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Abstract

In this paper, we extend the concept of contraction mappings in b-metric spaces and
utilize this concept to prove the existence and uniqueness of fixed point theorems for
such mappings in such a space. We also prove the generalized Ulam-Hyers stability
and well-posed results for a fixed point equation employing the concept of
a-admissibility in b-metric spaces. We shall construct some examples to support our
novel results.
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1 Introduction

The classical Banach contraction principle is a very important tool in solving existence
problems in many branches of mathematics. Over the years, it has been generalized in
several different directions by several mathematicians (see [1-7]). In 1993, Czerwik [8]
introduced and proved the contraction mapping principle in b-metric spaces that gener-
alized the famous Banach contraction principle in such spaces. Subsequently several other
authors [9-15] have studied and established the existence of fixed points of a contractive
mapping in b-metric spaces.

The study of stability problems for various functional equations play the most important
role in mathematical analysis. In the fall of 1940, Ulam [16] discussed a number of impor-
tant unsolved mathematical problems. Among them, a question concerning the stability
of homomorphisms seemed too abstract for anyone to reach any conclusion. In the fol-
lowing year, Hyers [17] gave a first affirmative partial answer to Ulam’s question for Banach
spaces, this type of stability is called Ulam-Hyers stability. A large number of papers have
been published in connection with various generalizations of Ulam-Hyers stability results
in fixed point theory and remarkable result on the stability of certain classes of functional
equations via fixed point approach (see [18—29] and references therein).

On the other hand, Samet et al. [30] introduced the concepts of «-1-contractive map-
ping and «-admissible self-mappings. Also, they proved some fixed point results for such
mappings in complete metric spaces. Naturally, many authors have started to investigate
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the existence of a fixed point theorem via «-admissible mappings for single valued and
multivalued mappings (see [31-38]). Recently Bota et al. [39] considered the existence
and the uniqueness of fixed point theorems and generalized Ulam-Hyers stability results
via a-admissible mappings in b-metric spaces.

In this paper, we extend the concept of o-ir-contractive mapping in b-metric spaces.
By using this concept, we establish the existence and uniqueness of fixed point for some
new types of contractive mappings in b-metric spaces and give an example to illustrate
our main results. Moreover, we study and prove the generalized Ulam-Hyers stability and
well-posed results by using fixed point method via o-admissible mappings in b-metric
spaces.

2 Preliminaries
Throughout this paper, we shall use the following notation.

Definition 2.1 ([40, 41]) Let X be a nonempty set and the functional d : X x X — [0, 00)
satisfy:

(bl) d(x,y) =0 ifand onlyifx =y,

(b2) d(x,y) =d(y,x) forallx,y € X,

(b3) there exists a real number s > 1 such that d(x,z) < s[d(x,y) + d(y, z)], for all

x,9,z€X.

Then d is called a b-metric on X and a pair (X, d) is called a b-metric space with coeffi-
cient s.

Remark 2.2 If we take s = 1 in above definition then b-metric spaces turns into usual
metric spaces. Hence, the class of b-metric spaces is larger than the class of usual metric
spaces.

Examples of b-metric spaces were given in [8, 40—43].

Example 2.3 The set [,(R) with 0 < p <1, where [,(R) := {{x,} CR | > o, |x,¥ < 00},
together with the functional 4 : [,(R) x [,(R) — [0, 00),

d(x,y) = (Z o = Vi |P>
n=1

(where x = {x,},y = {yx} € [,(R)) is a b-metric spaces with coefficient s = 2}’ > 1. Notice
that the above result holds for the general case /,(X) with 0 < p <1, where X is a Banach
spaces.

Example 2.4 Let X be a set with the cardinal card(X) > 3. Suppose that X = X; U X; is a
partition of X such that card(Xj) > 2. Let s > 1 be arbitrary. Then the functional d : X x
X — [0, 00) defined by

0, x=y,
dx,y):=12s, xy€Xi,
1, otherwise,

is a b-metric on X with coefficient s > 1.
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Definition 2.5 ([42]) Let (X, d) be a b-metric spaces. Then a sequence {x,} in X is called
(a) convergent if and only if there exists x € X such that d(x,,x) — 0 as n — oc;
(b) Cauchy if and only if d(x, x,,) — 0 as m,n — oo.

Lemma 2.6 ([41]) Let (X,d) be a b-metric spaces and let {x}};_, C X. Then
d(th xn) = Sd(xoyxl) L Snild(xn—Z: xn—l) + Snd(xn—ly xn)-

Definition 2.7 ([21]) A mapping ¥ : [0,00) — [0, 00) is called a comparison function if it
is increasing and " (¢) — 0 as n — oo, for any t € [0, 00).

Lemma 2.8 ([21, 44]) If ¢ : [0,00) — [0, 00) is a comparison function, then
(1) ¥" is also a comparison function, where Y™ is nth iterate of \;
(2) ¥ is continuous at 0;
(3) ¥(t)<t, foranyt>O0.

The concept of (c)-comparison function was introduced by Berinde [44] in the following
definition.

Definition 2.9 A function ¥ : [0,00) — [0, 00) is said to be a (c)-comparison function if
(1) v is increasing;
(2) there exist np € N, k € (0,1) and a convergent series of nonnegative terms Y .-, €,
such that ¥"*1(¢) < kyr"'(t) + €,, for n > ng and any ¢ € [0, 00).

Here we recall the definitions of the following class of (b)-comparison function as given
by Berinde [45] in order to extend some fixed point results to the class of b-metric spaces.

Definition 2.10 ([45]) Lets > 1beareal number. A mapping v : [0,00) — [0, 00) is called
a (b)-comparison function if the following conditions are fulfilled:
(1)  is increasing;
(2) there exist ng € N, k € (0,1), and a convergent series of nonnegative terms Y .-, €,
such that s"*1"*1(¢) < ks" " (t) + €,, for n > ny and any ¢ € [0, 00).

In this work, we denote by W, the class of (b)-comparison function ¥ : [0, 00) — [0, 00).
It is evident that the concept of (b)-comparison function reduces to that of (¢)-comparison
function when s = 1.

Lemma 2.11 ([43]) Ify : [0,00) — [0,00) is a (b)-comparison function, then we have the
following:
(i) the series Y o, s"Y"(t) converges for any t € [0, 00);
(ii) the function S : [0,00) — [0, 00), defined by S(t) =Y oo S"Y"(2), £ € [0,00), is
increasing and continuous at 0.

Next, we will present the concept of «-admissible mappings introduced by Samet et
al. [30].

Definition 2.12 ([30]) Let X be a nonempty set, f : X — X and @ : X x X — [0,00). We
say that f is an a-admissible mapping if it satisfies the following condition:

forx,y € X for whicha(x,5) >1 = a(f(x),f(y)) > 1.
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Example 2.13 Let X = (0,00). Define f: X — X and o : X x X — [0, 00) by

f(x) =sinh(x) forallx e X

and
x+y+1 , 1fx = ¥,
alx,y)=q o
0, ifx<y.

Then f is w-admissible.
Example 2.14 Let X =R. Define f: X - X and @ : X x X — [0, 00) by

cosh(2x +1), ifx>1,
VOERBEES ifo<x<1,
0, otherwise

and

x,9) 1, ifx,ye[0,1],
alx,y) =
) 0, otherwise.

Then f is «-admissible.

3 Fixed point theorems for ¢-admissible mapping in b-metric spaces
In this section, we prove the existence and uniqueness of fixed point theorems in a

b-metric space.

Definition 3.1 Let (X, d) be a b-metric space with coefficient s. A mapping f : X — X is
said to be a generalized « -/ -contraction in b-metric space if there exist functions ¢ € ¥,
and o : X x X — [0, 00) such that the following condition holds:

for x,y € X with ot(x,f(x))ot(y,f(y)) >1 = d(f(x),f(y)) < l/f(d(x,y)). (3.1)

Theorem 3.2 Let (X, d) be a complete b-metric space with coefficient s and f be a gener-
alized a- -contraction. Suppose that the following conditions hold:
(a) f isan a-admissible;
(b) there exists xo € X such that a(xo, f(x0)) > 1;
(c) if{xn} is sequence in X such that x, — x as n — oo and a(x,,f(x,)) > 1 foralln eN,
then a(x,f(x)) > 1.
Then f has a unique fixed point x* in X such that o(x*,f(x*)) > 1.

Proof Let xy € X such that «(xg,f(x9)) > 1 (from condition (b)). We define the sequence
{x,} in X such that

%y =f(x,-1) forallmeN.
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Since f is an o-admissible and
a(xo,%1) = o (x0,f (%0)) = 1 (3.2)
we deduce that

a(x,f (1) = a(f (%), f(%1)) = 1. (3.3)

By continuing this process, we get a(x,,_1,f(x,-1)) > 1 for all n € N. This implies that

o (X1, f (K1) )t (K f (30)) > 1

for all # € N. From (3.1), we obtain

A X, Xni1) = d(f(xn—l):f(xn)) = w(d(xn—l:xn))

for all » € N. By repeating the above process, we get

Ay %ni1) < Y (d(x0,%1))

for all # € N. Next, we show that {x,} is a Cauchy sequence in X. For m, n € N with m > n,

we have
d(xmxm) < Sd(xn:xwrl) + SZd(anrl»anrZ) + e+ Sm—n—zd(xm_3,xm_2)
+ Sm_n_ld(xm—Z; xm—l) + Sm_nd(xm_l’xm)
< sy (d(wo, :1)) + Y (d(wo, 1)) + -+ + 8" 2Y " (d(xo, x1))
+ " (d(x0,%1)) + 8 (d (0, %1))
1
=] [y (d(x0, 1)) + 8" " (d(xo, 1)) + -+ + 8”22 (d(x0, %1))

+sm’11ﬂ”"1(d(x0,x1))].

Denote S, = Y 1, s'y'(d(x0,x1)) for all n € N. This implies that

1
Adx,, %) < — [S,-1 —S,-1] forall m,,m e N.
s"-

By Lemma 2.11 we know that the series Y .- s’y (d(xo, 1)) converges. Therefore, {x,} is
Cauchy sequence in X. By the completeness of X, there exists x* € X such that x, — x*
as n — 00. Using condition (c), we get a(x*,f(x*)) > 1. Also, we have o (w1, f (%,-1)) o (x*,
f(x*)) > 1 for all n € N. From the assumption (3.1), we have

s[d(f (x7), ) + d(x,2")]
s[A(f (x7)of @n-1) + d (2, 27) ]
s[w (d(x*,x,,_l)) + d(x,,,x*)].

a(f(x)x")

|| I/\

IA
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Letting n — oo, it follows that d(f(x*),x*) = 0, that is, x* is a fixed point of f such that
a(x*,f(x%) = 1.

Next, we prove the uniqueness of the fixed point of f. Let y* be another fixed point of f
such that

a(y f(y)) =1

Therefore, we get
a(xf () (S f (")) = 1.
It follows that
d(x"y") =d(f (x).f (7)) <d(x".y"),

which is a contradiction. Therefore, x* is the unique fixed point of f such that o(x*,
f(x*)) > 1. This completes the proof. O

In view of Theorem 3.2, we have the following corollary.

Corollary 3.3 Let (X,d) be a complete b-metric space with coefficient s, f : X — X, o :
X x X — [0,00), and € ¥V, be three mappings. Suppose that the following conditions
hold:

(@) f is an a-admissible;

(b) there exists xy € X such that a(xo, f(x0)) > 1;

(©) if{x,} is sequence in X such that x, — x as n — o0 and a(x,,f(x,)) > 1 foralln e N,

then a(x,f(x)) > 1;
(d) f satisfies the following condition:

a (2 f @) (5 f3)d(f@).f0)) < ¥ (dx,)) (3.4)

forallx,y € X.
Then f has a unique fixed point x* in X such that o(x*,f(x*)) > 1.

Corollary 3.4 Let (X,d) be a complete b-metric space with coefficient s, f : X — X, a :
X x X — [0,00), and € VU, be three mappings. Suppose that the following conditions
hold:

(@) f is an a-admissible;

(b) there exists xo € X such that a(xo, f (x0)) > 1;

(c) if{xn} is sequence in X such that x, — x as n — 00 and a(x,,f (x,)) > 1 foralln € N,

then a(x,f(x)) > 1;
(d) f satisfies the following condition:

(7@, £09) + €70 < y () + = (3.5)

forall x,y € X, where § > 1.
Then f has a unique fixed point x* in X such that o(x*,f(x*)) > 1.

Page 6 of 12
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Corollary 3.5 Let (X,d) be a complete b-metric space with coefficient s, f : X — X, o :
X x X — [0,00), and € V, be three mappings. Suppose that the following conditions
hold:

(@) f is an a-admissible;

(b) there exists xy € X such that a(xo, f(x0)) > 1;

(c) if (x4} is sequence in X such that x, — x as n — 00 and a(x,,f (x,)) > 1 foralln e N,

then a(x,f(x)) > 1;
(d) f satisfies the following condition:

((xf@)a (3 f() -1+ &)V < gy (3.6)

forall x,y € X, where & > 1.
Then f has a unique fixed point x* in X such that o(x*,f(x*)) > 1.

If we set a(x,y) =1 for all x,y € X in Theorem 3.2, we get the following results.

Corollary 3.6 Let (X, d) be a complete b-metric space with coefficient s and f : X — X be
a mapping. Suppose that f satisfies

d(fx).f ) < ¥ (d(x,)) 3.7)
forall x,y € X, where y € Vy,. Then f has a unique fixed point in X.
If the coefficient s = 1 in Corollary 3.6, we immediately get the following result.

Corollary 3.7 [46] Let (X,d) be a complete metric space and r : [0,00) — [0,00) be
(c)-comparison function. Suppose that f : X — X be a mapping satisfies

d(f (). ) < ¥ (d(x.)) (3.8)
forallx,y € X. Then f has a unique fixed point in X.

Remark 3.8 If ¥ (¢) = kt, where k € (0,1) in Corollary 3.7, we get the Banach contraction

principle.

Next, we give an example showing that the contractive conditions in our results are
independent. Also, our results are real generalizations of the Banach contraction principle

in b-metric spaces and several results in literature.

Example 3.9 Let X = [0,00) and d(x,y) = |x — y|? for all x,y € X. Then d is a complete
b-metric space on X with coefficient s = 2. Define f : X — X by

0.2, x=0,
fx) =1 =, x€(0,1),

1
5 [Loo).

Page 7 of 12
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Also, define @ : X x X — [0, 00) and ¥ : [0, 00) — [0, 00) by

0, xyel0,1),
a(xy) = 7
1, xy€[l,00),
and ¥ (f) = %t forall £ > 0.
Now, we show that f is a generalized « -1 -contraction mapping. For x,y € X with

a(xf@)a(n.f() =1,

we get x,7 € [1,00). Then we have

x+1 y+1 2

d(f().f () = 5 5

1 2
_x_
4| 9

1
< Ed(x,y)

¥ (d(x,9)).

It is easy to see that f is an «-admissible mapping. There exists xy = 2 € X such that

a(x0,f(x0)) = (2,£(2)) =a(2,15) =2 > 1.

Also, we can easily to prove that condition (c) in Theorem 3.2 holds. Therefore, all of
conditions in Theorem 3.2 hold. In this example, we have 1 is a unique fixed point of f and

a(lf() =1

Remark 3.10 We observe that the contractive condition in Corollary 3.4 cannot be ap-
plied to this example. Indeed, for x =1 and y = 2, we obtain

[d(f@.£0)) + €] 5y () + %

where £ =1 and s = 2. Therefore, Corollary 3.4 cannot be applied to this case. Also, by a
similar method, we can show that Corollary 3.5 cannot be applied to this case.

Also, we can see that the fixed point result for Banach contraction principle in b-metric
spaces cannot be applied to this case. Indeed, for x = 0.4 and y = 0.5, we get

4(0.4)  4(0.5) |*

- >0.07 >0.01=10.4 - 0.5 = d(x,y).
cosh0.4 cosh0.5

d(f().f () =

4 The generalized Ulam-Hyers stability in b-metric spaces
In this section, we prove the generalized Ulam-Hyers stability in b-metric spaces for which
Theorem 3.2 holds.

Let (X,d) be a b-metric spaces with coefficient s and f : X — X be an operator. Let us
consider the fixed point equation

x=f(x), xeX (4.1)
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and the inequality
d(v.f(v)) <&, wheree>0. (4.2)

Theorem 4.1 Let (X,d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Theorem 3.2 hold and also that the function ¢ : [0,00) — [0, 00) defined
by @(t) := t — sy (¢t) is strictly increasing and onto. If a(u*,f(u*)) > 1 for all u* € X which is
an g-solution, then the fixed point equation (4.1) is generalized Ulam-Hyers stable.

Proof By Theorem 3.2, we have f(x*) = x*, that is, #* € X is a solution of the fixed point
equation (4.1). Let ¢ > 0 and y* € X is an &-solution, that s,

d(y* f(y*)) <e

Since x%,y* € X are &-solution, we have
a(@f(x)) =1 and a(y".f(y)) =1
Also, we have
(@ f (@) f () =

Now, we obtain

d(x",y") = d(f (), y")
<s[d(f(«).f (")) + d(f (7").57)]
<s[y(d(x"y") +a(f(v").y")]
< sy (d(x",y7)) +se.

It follows that

d(x"y") - s(v (d(x",y7))) < se.
Since ¢(f) := ¢ — sy (£), we have

o(d(x",y")) = d(x",y") - sy (d(x",5"))-
It implies that

d(x",y") < 97\ (se).

Notice that ¢! : [0,00) — [0, 00) exists, is increasing, continuous at 0 and ¢~}(0) = 0.
Therefore, the fixed point equation (4.1) is generalized Ulam-Hyers stable. O

Corollary 4.2 Let (X, d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Corollary 3.3 hold and also that the function ¢ : [0,00) — [0, 00) defined
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by @(t) := t — sy (¢t) is strictly increasing and onto. If a(u*,f(u*)) > 1 for all u* € X which is
an g-solution, then the fixed point equation (4.1) is generalized Ulam-Hyers stable.

Corollary 4.3 Let (X,d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Corollary 3.4 hold and also that the function ¢ : [0,00) — [0, 00) defined
by ¢(t) :=t — sy (¢) is strictly increasing and onto. If a(u*,f(u*)) > 1 for all u* € X which is
an g-solution, then the fixed point equation (4.1) is generalized Ulam-Hyers stable.

Corollary 4.4 Let (X,d) be a complete b-metric space with coefficient s. Suppose that all
the hypotheses of Corollary 3.5 hold and also that the function ¢ : [0,00) — [0, 00) defined
by @(t) := t — sy (¢t) is strictly increasing and onto. If a(u*,f(u*)) > 1 for all u* € X which is
an g-solution, then the fixed point equation (4.1) is generalized Ulam-Hyers stable.

5 Well-posedness of a function with respect to «-admissibility in b-metric
spaces
In this section, we present and prove well-posedness of a function with respect to an

a-admissible mapping in b-metric spaces.

Definition 5.1 Let (X, d) be a complete b-metric spaces with coefficient s and f : X — X,
a:X x X — [0,00). The fixed point problem of f is said to be well-posed with respect to
a if
(i) f hasa unique fixed point x* in X such that o (x*,f(x*)) > 1;
(i) for sequence {x,} in X such that d(x,,f(x,)) — 0, as n — oo, then x, — x*, as
n— 00.

In the following next theorems, we add a new condition to assure the well-posedness
via a-admissibility.
(S) If {x,} is sequence in X such that d(x,,f(x,)) = 0, as n — oo, then a(x,, f(x,)) > 1
forall m e N.

Theorem 5.2 Let (X,d) be a complete b-metric space with coefficient s, f : X — X, o :
X x X — [0,00),and € Vy,. Suppose that all the hypotheses of Theorem 3.2 and condition
(S) hold. Then the fixed point equation (4.1) is well-posed with respect to .

Proof By Theorem 3.2, there unique exists x* € X such that f(x*) = * and «(x*, f (x*)) > 1.
Let {x,} be sequence in X such that d(x,,f(x,)) — 0, as  — oo. By condition (S), we get

(X f (x4)) = 1.

Also, we get

o (% f (o) ) (5%, f (x7)) > 1.
Now, we have

A x%) = (2 f (7))
s[d(onf () + d(F ). (7))]

s[tp (d(x,,,x*)) + d(xn,f(xn))].

IA

IA
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Y is continuous at 0 and d(x,,f(x,)) — 0 as n — oo. It implies that d(x,,x*) — 0 as n —
00, that is, x,, — x*, as 1 — 00. Therefore, the fixed point equation (4.1) is well-posed with
respect to «. a

Corollary 5.3 Let (X,d) be a complete b-metric space with coefficient s, f : X — X, o : X X
X — [0,00), and Y € V. Suppose that all the hypotheses of Corollary 3.3 and condition
(S) hold. Then the fixed point equation (4.1) is well-posed with respect to .

Corollary 5.4 Let (X,d) be a complete b-metric space with coefficient s, f : X — X, o : X X
X — [0,00), and € V. Suppose that all the hypotheses of Corollary 3.4 and condition
(S) hold. Then the fixed point equation (4.1) is well-posed with respect to .

Corollary 5.5 Let (X,d) be a complete b-metric space with coefficient s, f : X — X, o :
X xX — [0,00),and ¢ € V. Suppose that all the hypotheses of Corollary 3.5 and condition
(S) hold. Then the fixed point equation (4.1) is well-posed with respect to .
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