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Abstract
In this work we study certain boundedness properties for localization operators on
Lorentz mixed-normed modulation spaces, when the operator symbols belong to
appropriate modulation spaces, Wiener amalgam spaces, and Lorentz spaces with
mixed norms.
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1 Introduction
In this paper we will work on R

d with Lebesgue measure dx. We denote by S(Rd) the
space of complex-valued continuous functions on R

d rapidly decreasing at infinity. For
any function f :Rd → C, the translation and modulation operator are defined as Txf (t) =
f (t – x) and Mwf (t) = eπ iwtf (t) for x,w ∈ R

d , respectively. For  ≤ p ≤ ∞, we write the
Lebesgue spaces (Lp(Rd),‖ · ‖p).
Let 〈x, t〉 =∑d

i= xiti be the usual scalar product on R
d . The Fourier transform f̂ (or F f )

of f ∈ L(Rd) is defined to be

f̂ (t) =
∫
Rd

f (x)e–π i〈x,t〉 dx.

For a fixed nonzero g ∈ S(Rd) the short-time Fourier transform (STFT) of a function
f ∈ S ′(Rd) with respect to the window g is defined as

Vgf (x,w) = 〈f ,MwTxg〉 =
∫
Rd

f (t)g(t – x)e–π itw dt,

for x,w ∈ R
d . Then the localization operator Aϕ,ϕ

a with symbol a and windows ϕ, ϕ is
defined to be

Aϕ,ϕ
a f (t) =

∫
Rd

a(x,w)Vϕ f (x,w)MwTxϕ dxdw.
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If a ∈ S ′(Rd) and ϕ,ϕ ∈ S(Rd), then the localization operator is a well-defined continu-
ous operator from S(Rd) to S ′(Rd). Moreover, it is to be interpreted in a weak sense as

〈
Aϕ,ϕ
a f , g

〉
= 〈aVϕ f ,Vϕg〉 = 〈a,Vϕ f Vϕg〉

for f , g ∈ S(Rd), [, ].
Fix a nonzero window g ∈ S(Rd) and  ≤ p,q ≤ ∞. Then themodulation spaceMp,q(Rd)

consists of all tempered distributions f ∈ S ′(Rd) such that the short-time Fourier trans-
form Vgf is in the mixed-norm space Lp,q(Rd). The norm on Mp,q(Rd) is ‖f ‖Mp,q =
‖Vgf ‖Lp,q . If p = q, then we write Mp(Rd) instead of Mp,p(Rd). Modulation spaces are Ba-
nach spaces whose definitions are independent of the choice of the window g (see [, ]).
L(p,q) spaces are function spaces that are closely related to Lp spaces. We consider

complex-valued measurable functions f defined on a measure space (X,μ). The measure
μ is assumed to be nonnegative. We assume that the functions f are finite valued a.e. and
some y > , μ(Ey) <∞, where Ey = Ey[f ] = {x ∈ X | |f (x)| > y}. Then, for y > ,

λf (y) = μ(Ey) = μ
({
x ∈ X | ∣∣f (x)∣∣ > y

})

is the distribution function of f . The rearrangement of f is given by

f ∗(t) = inf
{
y >  | λf (y) ≤ t

}
= sup

{
y >  | λf (y) > t

}

for t > . The average function of f is also defined by

f ∗∗(x) =

x

∫ x


f ∗(t)dt.

Note that λf , f ∗, and f ∗∗ are nonincreasing and right continuous functions on (,∞). If
λf (y) is continuous and strictly decreasing then f ∗(t) is the inverse function of λf (y). The
most important property of f ∗ is that it has the same distribution function as f . It follows
that

(∫
X

∣∣f (x)∣∣pdμ(x)
) 

p
=

(∫ ∞



[
f ∗(t)

]p dt) 
p
. (.)

The Lorentz space denoted by L(p,q)(X,μ) (shortly L(p,q)) is defined to be vector space
of all (equivalence classes) of measurable functions f such that ‖f ‖∗

pq <∞, where

‖f ‖∗
pq =

{
( qp

∫ ∞
 t

q
p–[f ∗(t)]q dt)


q ,  < p,q < ∞,

supt> t

p f ∗(t),  < p ≤ q =∞.

By (.), it follows that ‖f ‖∗
pp = ‖f ‖p and so L(p,p) = Lp. Also, L(p,q)(X,μ) is a normed

space with the norm

‖f ‖pq =
{
( qp

∫ ∞
 t

q
p–[f ∗∗(t)]q dt)


q ,  < p,q <∞,

supt> t

p f ∗∗(t),  < p≤ q =∞.
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For any one of the cases p = q = ; p = q = ∞ or  < p < ∞ and  ≤ q ≤ ∞, the Lorentz
space L(p,q)(X,μ) is a Banach space with respect to the norm ‖ · ‖pq. It is also well known
that if  < p < ∞, ≤ q ≤ ∞ we have

‖·‖∗
pq ≤ ‖·‖pq ≤ p

p – 
‖·‖∗

pq

(see [, ]).
Let X and Y be two measure spaces with σ -finite measures μ and ν , respectively, and

let f be a complex-valued measurable function on (X ×Y ,μ× ν),  < P = (p,p) < ∞, and
 ≤ Q = (q,q) ≤ ∞. The Lorentz mixed norm space L(P,Q) = L(P,Q)(X × Y ) is defined
by

L(P,Q) = L(p,q)
[
L(p,q)

]
=

{
f : ‖f ‖PQ = ‖f ‖L(p,q)(L(p,q)) =

∥∥‖f ‖pq
∥∥
pq

<∞}
.

Thus, L(P,Q) occurs by taking an L(p,q)-norm with respect to the first variable and an
L(p,q)-norm with respect to the second variable. The L(P,Q) space is a Banach space
under the norm ‖ · ‖PQ (see [, ]).
Fix a window function g ∈ S(Rd)\{},  ≤ P = (p,p) < ∞, and  ≤ Q = (q,q) ≤ ∞.

We let M(P,Q)(Rd) denote the subspace of tempered distributions S ′(Rd) consisting of
f ∈ S ′(Rd) such that the Gabor transform Vgf of f is in the Lorentz mixed norm space
L(P,Q)(Rd). We endow it with the norm ‖f ‖M(P,Q) = ‖Vgf ‖PQ, where ‖ · ‖PQ is the norm
of the Lorentz mixed norm space. It is well known that M(P,Q)(Rd) is a Banach space
and different windows yield equivalent norms. If p = q = p and p = q = q, then the
space M(P,Q)(Rd) is the standard modulation space Mp,q(Rd), and if P = p and Q = q, in
this case M(P,Q)(Rd) = M(p,q)(Rd) (see [, ]), where the space M(p,q)(Rd) is Lorentz
type modulation space (see []). Furthermore, the space M(p,q)(Rd) was generalized to
M(p,q,w)(Rd) by taking weighted Lorentz space rather than Lorentz space (see [, ]).
In this paper, we will denote the Lorentz space by L(p,q), the Lorentz mixed norm space

by L(P,Q), the standard modulation space byMp,q, the Lorentz type modulation space by
M(p,q), and the Lorentz mixed-normed modulation space byM(P,Q).
Let  ≤ r, s≤ ∞. Fix a compact Q ⊂R

d with nonempty interior. Then theWiener amal-
gam space W (Lr ,Ls)(Rd) with local component Lr(Rd) and global component Ls(Rd) is
defined as the space of all measurable functions f : Rd → C such that f χK ∈ Lr(Rd) for
each compact subset K ⊂R

d , for which the norm

‖f ‖W (Lr ,Ls) = ‖Ff ‖s =
∥∥‖f χQ+x‖r

∥∥
s

is finite, where χK is the characteristic function of K and

Ff (x) = ‖f χQ+x‖r ∈ Ls
(
R

d).
It is known that if r ≥ r and s ≤ s then W (Lr ,Ls )(Rd) ⊂ W (Lr ,Ls )(Rd). If r = s then
W (Lr ,Lr)(Rd) = Lr(Rd) (see [–]).
In this paper, we consider boundedness properties for localization operators acting

on Lorentz mixed-normed modulation spaces for the symbols in appropriate function
spaces like modulation spaces, Wiener amalgam spaces, and Lorentz spaces with mixed
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norms. Our results extend some results in [, ] to the Lorentz mixed-normed modula-
tion spaces.

2 Boundedness of localization operators on Lorentz mixed normed
modulation spaces

We start with the following lemma, which will be used later on.

Lemma . Let 
P + 

P′ = , 
Q

+ 
Q

≥ , f ∈ L(P,Q)(Rd), h ∈ L(P′,Q)(Rd). Then f ∗ h ∈
L∞(Rd) and

L(P,Q)
(
R

d) ∗ L
(
P′,Q

)(
R

d) ↪→ L∞(
R

d) (.)

with the norm inequality

‖f ∗ h‖∞ ≤ ‖f ‖PQ‖h‖P′Q , (.)

where P = (p,p), Q = (Q
,Q

 ), Q = (Q
,Q

).

Proof It is well known that there are L(p,q) ∗ L(p′,q) ↪→ L∞ convolution relations be-
tween Lorentz spaces and

‖f ∗ h‖∞ ≤ ‖f ‖pq‖h‖p′q ,

where 
p + 

p′ = , 
q

+ 
q

≥ , by Theorem . in []. Then (.) and (.) can easily be
verified by using iteration and the one variable proofs given in []. �

Let g ∈ D(Rd) be a test function such that
∑

x∈Zd Txg ≡ . Let X(Rd) be a translation
invariant Banach space of functions with the property that D · X ⊂ X. In the spirit of [,
], theWiener amalgam spaceW (X,L(P,Q)) with local component X and global compo-
nent L(P,Q) is defined as the space of all functions or distributions for which the norm

‖f ‖W (X,L(P,Q)) =
∥∥‖f · T(z,z)g‖X

∥∥
PQ

is finite, where  ≤ P < ∞,  ≤ Q ≤ ∞. Moreover, different choices of g ∈ D yield equiva-
lent norms and give the same space.
The boundedness of Aϕ,ϕ

Mζ a for a ∈M∞ is established by our next theorem. The proof is
similar to Lemma . in [] but let us provide the details anyway, for completeness’ sake.

Theorem .
(i) Let  < P <∞, ≤Q <∞. If f ∈ M(P,Q)(Rd) and g ∈M(Rd), then

Vgf ∈ W (FL,L(P,Q))(Rd) with

‖Vgf ‖W (FL,L(P,Q)) ≤ ‖f ‖M(P,Q)‖g‖M .

(ii) Let 
P + 

P′ = , 
Q

+ 
Q

≥ . If f ∈M(P,Q)(Rd) and g ∈ M(P′,Q)(Rd), then
Vgf ∈ W (FL,L∞)(Rd) with

‖Vgf ‖W (FL,L∞) ≤ ‖f ‖M(P,Q)‖g‖M(P′ ,Q).

http://www.journalofinequalitiesandapplications.com/content/2014/1/430
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Proof (i) Let ϕ ∈ S(Rd)\{} and set 
 = Vϕϕ ∈ S(Rd). By using the equality Vgf (x,w) =
(f · Txg)∧(w), we write

‖Vgf · T(z,z)
‖FL =
∫
Rd

∣∣(Vgf · T(z,z)
)∧(t)
∣∣dt

=
∫
Rd

∣∣V
Vgf (z, z, t, t)
∣∣dt dt

=
∫
Rd

∣∣Vϕg(–z – t, t)Vϕ f (–t, z + t)
∣∣dt dt

=
∫
Rd

∣∣Vϕ f (u,u)
∣∣∣∣Vϕg(u – z,u – z)

∣∣du du
= |Vϕ f | ∗ |Vϕg|∼(z, z), (.)

for f , g ∈ S(Rd), where (Vϕg)∼(z) = (Vϕg)(–z), z ∈ R
d . Since f , g ∈ S(Rd), then f ∈

M(P,Q)(Rd) and g ∈ M(Rd) by Proposition  in []. So Vϕ f ∈ L(P,Q)(Rd) and Vϕg ∈
L(Rd). Then, by Proposition  in [], we obtain

‖Vgf ‖W (FL,L(P,Q)) =
∥∥‖Vgf · T(z,z)
‖FL

∥∥
PQ

=
∥∥|Vϕ f | ∗ |Vϕg|∼

∥∥
PQ

≤ ‖Vϕ f ‖PQ‖Vϕg‖
= ‖f ‖M(P,Q)‖g‖M . (.)

This completes the proof.
(ii) Using Lemma . and (.), we have

‖Vgf ‖W (FL,L∞) =
∥∥|Vϕ f | ∗ |Vϕg|∼

∥∥∞ ≤ ‖Vϕ f ‖PQ‖Vϕg‖P′Q = ‖f ‖M(P,Q)‖g‖M(P′ ,Q).
�

Theorem . Let  < P < ∞,  ≤ Q < ∞. If a ∈ M∞(Rd), ϕ,ϕ ∈ M(Rd), then Aϕ,ϕ
Mζ a is

bounded on M(P,Q)(Rd) for every ζ ∈R
d with

∥∥Aϕ,ϕ
Mζ a

∥∥
B(M(P,Q)) ≤ ‖a‖M∞‖ϕ‖M‖ϕ‖M .

Proof Let f ∈ M(P,Q)(Rd) and g ∈ M(P′,Q′)(Rd), where 
P + 

P′ = , 
Q + 

Q′ = . Then we
write Vϕ f ∈ W (FL,L(P,Q))(Rd) and Vϕg ∈ W (FL,L(P′,Q′))(Rd) by above theorem.
Moreover, since M(, )(Rd) =M(Rd), we have W (FL,L) =M =M(, ) by []. Hence
using the Hölder inequalities for Wiener amalgam spaces [] and (.) we obtain

‖Vϕ f ·Vϕg‖M = ‖Vϕ f ·Vϕg‖W (FL,L)

≤ ‖Vϕ f ‖W (FL,L(P,Q))‖Vϕg‖W (FL,L(P′ ,Q′))

� ‖ϕ‖M‖ϕ‖M‖f ‖M(P,Q)‖g‖M(P′ ,Q′). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/430
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Thus by using (.) we have

∣∣〈Aϕ,ϕ
Mζ a f , g

〉∣∣ = ∣∣〈Mζa,Vϕ f ·Vϕg〉
∣∣ ≤ ‖Mζa‖M(∞,∞)‖Vϕ f ·Vϕg‖M(,)

≤ ‖a‖M∞‖ϕ‖M‖ϕ‖M‖f ‖M(P,Q)‖g‖M(P′ ,Q′).

Hence we get

∥∥Aϕ,ϕ
Mζ a

∥∥
B(M(P,Q)) ≤ ‖a‖M∞‖ϕ‖M‖ϕ‖M . �

Theorem. Let ϕ ∈ S(Rd)\{} be a window function. If  < P,Q < ∞, t′ ∈ (,∞), s ≤ t′ ≤
r and a ∈W (Lr ,Ls), then

Aϕ,ϕ
Mζ a :M(tP, tQ)

(
R

d) →M
((
tP′)′,

(
tQ′)′)(

R
d)

is bounded for every ζ ∈ R
d , where 

P + 
P′ = , 

Q + 
Q′ = , and 

t +

t′ = , and the operator

norm satisfies the estimate

∥∥Aϕ,ϕ
Mζ a

∥∥ ≤ ‖a‖W (Lr ,Ls).

Proof Let t < ∞, f ∈ M(tP, tQ)(Rd), and h ∈ M(tP′, tQ′)(Rd). Then we have Vϕ f ∈
L(tP, tQ)(Rd) and Vϕh ∈ L(tP′, tQ′)(Rd). Since Vϕ f ∈ L(tP, tQ)(Rd), then ‖Vϕ f ‖∗

(tP)(tQ) <
∞. By using the equality (.) in [], we get

‖Vϕ f ‖∗
(tP)(tQ) =

∥∥‖Vϕ f ‖∗
(tp)(tq)

∥∥∗
(tp)(tq)

=
∥∥(∥∥|Vϕ f |t

∥∥∗
pq

) 
t
∥∥∗
(tp)(tq)

=
(∥∥∣∣(∥∥|Vϕ f |t

∥∥∗
pq

) 
t
∣∣t∥∥∗

pq

) 
t =

(∥∥∥∥|Vϕ f |t
∥∥∗
pq

∥∥∗
pq

) 
t

=
(∥∥|Vϕ f |t

∥∥∗
PQ

) 
t . (.)

Hence we have |Vϕ f |t ∈ L(P,Q)(Rd). Similarly, |Vϕh|t ∈ L(P′,Q′)(Rd). By the Hölder in-
equality for Lorentz spaces with mixed norm and (.) we have

‖Vϕ f ·Vϕh‖tt =
∥∥|Vϕ f |t|Vϕh|t

∥∥
 ≤ ∥∥|Vϕ f |t

∥∥
PQ

∥∥|Vϕh|t
∥∥
P′Q′

= ‖Vϕ f ‖t(tP)(tQ)‖Vϕh‖t(tP′)(tQ′). (.)

Since a ∈ W (Lr,Ls), then Mζa ∈ W (Lr ,Ls) for every ζ ∈ R
d . Also since W (Lr ,Ls) ⊂

W (Lt′ ,Lt′ ) = Lt′ (Rd), then we have

‖a‖t′ = ‖Mζa‖t′ ≤ ‖Mζa‖W (Lr ,Ls) = ‖a‖W (Lr ,Ls). (.)

By using (.), (.), and applying again the Hölder inequality, we get

∣∣〈Aϕ,ϕ
Mζ af ,h

〉∣∣ = ∣∣〈MζaVϕ f ,Vϕh〉
∣∣

≤
∫∫

Rd

∣∣Mζa(x,w)
∣∣∣∣(Vϕ f ·Vϕh)(x,w)

∣∣dxdw
≤ ‖Mζa‖t′ ‖Vϕ f ·Vϕh‖t

http://www.journalofinequalitiesandapplications.com/content/2014/1/430
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≤ ‖a‖t′ ‖Vϕ f ‖(tP)(tQ)‖Vϕh‖(tP′)(tQ′)

≤ ‖a‖W (Lr ,Ls)‖f ‖M(tP,tQ)‖h‖M(tP′ ,tQ′). (.)

If (tp′)′, (tq′)′ �=∞, then (M((tP′)′, (tQ′)′)(Rd))∗ =M(tP′, tQ′)(Rd) by Theorem  in []. Thus
we have from (.) that

∥∥Aϕ,ϕ
Mζ af

∥∥
M((tP′)′ ,(tQ′)′) = sup

�=h∈M(tP′ ,tQ′)

|〈Aϕ,ϕ
Mζ af ,h〉|

‖h‖M(tP′ ,tQ′)
≤ ‖a‖W (Lr ,Ls)‖f ‖M(tP,tQ).

Hence Aϕ,ϕ
Mζ a is bounded. Also we have

∥∥Aϕ,ϕ
Mζ a

∥∥ = sup
�=f∈M(tP,tQ)

‖Aϕ,ϕ
Mζ af ‖M((tP′)′ ,(tQ′)′)

‖f ‖M(tP,tQ)
≤ ‖a‖W (Lr ,Ls). �

Theorem . Let ϕ ∈ ⋂
≤R,S<∞ M(R,S)(Rd),where R = (r, r), S = (s, s). If ≤ s ≤ r ≤ ∞

and a ∈W (Lr ,Ls) then

Aϕ,ϕ
Mζ a :M(P,Q)

(
R

d) →M(P,Q)
(
R

d)
is bounded for every ζ ∈R

d , with

∥∥Aϕ,ϕ
Mζ a

∥∥ ≤ C‖a‖W (Lr ,Ls)

for some C > .

Proof Since a ∈ W (Lr,Ls), thenMζa ∈W (Lr ,Ls) for every ζ ∈R
d . Also since s ≤ r, there

exists  ≤ t ≤ ∞ such that s≤ t ≤ r. ThenW (Lr ,Ls)(Rd) ⊂ Lt (Rd) and

‖Mζa‖t = ‖a‖t ≤ ‖a‖W (Lr ,Ls) = ‖Mζa‖W (Lr ,Ls) (.)

for all a ∈ W (Lr ,Ls)(Rd). Let B(M(P,Q)(Rd),M(P,Q)(Rd)) be the space of the bounded
linear operators from M(P,Q)(Rd) into M(P,Q)(Rd). Also let T be an operator from
L(Rd) into B(M(P,Q)(Rd),M(P,Q)(Rd)) by T(a) = Aϕ,ϕ

Mζ a. Take any f ∈ M(P,Q)(Rd) and
h ∈M(P′,Q′)(Rd). Assume that a ∈W (L,L)(Rd) = L(Rd). By the Hölder inequality we
get

∣∣〈T(a)f ,h〉∣∣ = ∣∣〈Aϕ,ϕ
Mζ af ,h

〉∣∣ = ∣∣〈MζaVϕ f ,Vϕh〉
∣∣

≤
∫∫

Rd

∣∣Mζa(x,w)
∣∣∣∣Vϕ f (x,w)

∣∣∣∣Vϕh(x,w)
∣∣dxdw

=
∫∫

Rd

∣∣a(x,w)∣∣∣∣〈f ,MwTxϕ〉∣∣∣∣〈h,MwTxϕ〉∣∣dxdw
≤

∫∫
Rd

∣∣a(x,w)∣∣‖f ‖M(P,Q)‖MwTxϕ‖M(P′ ,Q′)‖h‖M(P′ ,Q′)

× ‖MwTxϕ‖M(P,Q) dxdw

= ‖f ‖M(P,Q)‖ϕ‖M(P′ ,Q′)‖h‖M(P′ ,Q′)‖ϕ‖M(P,Q)‖a‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/430
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Hence by (.)

∥∥T(a)f ∥∥M(P,Q) =
∥∥Aϕ,ϕ

Mζ af
∥∥
M(P,Q) = sup

�=h∈M(P′ ,Q′)

|〈Aϕ,ϕ
Mζ af ,h〉|

‖h‖M(P′ ,Q′)

≤ ‖ϕ‖M(P′ ,Q′)‖ϕ‖M(P,Q)‖f ‖M(P,Q)‖a‖.

Then

∥∥T(a)∥∥ =
∥∥Aϕ,ϕ

Mζ a
∥∥ = sup

�=f∈M(P,Q)

‖Aϕ,ϕ
Mζ af ‖M(P,Q)

‖f ‖M(P,Q)
≤ ‖ϕ‖M(P′ ,Q′)‖ϕ‖M(P,Q)‖a‖. (.)

Thus the operator

T : L
(
R

d) → B
(
M(P,Q)

(
R

d),M(P,Q)
(
R

d)) (.)

is bounded. Now let a ∈ W (L∞,L∞)(Rd) = L∞(Rd). Take any f ∈ M(P,Q)(Rd) and
h ∈M(P′,Q′)(Rd). Then Vϕ f ∈ L(P,Q)(Rd), Vϕh ∈ L(P′,Q′)(Rd). Applying the Hölder in-
equality

∣∣〈T(a)f ,h〉∣∣ = ∣∣〈Aϕ,ϕ
Mζ af ,h

〉∣∣ = ∣∣〈MζaVϕ f ,Vϕh〉
∣∣

≤
∫∫

Rd

∣∣Mζa(x,w)
∣∣∣∣Vϕ f (x,w)

∣∣∣∣Vϕh(x,w)
∣∣dxdw

≤ ‖a‖∞
∫∫

Rd

∣∣Vϕ f (x,w)
∣∣∣∣Vϕh(x,w)

∣∣dxdw
≤ ‖a‖∞‖Vϕ f ‖PQ‖Vϕh‖P′Q′ . (.)

By using (.) we write

∥∥T(a)f ∥∥M(P,Q) =
∥∥Aϕ,ϕ

Mζ af
∥∥
M(P,Q) = sup

�=h∈M(P′ ,Q′)

|〈Aϕ,ϕ
Mζ af ,h〉|

‖h‖M(P′ ,Q′)
≤ ‖a‖∞‖f ‖M(P,Q). (.)

Hence by (.)

∥∥T(a)∥∥ =
∥∥Aϕ,ϕ

Mζ a
∥∥ = sup

�=f∈M(P,Q)

‖Aϕ,ϕ
Mζ af ‖M(P,Q)

‖f ‖M(P,Q)
≤ ‖a‖∞.

That means the operator

T : L∞(
R

d) → B
(
M(P,Q)

(
R

d),M(P,Q)
(
R

d)) (.)

is bounded. Combining (.) and (.) we obtain

T : Lt
(
R

d) → B
(
M(P,Q)

(
R

d),M(P,Q)
(
R

d))
is bounded by interpolation theorem for ≤ t ≤ ∞. That means the localization operator

Aϕ,ϕ
Mζ a :M(P,Q)

(
R

d) →M(P,Q)
(
R

d)

http://www.journalofinequalitiesandapplications.com/content/2014/1/430
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is bounded for  ≤ t ≤ ∞. Hence there exists C >  such that

∥∥T(a)∥∥ =
∥∥Aϕ,ϕ

Mζ a
∥∥ ≤ C‖a‖t . (.)

This implies that it is also true for  ≤ t ≤ ∞. From (.) and (.) we write

∥∥T(a)∥∥ =
∥∥Aϕ,ϕ

Mζ a
∥∥ ≤ C‖a‖t ≤ C‖a‖W (Lr ,Ls). �

Proposition . Let ϕ ∈ ⋂
≤R,S<∞ M(R,S)(Rd), where R = (r, r), S = (s, s). If  < s ≤ 

and a ∈W (L,Ls)(Rd) then

Aϕ,ϕ
Mζ a :M(P,Q)

(
R

d) →M(P,Q)
(
R

d)

is bounded.

Proof Let  < s ≤  and let a ∈ W (L,Ls)(Rd). Then Mζa ∈ W (L,Ls) for every ζ ∈
R

d . Since W (L,Ls)(Rd) ⊂ L(Rd), there exists a number C >  such that ‖Mζa‖ ≤
C‖Mζa‖W (L,Ls). Hence by (.),

∥∥Aϕ,ϕ
Mζ a

∥∥ ≤ ‖ϕ‖M(P′ ,Q′)‖ϕ‖M(P,Q)‖Mζa‖
≤ C‖ϕ‖M(P′ ,Q′)‖ϕ‖M(P,Q)‖Mζa‖W (L,Ls)

= C‖ϕ‖M(P′ ,Q′)‖ϕ‖M(P,Q)‖a‖W (L,Ls).

Then the localization operator from M(P,Q)(Rd) into M(P,Q)(Rd) is bounded for
 < s ≤ . �

Proposition . Let ϕ ∈ ⋂
≤R,S<∞ M(R,S)(Rd), where R = (r, r), S = (s, s). If  ≤ P,Q <

∞ and a ∈ L(P′,Q′)(Rd) then the localization operator

Aϕ,ϕ
Mζ a :M(P,Q)

(
R

d) →M(P,Q)
(
R

d)

is bounded, where 
P + 

P′ = , 
Q + 

Q′ = .

Proof Let a ∈ L(P′,Q′)(Rd). Then Mζa ∈ L(P′,Q′)(Rd) for every ζ ∈ R
d with

‖Mζa‖P′Q′ = ‖a‖P′Q′ . Take any f ∈ M(P,Q)(Rd) and h ∈M(P′,Q′)(Rd). Applying theHölder
inequality we have by (.)

∣∣〈Aϕ,ϕ
Mζ af ,h

〉∣∣ ≤
∫∫

Rd

∣∣Mζa(x,w)
∣∣∣∣Vϕ f (x,w)

∣∣∣∣〈h,MwTxϕ〉∣∣dxdw
≤

∫∫
Rd

∣∣a(x,w)∣∣∣∣Vϕ f (x,w)
∣∣‖h‖M(P′ ,Q′)‖MwTxϕ‖M(P,Q) dxdw

= ‖h‖M(P′ ,Q′)‖ϕ‖M(P,Q)

∫∫
Rd

∣∣a(x,w)∣∣∣∣Vϕ f (x,w)
∣∣dxdw

≤ ‖h‖M(P′ ,Q′)‖ϕ‖M(P,Q)‖f ‖M(P,Q)‖a‖P′Q′ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/430
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Similarly to (.), we get

∥∥Aϕ,ϕ
Mζ a

∥∥ ≤ ‖ϕ‖M(P,Q)‖a‖P′Q′ .

Then the localization operator Aϕ,ϕ
Mζ a fromM(P,Q)(Rd) intoM(P,Q)(Rd) is bounded. �

Corollary . It is known by Proposition  in [] that S(Rd) ⊂ M(R,S)(Rd) for  ≤ R,S <
∞.Then S(Rd) ⊂ ⋂

≤R,S<∞ M(R,S)(Rd). So,Theorem ., Propositions . and . are still
true under the same hypotheses for them if ϕ ∈ S(Rd).

Corollary . It is known [] that if P = p and Q = q, then Lorentz mixed-normed modu-
lation space M(P,Q)(Rd) is the Lorentz type modulation space M(p,q)(Rd). Therefore our
theorems hold for a Lorentz typemodulation space rather than for a Lorentzmixed-normed
modulation space.
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