinuous.

Then the following statements are equivalent:
(a) There exists a reference point xref ∈ K such that the set

L<
(
F ,xref

)
:=

{
x ∈ K :

〈
F(x),η

(
x,xref

)〉
< α

(
η
(
x,xref

))}
is bounded (possibly empty).

(b) The variational-like inequality VLI(K ,F) has a solution.
Moreover, if there exists a vector xref ∈ K such that the set

L≤
(
F ,xref

)
:=

{
x ∈ K :

〈
F(x),η

(
x,xref

)〉 ≤ α
(
η
(
x,xref

))}
is bounded and η(x, y) + η(y,x) =  for all x, y in K , then the solution set SOL(K ,F) is
nonempty and bounded.

Proof Suppose that there exists a reference point xref ∈ K , which satisfies (a). Then there
exists an open ball, denoted by � such that

L<
(
F ,xref

) ∪ {
xref

} ⊂ �.

We combine this with the obvious property ∂� ∩ L<(F ,xref ) = ∅. Thus 〈F(x),η(x,xref )〉 ≥
α(η(x,xref )) ∀x ∈ K ∩ ∂�. Define the set-valued mappings T ,S : K → X , for any x ∈ K , by

T(x) =
{
y ∈ K ∩ �̄ :

〈
F(y),η(x, y)

〉 ≥ 
}

http://www.journalofinequalitiesandapplications.com/content/2014/1/442
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and

S(x) =
{
y ∈ K ∩ �̄ :

〈
F(x),η(x, y)

〉 ≥ α
(
η(x, y)

)}
.

We claim that T is a KKM mapping. Indeed, if T is not a KKM mapping, then there ex-
ists {x,x, . . . ,xn} ⊂ K such that co{x,x, . . . ,xn} � ⋃n

i=T(xi). That is, there exists a x ∈
co{x,x, . . . ,xn}, x = ∑n

i= tixi, where ti ≥ , i = , , . . . ,n,
∑n

i= ti = , but x /∈ ⋃n
i=T(xi).

By the definition of T , we have

〈
F(x),η(xi,x)

〉
< , i = , , . . . ,n.

Since
∑n

i= ti =  for ti ≥  (i = , , . . . ,n), it follows that

n∑
i=

ti
〈
F(x),η(xi,x)

〉
< .

On the other hand, we note that

n∑
i=

ti
〈
F(x),η(xi,x)

〉
=

〈
F(x),η

( n∑
i=

tixi,x

)〉

=
〈
F(x),η(x,x)

〉
= .

It is a contradiction and this implies that T is a KKMmapping. Now we show that T(x) ⊂
S(x) for all x ∈ K . For any given x ∈ K , let y ∈ T(x). Thus, we have 〈F(y),η(x, y)〉 ≥ . Since
F is a relaxed η-α pseudomonotone, we obtain 〈F(x),η(x, y)〉 ≥ α(η(x, y)). This implies that
y ∈ S(x) and so T(x) ⊂ S(x) for all x ∈ K . It follows that S is also a KKMmapping.
From the assumptions, we know that S(x) is weakly closed. In fact, since η and α are

lower semicontinuous, we see that S(x) is a weakly closed subset of K ∩ �̄. Since K ∩
�̄ is a weakly compact and S(x) is a weakly closed subset of K ∩ �̄, we see that S(x) is
weakly compact for each x ∈ K . Thus, the conditions of Lemma . are satisfied in the
weak topology. By Lemma . and Theorem ., we have

⋂
x∈K

T(x) =
⋂
x∈K

S(x) �= ∅.

It follows that there exists z ∈ K ∩ �̄ such that

〈
F(z),η(x, z)

〉 ≥  ∀x ∈ K .

Hence z ∈ SOL(K ,F).
Assume that (b) holds. We take any xref ∈ SOL(K ,F). That is,

〈
F
(
xref

)
,η

(
x,xref

)〉 ≥  ∀x ∈ K .

http://www.journalofinequalitiesandapplications.com/content/2014/1/442
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By the relaxed η-α pseudomonotonicity of F , we have

〈
F(x),η

(
x,xref

)〉 ≥ α
(
η
(
x,xref

)) ∀x ∈ K .

Hence L<(F ,xref ) = ∅ and (a) is valid.
Finally, suppose that there is some xref ∈ K such that the set L≤(F ,xref ) is bounded. Then

SOL(K ,F) is nonempty by virtue of the implication (a) ⇒ (b). To prove that SOL(K ,F) is
bounded, it suffices to show that SOL(K ,F)⊂ L≤(F ,xref ). Assume that x ∈ SOL(K ,F), but
x /∈ L≤(F ,xref ). Thus, we have

〈
F(x),η(y,x)

〉 ≥  ∀y ∈ K (.)

and

〈
F(x),η

(
x,xref

)〉
> α

(
η
(
x,xref

))
. (.)

Substituting y = xref into the inequality in (.), we have

〈
F(x),η

(
xref ,x

)〉 ≥ . (.)

This implies that 〈F(x),η(x,xref )〉 ≤ . From (.) and (.), we have α(η(x,xref )) < . By
(.) and F is relaxed η-α pseudomonotone, we obtain

〈
F
(
xref

)
,η

(
xref ,x

)〉 ≥ α
(
η
(
xref ,x

))
.

It implies that 〈F(xref ),η(x,xref )〉 ≤ α(η(x,xref )). By Theorem . and (.), we get 〈F(xref ),
η(x,xref )〉 ≥ . Hence

 ≤ 〈
F
(
xref

)
,η

(
x,xref

)〉 ≤ α
(
η
(
x,xref

))
< .

It is a contradiction. Therefore x ∈ L≤(F ,xref ). �

Theorem . Let X be a real reflexive Banach space and K ⊂ X be a closed convex set. Let
� : K → X∗ and η : K ×K → X be are mappings. Assume that:

(i) � is a lower semicontinuous multifunction with nonempty closed convex values,
where X∗ is endowed with the norm topology;

(ii) � is a relaxed η-α pseudomonotone mapping;
(iii) η(x,x) =  for all x ∈ K ;
(iv) η(tx + ( – t)z, y) = tη(x, y) + ( – t)η(z, y) for all x, y, z ∈ K , t ∈ [, ] and η is lower

semicontinuous;
(v) α : X →R is lower semicontinuous.

Then the following statements are equivalent:
(a) There exists a reference point xref ∈ K such that the set

L<
(
�,xref

)
:=

{
x ∈ K : inf

x∗∈�(x)

〈
x∗,η

(
x,xref

)〉
< α

(
η
(
x,xref

))}

is bounded (possibly empty).
(b) The generalized variational-like inequality GVLI(K ,�) has a solution.

http://www.journalofinequalitiesandapplications.com/content/2014/1/442
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Proof Since � is lower semicontinuous multifunction with nonempty closed convex val-
ues, by Michael’s selection theorem (see for instance []) it admits a continuous selec-
tion; that is, there exists a continuous mapping F : K → X∗ such that F(x) ∈ �(x) for every
x ∈ K . If (a) holds, then there exists an open ball, denoted by � such that

L<
(
�,xref

) ∪ {
xref

} ⊂ �.

We combine this with the obvious property ∂� ∩ L<(�,xref ) = ∅. Thus, we have
〈
F(x),η

(
x,xref

)〉 ≥ inf
x∗∈�(x)

〈
x∗,η

(
x,xref

)〉 ≥ α
(
η
(
x,xref

)) ∀x ∈ K ∩ ∂�.

ApplyingTheorem., we get SOL(K ,F) �= ∅. For any x ∈ SOL(K ,F), if we choose x∗ = F(x)
then

〈
x∗,η(y,x)

〉 ≥  ∀y ∈ K .

It follows that ∅ �= SOL(K ,F)⊂ SOL(K ,�).
We prove that (b) ⇒ (a). Assume that (b) holds. We take any xref ∈ SOL(K ,�). Thus

there exists x∗ ∈ �(xref ) satisfying

〈
x∗,η

(
y,xref

)〉 ≥  ∀y ∈ K .

Because � is a relaxed η-α pseudomonotone, we obtain

〈
y∗,η

(
y,xref

)〉 ≥ α
(
η
(
y,xref

)) ∀y ∈ K , y∗ ∈ �(y).

It follows that

inf
y∗∈�(y)

〈
y∗,η

(
y,xref

)〉 ≥ α
(
η
(
y,xref

)) ∀y ∈ K .

Hence L<(�,xref ) = ∅ and (a) is valid. �

4 Generalized variational-like inequality with strictly η-quasimonotone
mappings

In this section, we will discuss the existence of solutions for the following variational-
like inequality and generalized variational-like inequality with strictly η-quasimonotone
mappings.

Theorem. Let K be a nonempty closed convex subset of a real reflexive Banach space X .
Let F : K → X∗ and η : K ×K → X be mappings. Assume that:

(i) F is η-hemicontinuous and strictly η-quasimonotone;
(ii) η(x,x) =  for all x ∈ K ;
(iii) η(x, y) + η(y,x) =  for all x, y ∈ K ;
(iv) for any fixed y, z ∈ K , the mapping x �→ 〈Tz,η(x, y)〉 is convex.

Then x ∈ K is a solution of VLI(K ,F) if and only if

〈
F(y),η(y,x)

〉 ≥  ∀y ∈ K . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/442
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Proof Suppose that x ∈ K is a solution of VLI(K ,F). That is 〈F(x),η(y,x)〉 ≥  ∀y ∈ K .
To show that 〈F(y),η(y,x)〉 ≥  ∀y ∈ K . Assume that there exists y ∈ K such that
〈F(y),η(y,x)〉 < . By the property of η, we have 〈F(y),η(x, y)〉 > . Since F is strictly
η-quasimonotone, we have 〈F(x),η(x, y)〉 > . By the property of η again, we get 〈F(x),
η(y,x)〉 < . It is a contradiction. Hence 〈F(y),η(y,x)〉 ≥  ∀y ∈ K .
Conversely, suppose that x ∈ K is a solution of (.) and y ∈ K is arbitrary. Letting xt =

ty + ( – t)x, t ∈ (, ], we have xt ∈ K . It follows from (.) that

〈
F(xt),η(xt ,x)

〉 ≥ . (.)

By assumption, we have

〈
F(xt),η(xt ,x)

〉
=

〈
F(xt),η

(
ty + ( – t)x,x

)〉
≤ t

〈
F(xt),η(y,x)

〉
+ ( – t)

〈
F(xt),η(x,x)

〉
= t

〈
F(xt),η(y,x)

〉
. (.)

It follows from (.) and (.) that

〈
F(xt),η(y,x)

〉 ≥  ∀t ∈ (, ].

Since F is η-hemicontinuous and letting t → +, we get

〈
F(x),η(y,x)

〉 ≥  ∀y ∈ K . �

Theorem . Let X be a real reflexive Banach space and K ⊂ X be a closed convex set. Let
F : K → X∗ and η : K ×K → X be are mappings. Assume that:

(i) F is a strictly η-quasimonotone mapping and η-hemicontinuous;
(ii) η(x,x) =  for all x ∈ K ;
(iii) η(x, y) + η(y,x) =  for all x, y ∈ K ;
(iv) for any fixed y, z ∈ K , the mapping x �→ 〈Tz,η(x, y)〉 is convex and η is lower

semicontinuous.
Then the following statements are equivalent:
(a) There exists a reference point xref ∈ K such that the set

L<
(
F ,xref

)
:=

{
x ∈ K :

〈
F(x),η

(
x,xref

)〉
< 

}
is bounded (possibly empty).

(b) The variational-like inequality VLI(K ,F) has a solution.
Moreover, if there exists a vector xref ∈ K such that the set

L≤
(
F ,xref

)
:=

{
x ∈ K :

〈
F(x),η

(
x,xref

)〉 ≤ 
}

is bounded, then the solution set SOL(K ,F) is nonempty and bounded.

Proof Suppose that (a) holds. Then there exists a reference point xref ∈ K and an open
ball, denoted by � such that

L<
(
F ,xref

) ∪ {
xref

} ⊂ �.
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We combine this with the obvious property ∂� ∩ L<(F ,xref ) = ∅. Thus 〈F(x),η(x,xref )〉 ≥
α(η(x,xref )) ∀x ∈ K ∩ ∂�. Defined the set-valued mappings T ,S : K → X , for any x ∈ K ,
by

T(x) =
{
y ∈ K ∩ �̄ :

〈
F(y),η(x, y)

〉 ≥ 
}

and

S(x) =
{
y ∈ K ∩ �̄ :

〈
F(x),η(x, y)

〉 ≥ 
}
.

Since η is lower semicontinuous, we find that T(x) and S(x) are weakly closed subsets of
K ∩ �̄. We claim that T is a KKMmapping. Similar to the proof of Theorem . we show
that T is a KKM mapping. Now we show that T(x) ⊂ S(x) for all x ∈ K . For any given
x ∈ K , we let y ∈ T(x). That is, 〈F(y),η(x, y)〉 ≥ . Since F is strictly η-quasimonotone, we
have 〈F(x),η(x, y)〉 ≥ . This implies that y ∈ S(x) and so T(x) ⊂ S(x) for all x ∈ K . It follows
that S is also a KKMmapping. Since K ∩ �̄ is weakly compact and S(x) is a weakly closed
subset of K ∩ �̄, we find that S(x) is weakly compact for each x ∈ K . Thus, the condition
of Lemma . is satisfied in the weak topology. By Lemma . and Theorem ., we have

⋂
x∈K

T(x) =
⋂
x∈K

S(x) �= ∅.

It follows that there exists z ∈ K ∩ �̄ such that

〈
F(z),η(x, z)

〉 ≥  ∀x ∈ K .

Hence z ∈ SOL(K ,F).
Assume that (b) holds. We take any xref ∈ SOL(K ,F), that is,

〈
F
(
xref

)
,η

(
x,xref

)〉 ≥  ∀x ∈ K .

By the strict η-quasimonotonicity of F , we have

〈
F(x),η

(
x,xref

)〉 ≥  ∀x ∈ K .

Hence L<(F ,xref ) = ∅ and (a) is valid.
Finally, suppose that there is some xref ∈ K such that the set L≤(F ,xref ) is bounded. Then

SOL(K ,F) is nonempty by virtue of the implication (a) ⇒ (b). To prove that SOL(K ,F)
is bounded, it suffices to show that SOL(K ,F) ⊂ L≤(F ,xref ). Assume that x ∈ SOL(K ,F).
Thus, we have

〈
F(x),η(y,x)

〉 ≥  ∀y ∈ K . (.)

Substituting y = xref into the inequality in (.), we have

〈
F(x),η

(
xref ,x

)〉 ≥ . (.)

This implies that 〈F(x),η(x,xref )〉 ≤ . Therefore x ∈ L≤(F ,xref ). �
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Theorem . Let X be a real reflexive Banach space and K ⊂ X be a closed convex set. Let
� : K → X∗ and η : K ×K → X be are mappings. Assume that:

(i) � is a lower semicontinuous multifunction with nonempty closed convex values,
where X∗ is endowed with the norm topology;

(ii) � is a strictly η-quasimonotone mapping;
(iii) η(x,x) =  for all x ∈ K ;
(iv) η(x, y) + η(y,x) =  for all x, y ∈ K ;
(v) for any fixed y, z ∈ K , the mapping x �→ 〈Tz,η(x, y)〉 is convex and η is lower

semicontinuous.
Then the following statements are equivalent:
(a) There exists a reference point xref ∈ K such that the set

L<
(
�,xref

)
:=

{
x ∈ K : inf

x∗∈�(x)

〈
x∗,η

(
x,xref

)〉
< 

}

is bounded (possibly empty).
(b) The generalized variational-like inequality GVLI(K ,�) has a solution.

Proof Since� is a lower semicontinuousmultifunction with nonempty closed convex val-
ues, by Michael’s selection theorem (see for instance []) it admits a continuous selec-
tion; that is, there exists a continuous mapping F : K → X∗ such that F(x) ∈ �(x) for every
x ∈ K . If (a) holds, then there exists an open ball, denoted by �, such that

L<
(
�,xref

) ∪ {
xref

} ⊂ �.

We combine this with the obvious property ∂� ∩ L<(�,xref ) = ∅. Then we have

〈
F(x),η

(
x,xref

)〉 ≥ inf
x∗∈�(x)

〈
x∗,η

(
x,xref

)〉 ≥  ∀x ∈ K ∩ ∂�.

ApplyingTheorem., we get SOL(K ,F) �= ∅. For any x ∈ SOL(K ,F), if we choose x∗ = F(x)
then

〈
x∗,η(y,x)

〉 ≥  ∀y ∈ K .

It follows that ∅ �= SOL(K ,F)⊂ SOL(K ,�).
We prove that (b) ⇒ (a). Assume that (b) holds. We take any xref ∈ SOL(K ,�). Thus

there exists x∗ ∈ �(xref ) satisfying

〈
x∗,η

(
y,xref

)〉 ≥  ∀y ∈ K .

Because � is strictly η-quasimonotone and Theorem ., we obtain

〈
y∗,η

(
y,xref

)〉 ≥  ∀y ∈ K , y∗ ∈ �(y).

It follows that

inf
y∗∈�(y)

〈
y∗,η

(
y,xref

)〉 ≥  ∀y ∈ K .

Hence L<(�,xref ) = ∅ and (a) is valid. �
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