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Abstract

In this paper, we obtain sufficient conditions for the lower semicontinuity of an
approximate solution mapping for a parametric generalized vector equilibrium
problem involving set-valued mappings. By using a scalarization method, we obtain
the lower semicontinuity of an approximate solution mapping for such a problem
without the assumptions of monotonicity and compactness.
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1 Introduction

The vector equilibrium problem is a unified model of several problems, for example, the
vector optimization problem, the vector variational inequality problem, the vector com-
plementarity problem and the vector saddle point problem. In the literature, existence re-
sults for various types of vector equilibrium problems have been investigated intensively,
e.g., see [1-4] and the references therein. The stability analysis of the solution mappings
for VEP is an important topic in vector equilibrium theory. Recently, the semicontinuity,
especially the lower semicontinuity, of solution mappings to parametric vector equilib-
rium problems has been studied in the literature, see [5-16]. In the mentioned results, the
lower semicontinuity of solution mappings to parametric generalized strong vector equi-
librium problems is established under the assumptions of monotonicity and compactness.
Very recently, Han and Gong [17] studied the lower semicontinuity of solution mappings
to parametric generalized strong vector equilibrium problems without the assumptions
of monotonicity and compactness.

On the other hand, exact solutions of the problems may not exist in many practical prob-
lems because the data of the problems are not sufficiently ‘regular. Moreover, these math-
ematical models are solved usually by numerical methods which produce approximations
to the exact solutions. So it is impossible to obtain an exact solution of many practical
problems. Naturally, investigating approximate solutions of parametric equilibrium prob-
lems is of interest in both practical applications and computations. Anh and Khanh [18]
considered two kinds of approximate solution mappings to parametric generalized vector
quasiequilibrium problems and established the sufficient conditions for their Hausdorff
semicontinuity (or Berge semicontinuity). Among many approaches for dealing with the
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lower semicontinuity and continuity of solution mappings for parametric vector varia-
tional inequalities and parametric vector equilibrium problems, the scalarization method
is of considerable interest. By using a scalarization method, Li and Li [19] discussed the
Berge lower semicontinuity and Berge continuity of an approximate solution mapping for
a parametric vector equilibrium problem.

Motivated by the work reported in [17-19], in this paper we aim to establish efficient
conditions for the lower semicontinuity of an approximate solution mapping for a para-
metric generalized vector equilibrium problem involving set-valued mappings. By using
a scalarization method, we obtain the lower semicontinuity of an approximate solution
mapping for such a problem without the assumptions of monotonicity and compactness.

2 Preliminaries
Throughout this paper, let X and Y be real Hausdorff topological vector spaces, and let Z
be areal topological space. We also assume that C is a pointed closed convex cone in Y with
its interior int C # {. Let Y be the topological dual space of Y. Let C*:= {§ € Y*: (§,y) >
0,Vy € C} be the dual cone of C, where (£, y) denotes the value of £ at y. Since int C # ¥, the
dual cone C* of C has a weak* compact base. Let e € int C. Then B} := {§ € C*: (§,e) =1}
is a weak* compact base of C*.

Suppose that K is a nonempty subset of X and F : K x K — 2Y\{#} is a set-valued map-
ping. We consider the following generalized vector equilibrium problem (GVEP) of find-
ing xo € K such that

F(x0,y) C Y\ —intC, VyeK. 2.1)

When the set K and the mapping F are perturbed by a parameter p which varies over a
set M of Z, we consider the following parametric generalized vector equilibrium problem
(PGVEP) of finding % € K(u) such that

F(%»J’» /’L) C Y\ —int C¢ V)’ € [<(/'L)! (22)

where K : M — 2%\ {0} is a set-valued mapping, F: B x Bx M C X x X x Z — 2Y\{#}
is a set-valued mapping with K(M) = {J,., K(1) C B. For each ¢ > 0 and ;1 € M, the
approximate solution set of (PGVEP) is defined by

S(e, ) = {x € K(1) : F(x,9, ) + ce C Y\ —int C,¥y € K(w)},

where e € intC. For each &£ € B} and (g, 1) € R* x M, by §§ (e, ) we denote the &-ap-
proximate solution set of (PGVEP), i.e.,

Sele, p) = {xeK(pL): inf )é(z) +&> O,VyeK(pL)}.

zeF(x,y,10

Definition 2.1 Let D be a nonempty convex subset of X. A set-valued mapping G : X —
2Y is said to be:

(i) C-comnvex on D if, for any x1,x;, € D and for any ¢ € [0, 1], we have

tG(x) + 1 - 1)G(xy) C G(tx1 +(1- t)xQ) +C.
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(ii) C-concave on D if, for any x1,x, € D and for any ¢ € [0,1], we have
G(tx + (1 - t)xp) € tG(x1) + (1 - £)G(x2) + C.

Definition 2.2 [17] Let M and M; be topological vector spaces. Let D be a nonempty
subset of M. A set-valued mapping G : M — 21 is said to be uniformly continuous on D
if, for any neighborhood V of 0 € M, there exists a neighborhood U, of 0 € M such that
G(x1) C G(x2) + V for any &y, %, € D with x; — x, € Up.

Definition 2.3 [20] Let M and M; be topological vector spaces. A set-valued mapping
G: M — 2™ is said to be:
(i) Hausdorff upper semicontinuous (H-u.s.c.) at ug € M if, for any neighborhood V' of
0 € M, there exists a neighborhood U (uo) of ug such that

G(u) € G(ug) + V. for every u € U(uy).

(i) Lower semicontinuous (l.s.c.) at ug € M if, for any x € G(up) and any neighborhood

V of x, there exists a neighborhood U(uy) of u such that
Gu)NV P forevery u € U(uy).

The following lemma plays an important role in the proof of the lower semicontinuity
of the solution mapping S(,).

Lemma 2.4 [21, Theorem 2] TheunionT =
I"; from a topological space X into a topological space Y is also an l.s.c. set-valued mapping

I'; of a family of |.s.c. set-valued mappings

iel
from X into Y, where I is an index set.

3 Lower semicontinuity of the approximate solution mapping for (PGVEP)
In this section, we establish the lower semicontinuity of the approximate solution mapping
for (PGVEP) at the considered point (g9, it9) € R* x M with gy > 0.

Firstly, using the same argument as in the proof given in [22, Lemma 3.1], we can prove
the following useful result.

Lemma 3.1 Foreach e >0, u € M, if for each x € K(u), F(x,K(1), ) + C is a convex set,
then

Se.w= U Seem = Scle n).

£eCr\(0) teB

Proof Foranyx € Ugec*\(O} 3‘} (g, ), there exists &’ € C*\{0} such that x € gg;-/(é‘, ). Thus,
we can obtain that x € K(u) and inf er,y,.) &'(2) + € > 0, Vy € K(1). Then, for each y €
K(u) and z € F(x,y, 1), £'(z) + € > 0, which arrives at z ¢ —int C. It then follows that, for
each z € F(x,y, 1),

F(x,y, ) +ee C Y\ —intC, VyeK(w),
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which gives that x € 5(8, ). Hence, Usec*\{O) Eg (e, ) C g(e, ). Conversely, let x € g(s, nw)
be arbitrary. Then x € K(1) and F(x,y, 1) + ee € Y\ —intC, Vy € K(u). Thus, we have

F(x,K(n), ) N (~intC) = 9,
and hence
(F(x,]((u),u) + C) N (-intC) = @.

Because F(x, K(u), ) + C is a convex set, by the well-known Edidelheit separation theorem
(see [23], Theorem 3.16), there exist a continuous linear functional £ € Y*\{0} and a real
number y such that

E@ <y <&(z+0¢)

for all z € F(x,K(u), 1), c € C and ¢ € —int C. Since C is a cone, we have £(c) < 0 for all
¢ € —intC. Thus, £(¢) > 0 for all ¢ € C, that is, & € C*. Moreover, it follows from ¢ € C,
¢ € —intC and the continuity of & that £(z) + ¢ > 0 for all z € F(x, K(u), ). Thus, for all
y € K(1), we have inf,crxy,) §(2) +£ >0, Le, x € Se(e,m) € Usecn o) See, ). O

Theorem 3.2 We assume that for any given & € B, there exists § > 0 such that the &-ap-
proximate solution set EE (+,-) exists in [9,8) X N (o), where N (o) is a neighborhood of j1g.
Assume further that the following conditions are satisfied:
(i) K(uo) is nonempty convex;

(ii) K is H-u.s.c. at puo and l.s.c. at (io;

(iii) foranyy € K(wo), F(-,y, o) is C-concave on K(uo);

(iv) F(-,-,-) is uniformly continuous on K(M) x K(M) x N(io).
Then the & -approximate solution mapping 3;5 : [£0,8) X N(po) = 2%X is Ls.c. at (g9, (o).

Proof Suppose to the contrary that gg(', -) is not Ls.c. at (gq, (o), then there exist xy €
§g (€0, 40) and a neighborhood W, of Oy € X. For any neighborhoods J(g9) and U (1) of
&0 and o, respectively, there exist &’ € J(gg) N [g9,8) and ' € U (o) such that (xg + Wp) N
:§g (¢/,u') = @. In particular, there exist sequences {¢,} | &9 and {u,} = o such that

(%0 + Wo) N Se (e 1) =B, VmeN, (3.1)
For the above W), there exists a neighborhood W} of 0y € X such that

Wl + W1 - W(). (32)

We define a &-set-valued mapping H; : [0,8) — 2¥ by

He(e) = {x €K(po): inf &(z)+e+& >0,y EI((MO)}, ¢ €[0,8).
Z€F(x%,9,140)

Notice that H;(0) = §§ (80, o) # ¥. Next, we claim that H; is Ls.c. at 0. Suppose to the
contrary that H; is not Ls.c. at 0, then there exist x € H;(0) and a neighborhood O of
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Ox € X. For any neighborhood U of 0, there exists ¢ € U such that (x + Og) N Hg(¢) = ¥. In

particular, there exists a nonnegative sequence {)} | 0 such that
(x+0p) NHe(e,) =0, VneN. (3.3)

Since H (0) # ¥, we choose x* € H¢(0). Since &, — 0, there exists ¢, such that

/

& & &
L gy -y — 0 (x*—F) €+ 0. (3.4)
€0+ &, €0+ &, €0+ &y
We claim that vy X+ pvve) x 1S Hg(s ). In fact, since ¥ € H¢(0) and x* € H¢(0), for any
no
y € K(ug), we have infyerzy,u0) E(t) + &0 > 0 and infyeps,y,u0) & (k) + €0 > 0. Then, for any
ue F(ﬁ_f,y, MO):
& &
Ot + ——5y>0, (3.5)
&o + 8;10 &0 + 8;10

and for any v € F(x*,, i),

/ /

& &
— (V) + ——50 > 0. (3.6)
€0 + & €0 + &

By the C-concavity of F(-,y, ito), we have that

/ ’

€o - 8}’10 €o - 8}10

F —x+ —x", 9, 1o | © —F(%,9, ko) + —F(x",y,1t0) + C.
g0+, E0tE g0+ &p g0 + &)

,y,uo) there exist z € F(x,y, o), z* €

50+s
F(x*,y,110) and ¢’ € C such that w = —2—7 + ”0 z* + (. It follows from the lmearlty
£0+&y so+a,,0
ofé that &(w) — 0+8 &(z) - 80:;’ E(z*) = &(c') = 0, which gives that &(w) > ) $(z) +
80:;) &(z*). Forallwe F( x + - , x*,9, ko), by (3.5) and (3.6), we have
e g, &
0 no 0 ’ ’
w) > — g0 — g9 =— g +e&9)>—(e, +¢&p).
5w) = €0 + &, 0 €0 + &, 0 80+8;10("° 0) (”0 0)
.. . . . _ &)
This implies that 1anEF( o o 0 g &(z) + &, + &0 > 0, that is, Si%nox + 60+§; - x* e

50"'5}10 £0 +£n0

He(e,,)- By (3.4), we get that

YIO .
pve) x + previm x* e (x+ Oy N Hg(é‘ ), which contra-

dicts (3.3). Therefore, H; is Ls.c. at 0. Since Hg is Ls.c. at 0, for above x( € 3'; (g0, to) =
H¢(0) and for above W, there exists a balanced neighborhood Vj of 0 such that (x +
W1) N He(e) # ¥, Ve € Vj. In particular, from {e,} | o, there exits Ny € N such that
(%o + W1) N He(en, — €0) #9. Let X’ € (xo + W1) N He (en, — €0).

For any & > 0, since e € int C, there exists §y > 0 such that

(SoBy + ge - C. (37)

Page 5 of 9
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Since F(:,,-) is uniformly continuous on K(M) x K(M) x N(uo), for above 80By, there
exists a neighborhood V; of 0 € B, a neighborhood U; of 0 € B and a neighborhood N; of
0 € M, forany (x1, 1, 1), (%2, ¥2, 2) € K(M) x K(M) x N (o) withx; —x3 € Vi, y1—y2 € Uy
and ; — wy € Nj, we have

F(x1,91, 1) € 8oBy + F(x,¥2, b2). (3.8)
Since K is H-u.s.c. at o, for above U, there exists a neighborhood U (40) of 11 such that

K(u) € K(no) + Uy, Yo e Ui(po). (3.9)

We see that ' € K(uo). Since K is Ls.c. at ug, for V4 N W, there exists a neighborhood
U, (o) of o such that

(x/ +Vin Wl) NK(u) #8, Yu € Uy(uo). (3.10)

It follows from u, — wo that there exists a positive integer N > Ny such that Ny €
Uy (o) N U2 (o) N U (o) N (o + Np). Noting that (3.9) and (3.10), we obtain

K(uny) € K(po) + Uh (3.11)
and

(*+vinwy)n K(pny) # 9. (3.12)
By (3.12), we choose

&' e (¥ +Vinwy) NK (k) (3.13)
Next, we prove thatx” € gg (SN(/), N ).Foranyy € K(,uN(/)), by (3.11), there exists yo € K(it0)
such that y' — yo € Uj. It follows from (3.13) that x” — x” € V7. Noting that IOVAS U(uo) N
(1o + Np) and (3.8), we have

F(x",y', 1tny) S 80By + F(¥',y0, 1to)-
By (3.7), we have

F(x”,y/, ,u,Né) CC-¢e+ F(x/,yo, Mo). (3.14)

Hence, for any y € I((MN(’)) and z” € F(x”,y/,,uN(/)), there exist ¢’ € C and z’ € F(x',y, [to)
such that

Z'=c" —ge+7.

It follows from the linearity of £ that§(2”) +& > &(2’) forall € > 0. Thisleads to £ (z”) > £(2').
Thus

£(z") + eny = £(z) + eny = £() + (eny — €0) + 80 = 0.
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Hence x” € §g (8N6, ,uN(/)). Also, since &” € (xo + W) and by (3.2) and (3.13), we have
X ex + VIiNW Cag+ Wi+ Wi Cxp+ Wo.

This means that (xg + Wp) N gg(sN(f), 1) # 9, which contradicts (3.1). This completes the
proof. d

Theorem 3.3 We assume that for any given & € B}, there exists § > 0 such that the ap-
proximate solution set §E(., -) exists in [g9,8) X N(uo). Suppose that conditions (i)-(iv) as
in Theorem 3.2 are satisfied. Assume further that for each x € K(1vo), F(x, K(1o), to) + C
is a convex set. Then the approximate solution mapping§: le0,8) x N(uo) — 2% isLs.c. at
(g0, to).

Proof Since F(x,K(it0), o) + C is a convex set for each x € K(j10), by virtue of Lemma 3.1,
it holds that g(So,lLo) = USEBz gg(so, o). It follows from Theorem 3.2 that for each & €
B, Se(-,-) is Ls.c. at (9, o). Thus, in view of Lemma 2.4, we obtain that S(:,) is Ls.c. at
(€0, Mo)- O

The following example illustrates all of the assumptions in Theorem 3.3.

Example 3.4 Let Y = R?, C = R? := {(x1,x3) € R? : %1 > 0,x, > 0} and Z = X = R. Let
B(0, 1) be the closed ball of radius 1/2 in R?. Let B = [-2,2], M = [-1,1] and the set-valued
mapping F : B x B x M — 2¥ be defined by

F(x,y, 1) = (W(x, 3, 1), v, 1)) + B(0,1/2),

where w(x, y, 1) := y?(2* —=1) + x(y —x + 1) = 3y + 2 and v(x, y, i) := y*(2* — 1) —x% + 2xy + 3.
Define a set-valued mapping K : M — 2% for all u € M, by K (1) := [-2 + 1,2+ 1] N [-2, 2].
We choose e = (1,1) € intC, & = 2.5, ug = 0 and & = (1,0). We can see that Bfl,l) =
{(x1,%2) : %1 + w2 = L,x1,%2 > 0} and 1 € Sq,0)(€0,0). Further, for any p € (-1,1), there ex-
ists ¢ € [2.5,4.5) such that 1 € :§(1,0)(8:M)~ Hence, :§(1,o)(', -) exists in [2.5,4.5) x [-1,1]. It
is easy to observe that for any y € K(0), F(-,5,0) is C-concave on K(0). Clearly, condi-
tion (ii) is true. It is obvious that K(M) = [-2,2]. Let N(140) = [-1,1], we can see that F(-, -, -)
is uniformly continuous on K(M) x K(M) x N(io). Finally, we can check that for each
x € [-2,2], F(x,[-2,2],0) + C is a convex set. Applying Theorem 3.3, we obtain that Sis
Ls.c. at (2.5,0).

The following example illustrates that the concavity of F cannot be dropped.

Example 3.5 Let Y =R2, C= R% and Z =X =R. Let B =[-2,2], M = [-1,1] and the set-
valued mapping F: B x B x M — 2¥ be defined by

F(x,y, 1) = [ux(x —y) = 0.5,2] x {x(x —y) - 0.5}.

Define a set-valued mapping K : M — 2% for all u € M, by K(u) := [0,1]. We choose
e=(1,1) €intC, g = 0.5, g = 0. Then, all the assumptions of Theorem 3.3 are satisfied
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except (iii). Indeed, taking y =1, x; = 0, x, =1 and ¢ = 0.5, we have

(-2.5,-0.25) = (=0.5,-0.75) — 0.5(2,-0.5) — 0.5(2, -0.5)
€ [-0.5,2] x {-0.75} - 0.5([-0.5,2] x {-0.5})
-0.5([-0.5,2] x {~0.5})
e F(0.5(0) +0.5(1),1,0) — 0.5F(0,1,0) - 0.5F(1,1,0)

= F(0.5,1,0) — 0.5F(0,1,0) — 0.5F(1,1,0),

but (-2.5,-0.25) ¢ C. The direct computation shows that

Clearly, we see that S(-,-) is even not Ls.c. at (g9, io) since F(-,y, ko) is not C-concave on

{0,1} ifpe(0,1],
Steo, ) = {[0,1] ifp=0, (3.15)
{0} ifpel-1,0).

K(uo)-
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