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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and Pc be the metric
projection of H onto C. Let S: C — H be a nonlinear mapping on C. We denote by Fix(S)
the set of fixed points of S and by R the set of all real numbers. A mapping S: C — H is

called L-Lipschitz continuous if there exists a constant L > 0 such that
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In particular, if L = 1 then S is called a nonexpansive mapping; if L € [0,1) then S is called
a contraction.

Let A: C — H be a nonlinear mapping on C. We consider the following variational
inequality problem (VIP): find a point x € C such that

(Ax,y—x)>0, VyeC. 1.1)

The solution set of VIP (1.1) is denoted by VI(C, A).

The VIP (1.1) was first discussed by Lions [1]. There are many applications of VIP (1.1) in
various fields; see, e.g., [2—5]. It is well known that, if A is a strongly monotone and Lips-
chitz continuous mapping on C, then VIP (1.1) has a unique solution. In 1976, Korpelevich
[6] proposed an iterative algorithm for solving the VIP (1.1) in Euclidean space R”":

Yn = Pc(x, — TAxy),
Xn+l = PC(xn - TAyn): Vn > 01

with T > 0 a given number, which is known as the extragradient method. The literature on
the VIP is vast and Korpelevich’s extragradient method has received great attention from
many authors, who improved it in various ways; see, e.g., [7-20] and references therein,
to name but a few.

Let ¢ : C — R be a real-valued function, A : H — H be a nonlinear mapping and © :
C x C — R be a bifunction. In 2008, Peng and Yao [8] introduced the generalized mixed
equilibrium problem (GMEP) of finding x € C such that

O,y +9() — o) + (Ax,y—x) >0, VyeC. (12)

We denote the set of solutions of GMEP (1.2) by GMEP(®, ¢, A). The GMEP (1.2) is very
general in the sense that it includes, as special cases, optimization problems, variational in-
equalities, minimax problems, Nash equilibrium problems in noncooperative games and
others. The GMEP is further considered and studied; see, e.g., [10, 16, 18,19, 21-23]. In par-
ticular, if ¢ = 0, then GMEP (1.2) reduces to the generalized equilibrium problem (GEP)
which is to find x € C such that

Ox,y) + (Ax,y—x) >0, VyeC.

It was introduced and studied by Takahashi and Takahashi [24]. The set of solutions of
GEP is denoted by GEP(®, A).

If A =0, then GMEP (1.2) reduces to the mixed equilibrium problem (MEP) which is to
find x € C such that

Oy + ) —ekx) =0, VyeC.

It was considered and studied in [25]. The set of solutions of MEP is denoted by
MEP(®, ¢).

If p =0, A =0, then GMEP (1.2) reduces to the equilibrium problem (EP) which is to
find x € C such that

Ox,y) >0, VyeC.
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It was considered and studied in [26, 27]. The set of solutions of EP is denoted by EP(®).
It is worth to mention that the EP is an unified model of several problems, namely, vari-
ational inequality problems, optimization problems, saddle point problems, complemen-
tarity problems, fixed point problems, Nash equilibrium problems, ezc.

It was assumed in [8] that ® : C x C — Ris a bifunction satisfying conditions (A1)-(A4)
and ¢ : C — R is a lower semicontinuous and convex function with restriction (B1) or
(B2), where

(Al) O(x,x) =0 forallx € C;

(A2) ® is monotone, ie., O(x,y) + O(y,x) <0 for any x,y € C;

(A3) O is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup © (tz + (1 - )x,y) < O(x,9);

t—0t

(A4) O(x,-) is convex and lower semicontinuous for each x € C;
(B1) for each x € H and r > 0, there exists a bounded subset D, C C and y, € C such
that, foranyz € C\ Dy,

1
O(27:) + () = 9(2) + ~{x 2,2 2) < 0;

(B2) Cisabounded set.
Given a positive number r > 0. Let Tr@"p) : H — C be the solution set of the auxiliary
mixed equilibrium problem, that is, for each x € H,
1
T,((")"”)(x) = {y €eC:00,2)+9(z)—p(y)+-(y-x,2z-y)>0,Vz e C}.
r
On the other hand, let B be a single-valued mapping of C into H and R be a multivalued

mapping with D(R) = C. Consider the following variational inclusion: find a point x € C
such that

0 € Bx + Rx. (1.3)

We denote by I(B,R) the solution set of the variational inclusion (1.3). In particular, if
B=R=0, then I(B,R) = C. If B =0, then problem (1.3) becomes the inclusion problem
introduced by Rockafellar [28]. It is well known that problem (1.3) provides a convenient
framework for the unified study of optimal solutions in many optimization related areas
including mathematical programming, complementarity problems, variational inequal-
ities, optimal control, mathematical economics, equilibria, and game theory, etc. Let a
set-valued mapping R : D(R) C H — 2/ be maximal monotone. We define the resolvent

operator Jr; : H — D(R) associated with R and A as follows:
Jro=U+AR), VxeH,
where A is a positive number.

In 1998, Huang [9] studied problem (1.3) in the case where R is maximal monotone and
B is strongly monotone and Lipschitz continuous with D(R) = C = H. Subsequently, Zeng
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et al. [29] further studied problem (1.3) in the case which is more general than Huang’s
one [9]. Moreover, the authors of [29] obtained the same strong convergence conclusion
as in Huang’s result [9]. In addition, the authors also gave the geometric convergence rate
estimate for approximate solutions. Also, various types of iterative algorithms for solving
variational inclusions have been further studied and developed; for more details, refer to
(11, 12, 30, 31] and the references therein.

Let f: C — R be a convex and continuously Fréchet differentiable functional. Consider
the convex minimization problem (CMP) of minimizing f over the constraint set C,

minimize {f(x) (x € C}. (1.4)

It and its special cases were considered and studied in [13, 14, 32-34]. We denote by I"
the set of minimizers of CMP (1.4). The gradient-projection algorithm (GPA) generates a
sequence {x,} determined by the gradient Vf and the metric projection P¢:

X+l = PC(xn - )\Vf(xn))’ Vn = 0: (15)
or, more generally,
Xn+l = PC(xn - )\nvf(xn)): Vn >0, (16)

where, in both (1.5) and (1.6), the initial guess x, is taken from C arbitrarily, the parameters
A or A, are positive real numbers. The convergence of algorithms (1.5) and (1.6) depends on
the behavior of the gradient Vf. As a matter of fact, it is well known that, if Vf is a-strongly
monotone and L-Lipschitz continuous, then, for 0 < A < 2%, the operator Pc(I — AVf) is a
contraction; hence, the sequence {x,} defined by the GPA (1.5) converges in norm to the

unique solution of CMP (1.4). More generally, if {1,} is chosen to satisfy the property

0 <liminfA, <limsupAi, <

n—00 1= 00 ﬁ’
then the sequence {x,} defined by the GPA (1.6) converges in norm to the unique mini-
mizer of CMP (1.4). If the gradient Vf is only assumed to be Lipschitz continuous, then
{x,,} can only be weakly convergent if H is infinite-dimensional (a counterexample is given
in Section 5 of Xu [33]). Recently, Xu [33] used averaged mappings to study the conver-
gence analysis of the GPA, which is hence an operator-oriented approach.

Very recently, Ceng and Al-Homidan [23] introduced and analyzed the following iter-
ative algorithm by the hybrid steepest-descent viscosity method and derived its strong
convergence under appropriate conditions.

Theorem CA (see [23, Theorem 21]) Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional with L-Lipschitz continuous
gradient Vf. Let M, N be two integers. Let Oy be a bifunction from C x C to R sat-
isfying (A1)-(A4) and ¢r : C — R U {+00} be a proper lower semicontinuous and con-
vex function, where k € {1,2,...,M}. Let By : H — H and A; : C — H be ui-inverse
strongly monotone and n;-inverse strongly monotone, respectively, where k € {1,2,...,M},
iefl,2,...,N}. Let F: H— H be a «-Lipschitzian and n-strongly monotone operator
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with positive constants k,n > 0. Let V : H — H be an [-Lipschitzian mapping with con-
stant 1> 0. Let 0 < j4 < i—;’ and 0 < yl<t,wheret=1- m Assume that
2 = ﬂﬁl GMEP(Oy, ¢x, Br) N ﬂf\il VI(C,A;) N I" # @ and that either (B1) or (B2) holds.
For arbitrarily given x; € H, let {x,} be a sequence generated by

Uy = Tr(,\(if’ww)(l - rM,nBM)Tr(A(i/_wl;WMfl)(l - rM—l,nBM—l) T Tr(l(jl’wl)(l - rl,nBl)xn:

Vi = Pc(l = AnuwAN)Pc(l = An-1,0AN-1) - - - Pc(I = Ao nA2) Pl = Ay,pAr)thy,

X1 = Sy Vi + B + (1= Bl = syt F)Tyv,  Vn =1,

where Pc(I — A, Vf) = s, + (1 —s,)T, (here T, is nonexpansive, s, = 2_Z”L € (0, %)for each
Ay € (0, %)). Assume that the following conditions hold:
(i) su € (0,3) foreach 1, € (0,2), and lim, .0 s, = 0 (& limy—s o0 Ay = 2);

(il) {B.} C(0,1) and 0 <liminf,_, ~ B, <limsup,_, ., B.<1;

(iti) {rin} Claibi] € (0,2n;) and limy,_ o0 [Ajps1 — Aiy| =0 foralli e {1,2,...,N};

(iv) {ren} C lewfi] € (0,2ur) and limy,_ o0 |Fi i1 — Fin| =0 forall k € {1,2,..., M}.
Then {x,} converges strongly as ,, — % (& sy — 0) to a point x* € 2, which is a unique
solution in S2 to the VIP:

((,uF— yV)x*,p—x*) >0, Vpegf.
Equivalently, x* = Po(I — (WF — y V))x™.

In 2009, Yao et al. [35] considered the following hierarchical fixed point problem
(HFPP): find hierarchically a fixed point of a nonexpansive mapping 7 with respect to
another nonexpansive mapping S, namely; find ¥ € Fix(7T') such that

(x—Sx,x—x) <0, VxeFix(T). 1.7)

The solution set of HFPP (1.7) is denoted by A. It is not hard to check that solving HFPP
(1.7) is equivalent to the fixed point problem of the composite mapping Prix()S, i.e., find
x € C such that X = Pgix(r)Sx. The authors of [35] introduced and analyzed the following
iterative algorithm for solving HFPP (1.7):

Yn = BuSxu + (1= Bu)xn,
Kp1 =0y Ve, + (1= o) Ty, Vr > 0.

(1.8)

Theorem YLM (see [35, Theorem 3.2]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let S and T be two nonexpansive mappings of C into itself. Let V :C — C
be a fixed contraction with o € (0,1). Let {o,} and {B,} be two sequences in (0,1). For any
given xg € C, let {x,} be the sequence generated by (1.8). Assume that the sequence {x,} is
bounded and that

(i) ZZ.;O oy = O0;

(ii) lim,—oo — ,
n

15, = 7| = 0, limyso0 51— %221 | = 0;

)
(i) 1M, o0 B = 0, im0 % = 0 and lim, . £ = 0;
(iv) Fix(T)NintC # @;
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(v) there exists a constant k > 0 such that ||x — Tx|| > k Dist(x, Fix(T)) for each x € C,
where Dist(x, Fix(T)) = infycpix(7) llx — y||. Then {x,} converges strongly to x = P, VX
which solves the VIP: (x — Sx,% —x) < 0, Vx € Fix(T).

Very recently, liduka [36, 37] considered a variational inequality with a variational in-
equality constraint over the set of fixed points of a nonexpansive mapping. Since this prob-
lem has a triple structure in contrast with bilevel programming problems or hierarchical
constrained optimization problems or hierarchical fixed point problem, it is referred to
as a triple hierarchical constrained optimization problem (THCOP). He presented some
examples of THCOP and developed iterative algorithms to find the solution of such a
problem. The convergence analysis of the proposed algorithms is also studied in [36, 37].
Since the original problem is a variational inequality, in this paper, we call it a triple hi-
erarchical variational inequality (THVI). Subsequently, Ceng et al. [38] introduced and
considered the following triple hierarchical variational inequality (THVI):

Problem I Let S, T : C — C be two nonexpansive mappings with Fix(T) #0, V:C—> H
be a p-contractive mapping with constant p € [0,1) and F : C — H be ax-Lipschitzian and
n-strongly monotone mapping with constants «,7 > 0. Let 0 < <2n/k2and 0 <y <t
where 7 =1- m Consider the following THVI: find #* € & such that

(([,LF— yV)x*,x—x*) >0, Vxeg&,

in which & denotes the solution set of the following hierarchical variational inequality
(HVI): find z* € Fix(T) such that

((WF -y S)z*,z-2*)=0, VzeFix(T),
where the solution set = is assumed to be nonempty.

The authors of [38] proposed both implicit and explicit iterative methods and studied
the convergence analysis of the sequences generated by the proposed methods. In this pa-
per, we introduce and study the following triple hierarchical variational inequality (THVI)
with constraints of mixed equilibria, variational inequalities, and convex minimization
problem.

Problem II Let M, N be two integers. Let f : C — R be a convex functional with L-
Lipschitz continuous gradient Vf. Let ®; be a bifunction from C x C to R satisfying
(A1)-(A4) and ¢ : C — R U {+0o0} be a proper lower semicontinuous and convex func-
tion, where k € {1,2,...,M}. Let R; : C — 2 be a maximal monotone mapping and let
Ax:H — H and B; : C — H be pug-inverse strongly monotone and 7;-inverse strongly
monotone, respectively, where k € {1,2,...,M}, i € {1,2,...,N}. Let S: H - H be a
nonexpansive mapping and {7,}3; be a sequence of nonexpansive mappings on H. Let
F :H — H be a k-Lipschitzian and n-strongly monotone operator with positive constants
k,n>0.Let V:H — H be an [-Lipschitzian mapping with constant / > 0. Let 0 < p < i—g,
O<y <t,and 0 < yl<t,where t =1-./1-u(2n— uk?). Consider the following triple
hierarchical variational inequality (THVI): find x* € E such that

(WF -y V)x*,x-x")>0, Vxe&, (1.9)
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where & denotes the solution set of the following hierarchical variational inequality (HVI):
find z* € £2 := N2, Fix(T,,) N (ay GMEP(Oy, gk, Bi) N (v, I(B;, R;) N I such that

(WF -—yS)z*,z—-2")>0, Vzeg, (1.10)
where the solution set = is assumed to be nonempty.

Motivated and inspired by the above facts, we introduce and analyze a relaxed iter-
ative algorithm by virtue of Korpelevich’s extragradient method, the viscosity approx-
imation method, the hybrid steepest-descent method, the regularization method, and
the averaged mapping approach to the GPA. It is proven that, under appropriate as-
sumptions, the proposed algorithm converges strongly to a common element x* € 2 :=
M52, Fix(T,,) N (oL, GMEP(Oy, ¢, Ax) N (N, 1B, R;) N I of the fixed point set of in-
finitely many nonexpansive mappings {7},}7;, the solution set of finitely many GMEPs,
the solution set of finitely many variational inclusions and the set of minimizers of CMP
(1.4), which is just a unique solution of the THVI (1.9). In addition, we also consider the
application of the proposed algorithm to solving a hierarchical fixed point problem with
constraints of finitely many GMEDPs, finitely many variational inclusions and CMP (1.4).
That is, under very mild conditions, it is proven that the proposed algorithm converges
strongly to a unique solution x* € §2 of the VIP: ((y V — uF)x*,x —x*) <0, Vx € §2; equiv-
alently, Po (I — (uF — y V))x* = x*. The results obtained in this paper improve and extend

the corresponding results announced by many others.

2 Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by (-,-) and | - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x,, — x to indicate that the sequence {x,} converges weakly to x
and x, — x to indicate that the sequence {x,} converges strongly to x. Moreover, we use
wy(x,) to denote the weak w-limit set of the sequence {x,}, i.e.,

wy(x,) = {x € H : x,, — x for some subsequence {x,,} of {x,,}}.

Recall that a mapping A : C — H is called

(i) monotone if
(Ax —Ay,x—y)>0, Vx,yeC;
(ii) n-strongly monotone if there exists a constant 1 > 0 such that
(Ax=Ay,x—y) z nllx-yl°, VayeC;
(ili) a-inverse strongly monotone if there exists a constant & > 0 such that

(Ax — Ay,x —y) > a||Ax — Ay||*>, Vx,yeC.
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It is obvious that if A is «-inverse strongly monotone, then A is monotone and é—
Lipschitz continuous. Moreover, we also have, for all #,v € C and A > 0,

| = 2A)u = (I = 24| = || (u=v) - M(Au - AV)|?
= |lu—v||> = 20 {Au — Av,u — v) + A2 ||Au — Av||®

<llu—-v|®+ 1k - 20)|Au — Av|)>. (2.1)

So, if A < 2a, then I — AA is a nonexpansive mapping from C to H.
The metric (or nearest point) projection from H onto C is the mapping Pc : H — C
which assigns to each point x € H the unique point Pcx € C satisfying the property

ll = Pex|| = inf ||lx — y|| =: d(x, C).
yeC

Some important properties of projections are gathered in the following proposition.
Proposition 2.1 For given x € H and z € C:
(i) z=Pcx & (x—2z,y-2) <0,Vy e C;
(i) z=Pcx & llx—z|* < llx = yI* = ly—2l* ¥y € C;
(iii) (Pcx—Pcy,x—y) = |Pcx —Pcy|?, Vy € H.

Consequently, Pc is nonexpansive and monotone.

Definition 2.1 A mapping T : H — H is said to be:
(a) nonexpansive if

ITx - Tyll < llx—yll, VxyeH;

(b) firmly nonexpansive if 2T — I is nonexpansive, or equivalently, if 7" is 1-inverse

strongly monotone (1-ism),
(x—y, Tx—Ty) > | Tx - Ty||*>, Vx,y€H;
alternatively, T is firmly nonexpansive if and only if T’ can be expressed as
1
T==-(I+S),
S+9)
where S: H — H is nonexpansive; projections are firmly nonexpansive.

It can easily be seen that if 7' is nonexpansive, then I — T is monotone. It is also easy to see
that a projection Pc is 1-ism. Inverse strongly monotone (also referred to as co-coercive)

operators have been applied widely in solving practical problems in various fields.

Definition 2.2 A mapping T : H — H is said to be an averaged mapping if it can be writ-
ten as the average of the identity / and a nonexpansive mapping, that is,

T=01-a)l+as,
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where @ € (0,1) and S: H — H is nonexpansive. More precisely, when the last equality
holds, we say that T is «-averaged. Thus firmly nonexpansive mappings (in particular,

projections) are -averaged mappings.

Proposition 2.2 (see [39]) Let T : H — H be a given mapping.
(i) T is nonexpansive if and only if the complement I — T is %-ism.
(i) If T is v-ism, then fory >0, y T is %—z’sm.
(ili) T is averaged if and only if the complement I — T is v-ism for some v > 1/2. Indeed,
fora €(0,1), T is a-averaged if and only if I — T is i—l’sm.

Proposition 2.3 (see [39, 40]) Let S, T,V : H — H be given operators.
(i) fT=Q0-a)S+aV forsome a € (0,1) and if S is averaged and V is nonexpansive,
then T is averaged.

(i) T is firmly nonexpansive if and only if the complement I — T is firmly nonexpansive.

(iii) If T =1 -a)S+aV forsomea € (0,1) and if S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the
mappings {T;}Y, is averaged, then so is the composite Ty - - - T. In particular, if Ty
is ay-averaged and T, is ap-averaged, where oy, oy € (0,1), then the composite T1 Ty
is a-averaged, where o = a1 + 0oty — 010l3.

(v) If the mappings {T:}Y, are averaged and have a common fixed point, then

N

ﬂFix(T,-) =Fix(T; - - Ty).
i=1

The notation Fix(T) denotes the set of all fixed points of the mapping T, that is, Fix(T) =
{xe H:Tx =x}.

Next we list some elementary conclusions for the MEP.

Proposition 2.4 (see [25]) Assume that © : C x C — Rsatisfies (Al)-(A4) and let ¢ : C —
R be a proper lower semicontinuous and convex function. Assume that either (B1) or (B2)
holds. For r >0 and x € H, define a mapping T H > C as follows:

T99)(x) = {z €C:0(z,y) +9(») — p(2) + %O"Z'Z_x) =0,y € C}

forall x € H. Then the following hold:
(i) foreachx e H, T,(@’w)(x) is nonempty and single-valued,;
(ii) T\O%) is firmly nonexpansive, that is, for any x,y € H,

| 79— T(O%)y H2 <(T©9x— T(®¥)y,x - y);
(iii) Fix(T'°*)) = MEP(®, ¢);

(iv) MEP(O, ) is closed and convex;

W) T = T x)> < (T % - TOV%, TOx %) for all s,t >0 and x € H.

Page 9 of 47
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We need some facts and tools in a real Hilbert space H, which are listed as lemmas

below.

Lemma 2.1 Let X be a real inner product space. Then we have the following inequality:
o+l < 2 + 20,2 +9), VryeX.

Lemma 2.2 Let A : C — H be a monotone mapping. In the context of the variational in-

equality problem the characterization of the projection (see Proposition 2.1(i)) implies
ueVI(C,A) & u=Pc(u—-rAu), 1>0.

Lemma 2.3 (see [41, Demiclosedness principle]) Let C be a nonempty closed convex subset
of areal Hilbert space H. Let T be a nonexpansive self-mapping on C with Fix(T) # . Then
I — T is demiclosed. That is, whenever {x,} is a sequence in C weakly converging to some
x € C and the sequence {(I — T)x,} strongly converges to some y, it follows that (I - T)x = y.
Here [ is the identity operator of H.

Let {T}}:2, be an infinite family of nonexpansive self-mappings on C and {A,};°, be a
sequence of nonnegative numbers in [0,1]. For any # > 0, define a mapping W, on C as

follows:

un,rz+1 =1,
un,n = )Vn Tn un,n+1 + (]- - )\‘}’l)ly
un,n—l = Ano1 Tn—l un,n + (1 - )Ln—l)l»

Ui = M Tl + (L= M), (2.2)
Uy -1 = Mo Trn Ui + (1= X)),

Upy =2 Tollyz + (1= A2)],
Wn = LIM = AlTlL[n,z + (1 — )»1)1

Such a mapping W, is called the W-mapping generated by T}, T;-1,..., T1 and A, A,-1,
c A

Lemma 2.4 (see [42, Lemma 3.2]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let {T,}32, be a sequence of nonexpansive self-mappings on C such that
Mooy Fix(T,,) # 0 and let {1,}22, be a sequence in (0,b] for some b € (0,1). Then, for every
x € Cand k > 1 the limit lim,,_, oo U, yx exists where U, is defined as in (2.2).

Remark 2.1 (see [43, Remark 3.1]) It can be found from Lemma 2.4 thatif D is a nonempty
bounded subset of C, then for € > 0 there exists 1y > k such that, for all n > ng,

sup |Upix — Ugx| < e.
xeD
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Remark 2.2 (see [43, Remark 3.2]) Utilizing Lemma 2.4, we define a mapping W:C — C
as follows:

Wx = lim W,x= lim U,;x, VxeC.
n—0Q

n—00

Such a W is called the W-mapping generated by 71, T, ... and A, Ay, ... . Since W, is non-
expansive, W : C — C is also nonexpansive. If {x,} is a bounded sequence in C, then we
put D = {x, : n > 1}. Hence, it is clear from Remark 2.1 that, for an arbitrary € > 0, there
exists Ny > 1 such that, for all 7 > Ny,

” ann - Wxn” = ”Un,lxn - len” < sup ”Un,lx - le” <e.
xeD

This implies that
lim || W%, — Wa,|| = 0.

n—00

Lemma 2.5 (see [42, Lemma 3.3]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let {T,,}52, be a sequence of nonexpansive self-mappings on C such that
Mooy Fix(Ty,) # 0, and let {1,}32, be a sequence in (0, b] for some b € (0,1). Then Fix(W) =
Mooy Fix(T,).

The following lemma can easily be proven, and therefore we omit the proof.

Lemma 2.6 Let V : H — H be an [-Lipschitzian mapping with constant | > 0, and
F:H — H be a «-Lipschitzian and n-strongly monotone operator with positive constants
k,n>0.Then for 0 <yl<un,

(WF =y V)x = (WF =y V)y,x =y} = (un - yDllx -yl Vx,y€H.
That is, WF — y 'V is strongly monotone with constant un —yl> 0.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some
notations. Let A be a number in (0,1] and let ¢ > 0. Associated with a nonexpansive map-
ping T : C — H, we define the mapping T*: C — H by

T x:= Tx - \uF(Tx), VxeC,

where F : H — H is an operator such that, for some positive constants «,n > 0, F is k-
Lipschitzian and n-strongly monotone on H; that is, F satisfies the conditions:

IFx - Fyl <llc =yl and (Fx—Fy,x—y) = nlx-y|*

forallx,y € H.

Lemma 2.7 (see [44, Lemma 3.1]) T* is a contraction provided 0 < j1 < i—;’; that is,
| %% - T"y| < 1-20)lx -y, VxyeC,

where t =1—/1-u(2n - ux?) €(0,1].
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Lemma 2.8 (see [45]) Let {a,} be a sequence of nonnegative real numbers satisfying the
property

Aps1 = (1 _Sn)an +Suty + €5, YN 2>0,

where {s,} C [0,1] and {t,,} are such that
(1) D2y 80 =005
(i) either imsup,,_, & <0 0r Y oo) sulty| < 00;
(i) Y 02, €x < 00 where €, > 0,Vn > 0.

Then lim,_, s a,, = 0.

Lemma 2.9 (see [41]) Let H be a real Hilbert space. Then the following hold:
(@) Il =12 = llxl2 = llyll2 - 2(x - 3,) for all x,y € H;
(B) 1A+ 1y l12 = Al + llyll? = Ausllx = 12 for all x,y € H and 1, 1 € [0,1] with
A+u=1

(c) if{xn} is a sequence in H such that x, — x, it follows that

lim sup ||x, —y||2 = limsup ||x, —x*+ = —y||2, VyeH.

n—0o0 n— 00

Finally, recall that a set-valued mapping 7 : D(T) C H — 2" is called monotone if for all
x,y€ D(T), f € Tx and g € Ty imply

f —gx—y)=0.

A set-valued mapping T is called maximal monotone if 7' is monotone and (I + AT)D(T) =
H for each A > 0, where [ is the identity mapping of H. We denote by G(T') the graph of T'.
It is well known that a monotone mapping 7" is maximal if and only if, for (x,f) € H x H,
(f —g,x—y) >0 for every (y,g) € G(T) implies f € Tx. Next we provide an example to
illustrate the concept of maximal monotone mapping.

Let A: C — H be a monotone, k-Lipschitz continuous mapping and let N¢v be the

normal coneto CatveC,i.e,
Nev={ueH:(v-p,u)>0,YpeC}.
Define

~ Av+Ncv, ifveC,
V=
0, ifvéecC.

Then T is maximal monotone (see [28]) such that
0eTv < veVICA). (2.3)

Let R: D(R) C H — 2 be a maximal monotone mapping. Let A, i > 0 be two positive
numbers.
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Lemma 2.10 (see [46]) We have the resolvent identity

n n
Jrax =Jrp <xx + (1 - x)]&;ﬁ), Vx e H.

Remark 2.3 For A, 1 > 0, we have the following relation:

1 1
e =Jruyll < llx =yl + |A = M|<X”]R,kx_)’” + ;Hx—]R,MJ/H): Vx,yeH. (2.4)

Indeed, whenever A > u, utilizing Lemma 2.10 we deduce that

TR, (%x + (1 - %)]R,Ax> — TRy

0 Iz
= 1-Z -
oo (15 o]

Wrax = Jruyll =

=<

< Sle-yl+ (1 - %) Vs =91
1A — nl
< =1l + == Vrsx =31l

Similarly, whenever A < u, we get

[A—

Wrax = Jrudll < llx =yl + = Jruyll-

Combining the above two cases we conclude that (2.4) holds.

In terms of Huang [9] (see also [29]), we have the following property for the resolvent

operator Jp; : H — D(R).
Lemma 2.11 Jy, is single-valued and firmly nonexpansive, i.e.,
Trak = Jrads% = ¥) = Wrax = Jrayll*,  Va,y € H.

Consequently, /r, is nonexpansive and monotone.

Lemma 2.12 (see [12]) Let R be a maximal monotone mapping with D(R) = C. Then for

any given A >0, u € C is a solution of problem (1.6) if and only if u € C satisfies

u = Jg;(u — ABu).

Lemma 2.13 (see [29]) Let R be a maximal monotone mapping with D(R) = C and let
B: C — H be a strongly monotone, continuous, and single-valued mapping. Then for each

z € H, the equation z € (B + AR)x has a unique solution x; for X > 0.

Lemma 2.14 (see [12]) Let R be a maximal monotone mapping with D(R) = C and B :
C — H be a monotone, continuous and single-valued mapping. Then (I + A(R+ B))C =H

foreach X > 0. In this case, R + B is maximal monotone.
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3 Strong convergence theorems for the THVI and HFPP
In this section, we will introduce and analyze a relaxed iterative algorithm for finding a
solution of the THVI (1.9) with constraints of several problems: finitely many GMEDPs,
finitely many variational inclusions, and CMP (1.4) in a real Hilbert space. This algorithm
is based on Korpelevich’s extragradient method, the viscosity approximation method, the
hybrid steepest-descent method, the regularization method, and the averaged mapping
approach to the GPA. We prove the strong convergence of the proposed algorithm to a
unique solution of THVI (1.9) under suitable conditions. In addition, we also consider the
application of the proposed algorithm to solving a hierarchical fixed point problem with
the same constraints.

Let f : C — R be a convex functional with L-Lipschitz continuous gradient Vf. It is
worth emphasizing that the regularization, in particular, the traditional Tikhonov regular-
ization, is usually used to solve ill-posed optimization problems. Consider the regularized

minimization problem
min (6) i= /() + - 1]
xeCﬁx " 2 ’

where « > 0 is the regularization parameter.

The advantage of a regularization method is its possible strong convergence to the
minimum-norm solution of the optimization problem under investigation. The disadvan-
tage is, however, its implicity, and hence explicit iterative methods seem more attractive,
with which Xu was also concerned in [33, 47]. Very recently, some approximation meth-
ods are proposed in [13, 14, 32, 48] to solve the vector optimization problem and split
feasibility problem by virtue of the regularization method.

We are now in a position to state and prove the first main result in this paper.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let M, N
be two integers. Let f : C — R be a convex functional with L-Lipschitz continuous gradient
Vf.Let O be a bifunction from C x C to Rsatisfying (Al)-(A4) and ¢i : C — RU{+00} bea
proper lower semicontinuous and convex function, where k € {1,2,...,M}. Let R;: C — 21
be a maximal monotone mapping and let Ay : H — H and B; : C — H be [-inverse
strongly monotone and n;-inverse strongly monotone, respectively, where k € {1,2,...,M},
i€{l,2,...,N}.Let S: H— H be a nonexpansive mapping, { T}, be a sequence of nonex-
pansive mappings on H and {},,}°°, be a sequence in (0, b] forsomeb € (0,1). Let F: H - H
be a k-Lipschitzian and n-strongly monotone operator with positive constants «,n > 0. Let
V :H — H be an l-Lipschitzian mapping with constant [ > 0. Let 0 < A < %, O<p< i—g,
O<y<tand 0 <yl<t, wheret =1- \/I—M(Zn——,u/ﬂ) Assume that either (B1) or
(B2) holds. Let {B,} and {0,} be sequences in (0,1) and {«,} be a sequence in (0,00) with
> > ay < 00. For arbitrarily given x, € H, let {x,} be a sequence generated by

Oty OM-1.0M-
Uy = TRM#M)(] — rM,nAM)T( MM (] Fr-inAp-) - -

YM,n TM-1,n
X Tr(l(il'(pl)(f— 11,0 1) %,
Vi = TR (L = ANt BN) Ry iy (L = AN-1,0BN-1) =+ TRy (L = A1,0B1) iy (3.1)

Yn = Ony Sxn + (I = 6, uF)Pc(vy, — )\Vﬁxn (i),
%1 = Buy Vi + (I = Bult F)WuPc(Vn = AN fo,, (), Y 21,
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where W, is the W-mapping defined by (2.2). Suppose that the following conditions are
satisfied:

(Hl) Z:il ,Bn =00 and hrn,Hoo ,Biﬂu _ ez;l | =0;

(H2) lim,,_ ﬂ%«'é _

(H3) lim,, o0 6, = 0, lim,, o0 2 = 0 and lim,, o g— =0;

| =0 andlim, o -1 - 22=L| = 0;

(H4‘) hmn—>oo %‘—aezill =0and hm,,_mo ﬂﬁ—ngn = O;
in} C lai, b;] C (0,2n;) and lim,,_, o, =222 = 0 forall i € {1,2,...,N};
(H5) {Ain} C @i bi] C (0,21;) and i Pintinll 20 for all i € {1,2,....,N)

(H6) {rin} C lex.fi]l C(0,2u) and lim,,_, o %+:m =0forallke{1,2,...,M}.

Then we have the following:
(1) hmn—>oo ||xn+01n—an — 0;
(i) ww(x,) C £2;
(ili) wy(x,) C & provided ||x, — y,|| = 0(6,,) additionally.

Proof First of all, let us show that Pc(I — AVf,) is &-averaged for each A € (0, -2

a+L’?

where

2+ Ma+1I)

) €(0,1).

§

Indeed, note that the Lipschitzian property of Vf implies that Vf is %—ism [49] (see also
[33]), that is,

(V0= V05 =)= £ |96 - 7O

Observe that

(o + L)(Vfa (%) = Vo ()2~ 9)
= (@ + D[allx - yl* + (Vf (%) - V()2 - )]
= ol - 11 + & Vf(x) - V()2 — ) + aL]x — y]?
+ L{Vf (%) - VF(),2 - y)
> o |lx = yII* + 20(Vf (%) = VF(),x = 9) + | V/ () = V)|
= o~ 9) + V@) - VFO) [
- |V - VA

Hence, it follows that Vf, = af + Vf is ﬁ—ism. Thus, AVf, is ﬁ

Proposition 2.2(ii). By Proposition 2.2(iii) the complement I — AV, is

-ism according to
Ma+L)
=5~ -averaged.
Therefore, noting that Pc is 1 -averaged and utilizing Proposition 2.3(iv), we know that,

for each A € (0, ﬁ), Pc(I - AVfy) is E-averaged with

1 )L(a+L)_1_)L(oz+L) 2+ Ma+1L)

=— € (0,1).
5= 2 2 ©0,1)
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This shows that Pc(I — AVf,) is nonexpansive. Furthermore, for A € (0, %), utilizing the

2

fact that lim,,_, o aﬂ% = 7, we may assume that

2
O<Ac< , Vm>1.
o, +L

Consequently, it follows that, for each integer n > 0, Pc(I — AVf,,) is &,-averaged with

1 Ma,+L) 1 AMa,+L) 2+A(a,+1)
£,=— + . = €(0,1).
2 2 2 2 4

This immediately implies that Pc(I — AVf,, ) is nonexpansive for all # > 1. Put
AL = T = ey AT = ri 1 pAga) -+ T = 1Ay
forall k €{1,2,...,M}and n > 1,
AL = JRinin I = 2in B Ry iy (L = Mict,nBic1) - - - TRy (L = A1, B1)

forallie {1,2,...,N}, A% =T and A = I, where I is the identity mapping on H. Then we
have u, = AMx, and v, = ANu,,.

We divide the rest of the proof into several steps.

Step 1. We prove that {x,} is bounded.

Indeed, taking into account the assumption & # ¢ in Problem II, we know that £2 # .

Take p € §2 arbitrarily. Then from (2.1) and Proposition 2.4(ii) we have

= pll = | T = ryg,Bag) AN, =TI~ rpg,uBag) AY |

< | = raguBat) AY o0 — (I = raguBat) AL p |

< |4y % - 45 p|

< | A%, — App||

= llxn = pll. (32)
Similarly, we have

lvi.—pll = ”]RN,ANM (I = v pAn) AN, — TR = )\N,nAN)AIrY_lp”
< |0 = AnAN) AY Ty — (I = AnnAN) AY |

S

< [ A%~ A5p|

= llun—pll. (33)
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Combining (3.2) and (3.3), we have

Ve = pll < %0 = pIl. (3.4)

Utilizing Lemma 2.7, from (3.1), and (3.4) we obtain

lly. - pl
= |6,y (Sxn = Sp) + (I = OuuF)Pc = AN fo, Wi — (I = OyuF)Pc(I = AV f, )p

+ (I = 6, uF)PcI = AVfo, )p — (I = 6,uF)Pc(I = ANf)p + 6,(y S — uF)p|
< 0¥ 11S%, = Spll + || (I = 64t )P = AN o, )V = (I = 6, uF)Pc(I = 2o, )p |
+ |t = 6 F)Pc(I = AV o, )p = (I = uuF)Pc(I = AVf)p| + 64| (vS — uF)p||
<6,y lxn = pll + A = 6,7) | Pcl = AV S, )vu — Pcl = AV fo, )p||
+ (1= 6,7) | Pc( = AV fo,)p = P = AVf)p| + 6, (vS — uF)p||
<0y %0 = pll + (1= 0,7) v = pll + (1= 6,7) | (I = AV [, )p — L= 2V )p||
+ 6, (yS - uF)p|
= 0,y 1xn — pll + (1= 6,0) v, = pll + (1 = 6,7) et llpll + 6, | (vS — uF)p||
<O,y 1% = pll + (A= 0,0) 1%, = pll + Aetullpll + 6, | (vS — nF)p||
= (1= 64t = ) llxu = pll + 64| (¥S = uF)p| + revullpl

I(yS - uF)pll .
T-y

= (1—9n(T—V)9n)||xn—p|| +0,(T —y) raylpll

I(vS — nE)pll }
-y

gmax{nxn—pll, +Aalpll,

and hence

%1 = pll
= | Buy (Vi = V) + (I = But FYW, P (I = 2V f, )Y
= (I = BakFYW,Pc(I = AV fo, )p + (I = Byt FYW, Pc(I = AN S, )p
— (I = ButF)W,Pc(I = ANf)p + By V — uF)p |
< Buy | Vau - Vp
+ | = Burt FYWoPc I = AN o, )y = (I = But FY WPl = AVf, )p |
+ |t = BunF)W, Pl = ANfo, )0 — (I = Bt F) W, Pc(I = AVS)p||
+ B (yV = uF)p|
< By lllxn = pll + (1= Bu7) | Pc = AV, )y = Pl = AVf, ) |
+ (1= BuT) | Pl = 2V fa,)p = PeI = AV )p|| + Ba (v V = uF)p||
< BuyUxy = pll + (1= B, 0)llyn = pll + (1= B,0) [ (I = 2V S, )p — (I = AV[)p |

+Bul| (¥ V = uF)p||
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= By llxn —pll + A = BuT)llyu = pll + A = But)ratullpll + Bu | (¥ V - wF)p|

Iy'S - uF)pl
sﬁnylnxn—pn+<1—ﬂnr)[max{||xn—p||,yfyp + ety |l
+ 2ul|pll + Bal| (v V = uF)p|
IS = uF)pl
< (1~ Bulz ~ D) max{ o — I T” + 220 pll + B (v V = uF)p|
Iy'S = uF)pl
= (1= Bulz ~vD) max{ I~ pl, ny”
IV - uE)pll
4 Balr ) PR
_Vl
IS = wF)pll IV = uF)pll
smax{nxn—pu, Y P2 P+ 20a,pl.
-y T -yl
Let us show that, for all n > 1,
IS = uF)pll IV = uF)pl|
||xn+1—19||§max{||x1—l9||, 4 - P Vf_yl” 2Zmlnpn (35)

Indeed, for n = 1, it is clear that (3.5) holds. Assume that (3.5) holds for some n > 1. Ob-

serve that
”xn+2 —P”
I(yS—uF)pll I(yV —uF)pl
§max{||x,,+1— iy 2L haalipl
-y Tyl
II(VS uF)pll Iy V —uFpl
< max { max ||x - ,
Ty Tyl
n
||()/S wE)pl Iy V — uF)pl|
+2) Aaillpll, E— + 200,41 |pll

i=1

I(yS = uE)pll Ity V - nF)pll -
P P + 2ZAaillpII + 200,41 (|pll

SmaX{HxI—PH, ’
T-y -yl P

n+l

I(yS = uE)pll Iy V = uE)pl
iy PRV 23 halipll.
T—y T -yl

= maX{ llx —plls

By induction, (3.5) holds for all # > 1. Taking into account Y .-, a, < 00, we know that {x,,}
is bounded and so are the sequences {u,}, {v,}, {y4}-

Step 2. We prove that lim,,_, o, w =0.

Indeed, for simplicity, put v, = Pc(v,, — AVf,,(v4)) and ¥, = Pc(y, — AVfy,(yx)). Then
Y = 0uy Sxy+ (I —0,uF)v, and x,41 = Buy Va, + (I — Bt F) W, 3, for every n > 1. We observe
that

19 = Vet | < ||Pcl = AV fy, ) = Pc = AV fo, v |

+ | Pcl = AV £y, )1 = Pe = AV oy, )V |
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< vu—vuall + ”PC(I - AVfo Vu1 = Pc(l - )vaan_l)vn—l ”
< 1vn = Vil + [ = AV fa et = I = AV o )Vt |
= Ve = Vil + ”)LVJ%H (Vi-1) — }\Vﬁxn_l (Vn—l)”

=1V = Viall + Aay — @y [[|Viall- (3.6)
Similarly, we get
”5/}1 _5’;1—1” =< ”yn _yn—IH + )\|an - an—1| ”yn—l ” (37)

Also, it is easy to see from (3.1) that

Yn = GnVan + (I - GnﬂF)f/nr
Yn-1= Gn—l )/an—l + (I - Gn—lﬂp)‘?n—l

and

X+l = ,Bny Vxn + (1 - ,Bnll,F) an/ru
Xp = ﬁn—lyvxn—l + ([ - ﬁn—l/‘LF) Wn—lj}n—b

Hence we obtain

Yn —Yn-1= 9n()’5xn - stn—l) + (9,, - en—l)(}/sxn—l - PLFf/n—l)
+ (I = Oy uF)Vyy — (I = Oy uF) vy

and
Xp+l — Xy = ,Bn(y Vx, —y V1) + (ﬂn - ,Bn—l)(y Va1 — /f’vFWn—lj}n—l)
+(- ,Bn/«LF)WVJ’n -(I- ,Brt/'LF)Wn—ljln—l-
Utilizing Lemma 2.7, we deduce from (3.6) and (3.7) that
”yn _yn—ln < 9n||3/5xn - nyn—IH + |9n - 9n—1| ||nyn—1 - PLFf/n—l”
+ ” (I = OpuF)vy — (I = 6, F)Vyq ”
= 9}1)’ ||xn _xn—l” + |9n - 9n—1|”y$~xn—l - /fLFf/n—l”
+ (1= 0,0)Vy — V|

= 0}1)’ ||xn _xn—l” + |9n - 9n—1|”y$xn—l - /fLFf/n—l”

+(1- 9,ﬂ')(||V,, = Vpall + Aoy, — an—1|||vn—1”) (3.8)
and

%01 = %nll < Bully Van =y Vil + 1Bn = Bually Va1 = WEWo1§p |

+ | = Bat FYW,i5 = (I = Bt F) W15 |
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< Buylxn = xu-1ll + 1By = Buallly Va1 — pEWy 1Yl
+ (L= By WIn = Waaduall

< BuyUlxn = xuall +1Bn = Buallly Vaua = nEWyayna |l
+ (L= BuT) (IWoiFn = Won-al + | Widuor = Woa¥ua )

< BuyUxn = xuall + 180 = Buallly Va1 = pEWy 1Yl
+ (L= Ba?) (170 = Tt | + 1WoFuo1 = WiucaFna )

< BuyUxn = xu-all + 1By = Buallly Va1 = pEWy 19 |l
+ (1= Bu®) (17 = Y | + Metn = ctuca | |y |

+ || an’n—l - Wn—lj’n—l”): (39)

where 7 =1 - /1 - u(2n — ux?).
Utilizing (2.1) and (2.4), we obtain

Vi1 = vall = H A]r>[+1u’1+1 - Aﬁlu” ||

H/'RN,AN,M (I = Ayt BN) AN 100 — TR = ANBN) AN M, ||

< Vrwagmer € = A1 BN) AN st = TRy g s (= AnnBN) ANt |
o = 2B AN i1 = T (0 = DonBa) AN 10|
< U = A BN) AN ttnn = (I = Ay uBr) ANt |
[ (= 2on BN AR tir = (T = honuBN) A it
+ ANt = Al
><(X;%;HhNJMmAI—ANmBN)AZjum4—(I—ANMBNyAf4uA
+X%;HU—ANMBN)Aﬁiuml—LWAMAI—ANMBN>A54MAO
< st = Al (| BN AY St | + M) + | AN th1 = AN |
< Anner = Al (| By AN s | + )
# vcanis = vl (B AP | + 31) + | ANt~ AY 0
< Anner = Al (| By AN s | + )

+ nc1st = ANl (|| Bro1 AN i || + AN/I) +oee

+ At = Al (| BLAY gttt | + M) + | ALttt = Al |

IA

N
Moy~ Ihimr = hil + b1 = sl (3.10)
i=1
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where

sup{ o ||]RN s L — AN BN AN — (I = AnuBN) ANy, ||

n>1
ti H (I = A BN) AN s = T I = AninBa) AN H}
< 174,

for some M > 0 and supnzl{Zﬁ\:[1 1B AL L || + ZT/I} < M, for some M > 0.
Utilizing Proposition 2.4(ii), (v) we deduce that

12ty 1 — |
4 |

= | TEMONT = ragur An) Ay i = Too (L = raguAng) AN |

IA

| TS = g1 Ang) AN w1 = TN = raguAng) A 2 |

+ | TEM T = rag A A 2r = T = rag uAp) A |

< || MU = raga Aa) AN %1 = T = g1 Aa) AN % |
+ | T = rag 1 An) AN s = Too (L = raguAng) AN % |
+ | = ragnAn) AN Enar = (= ragnAan) AY x|

(Oarem)

|rM,n+1 - rM,n| M-1 M-1
< — ” Al (- rM,n+1AM)An+1 Kpn — (I — rM,n+1AM)An+1 KXn+l ”

TM,n+1
+ |rM n+l — rMn| ”AMA,H.l Xn+l H + || An+1 Xn+l — Ai,wilxn ||
= |rM,n+1 - rM,nl |:||AMA],\,/£.11xn+l ||

1

O M-1 M-1
Si— [ Tr(M]:'fM)([— Pt An) Ay Xt — U = Tagn1Ap) AT X1 H:|
‘M,n+1 ’

+ | AN i — AN |

< |rM,n+1 - rM,n| |:||AMA2/£.11xn+1 ||

1 - _ _
+ — H T,(jjy;j”M)(I— It Aan) AM %0 — (= ragnnAa) AY T 0 ||:| +
R

+ |[PLus1 = 1l [||A1 A2+1xn+1 ”

H T 01 (ﬂl (I -n n+1A1)An+1xn+l - (1 -n n+1A1)An+1xn+1 ||:|

+ || A2+1xn+1 — A,

M

= MlZVk,rHl = Tnl + %041 = %l (3.11)

k=1
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where M; > 0 is a constant such that, for each n > 1,

M
1 5 _ _
Z|:||AkAﬁjxn+l H L ” T,gkofffk)(l - rk,n+1Ak)Al;+}xn+l -(- rk,n+1Ak)Al;,+ixn+1 ||:|
kel Tk,n+1 ’
< Ml.
In the meantime, from (2.2), since W, T};, and U,,; are all nonexpansive, we have
” Wn+15’n - an/n” = ”)Ll Tlun+1,25’n -M Tlun,25/n||
=< }\lllun+1,25’n - un,25/n”

= Ml Tolly39n — Ao To U354l

= )\l)t2||un+1,35/n - Un,35’n||

= )\I)LZ o ')Ln”unﬂ,nﬂj}n - un,n+15/n”

< My[ Jro (3.12)
i=1

where M, is a constant such that U1 1Yl + 1 Upp1dnll < M, for each n > 1. So, from
(3.8)-(3.12), and {A,} C (0,b] C (0,1) it follows that

19 = Y1l
=< Gn)’ ”xn — Xn-1 ” + |9n - 9n—1|”7/5xn—1 - /VLFf’n—IH
+ (1 - 9,,1')(”1/” — Vi ” + )\|an - an—1|||vn—1 ”)
=< enV ”xn — Xn-1 ” + |9n - 9n—1|”7/5xn—1 - /VLFf’n—IH
N
+(1- 9nr)(MoZ|x,-,n = Dl + Nt = ||+ Alcty —an_1|||vn_1||)
i=1
=< gn)/ ”xn _xn—ln + |9n - 9n—l|”7/sxn—l - /'LFf’n—IH

N M
+(1-6,7) (MoZm,n — Ko | + MY [rin = P

i=1 k=1
+ %y = X1l + Al —Ol,,_1|||V,,_1||>

< (=0t = ¥)) %0 = Xt | + 165 = Ooal 1y Sp1 = F V|

N M
+ MOZW,n — Ajpet] + MIZ|rk,n = Tgpn-1| + Alay — o1 |||Vl
i=1 k=1

= ”xn _xn—lll + |0n - 0n—1| ||J/an71 - /'LFi}}’Ifl”

M

N
+ MOZMLV; — Aip-1| + MlZVk,n = g1 + Ay — o1 ||Vl
i-1 k=1
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and hence

”xnﬂ _xn”
< ,Bnyl”xn _xn—IH + |ﬁn - ﬁn—1| ”)/Vxn—l - /'LFWn—ljjn—ln
+(1- ﬂn‘[)(“yn = Yn-1ll + Aoy — e [yl + | W1 — Wn—lj’n—l”)

=< ,Bnyl”xn _xn—IH + |ﬁn - ﬁn—1| ”)/Vxn—l - /’LFWn—ljjn—ln

N
+ (U= Bu) | 10 =t Il + 16 = Opa |1y St = E D all + Mo ) hign = higna
i=1
M n-1
+ MY [rion = Tkt | + Mty — @t Vi I+ Aot = et |1y | + Ma] [
k=1 i=1
= (1 — Bu(t - Vl)) e = 21l + 1B = Buca Y Vatuoy — WEW1 Y1l
N M
+ 10y = Ol lly Sxno1 — uFvy1 || +MOZ|)»i,n = Ain-1] +M12|rk,n ~ Tkl
i=1 k=1

1t = et A1Vt | + 1y |l) + Mab™ ™

= (1 — Bu(t - Vl)) [l = %1

+A~43<|an — 1]+ 1Bn = Buoal + 16, — 01

N M
1
Y i = Aipal + DIk = T | + B" )

i=1 k=1

where sup,,_; {1y Vitw = KEW, 3| + 1y S — WET || + 210l + 1yull) + Mo + My + My} < Ms

for some Ms > 0. Therefore

141 — %
On

< (l—ﬂy,(f— l)) ” Xn — Xn- 1”

VI

+A~43<|an—an_1| BBl | 105 =0

O, O, 0,

N M
|)\'L}’l L}’l 1| |rkn_rkn 1| bnl
+ E + E +
On

i=1 On k=1 On

_ ll%c — 21l 1 1
(== y0p) 2 1 -y (- o)

+]~\43 oty — o1 + 1Bn — Bu-1l + 16 — O]
O O O

N M
+Z|)\Ln_)\zn 1| +Z|rkn_rkn 1| n b"- !
0, 6,

i=1 On k=1
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”xn —Xn— ”
<(1-(z-yDB,) -
Gn—l
My [0 1| e—aual 1| Bua| 1| 6
e e P L e R I -
T- Vl /3;1 0}1 0}1—1 /3,,9,, '971 ,Bn ,Bn 9n
N
)\'L}’l - )\'L}’l n— - bykl
+ Zl 1| |’"k, Tkl + ) (3.13)
- " Buby  Pubn

where sup, ., {[[%441 — x5 + ]\7[3} < M, for some My > 0. From (H1), (H2), and (H4)-(H6) it

follows that > -, (t — y1)B, = oo and

N7 S (0 S O O Pt I S PO 71 B N
lim — = - — —|1- —|1-
=00 T — Vl ,Bn 9n Qn—l ,3;'19;’1 9 ,Bn ,Bn Qn

Z L}’I 1| M |rk,n - Vk,n—ll bn71
+ 7 + (" 0.
il ,Bn el BinOn BuOn

Thus, applying Lemma 2.8 to (3.13), we immediately conclude that

lim o1 — %l -o.
6

n—0oQ n

So, from (H3) it follows that
lim ||xn+1 - xn” =0
n— 00

Step 3. We prove that lim,,_, oo %, — #,]| = 0, lim,,_, o0 |, — V|| = 0 and lim,,_, & ||y, —
17,,”/9,, =0.
Indeed, for p € 2 we have

19 = pll = |Pc = AVfa, )i = P = AV f)p||
< |Pct = AV fo, )vu = Pl = 2 fo, )p || + | P = 2V £, )p = P = 2V f)p |
<lvu=pll + |PcI = 2Vf,)p = P = 2V f)p|
< [lva = pll + Aeullpll. (3.14)

Similarly, we get
17n =PIl < lyn = pll + Aetulpll. (3.15)
Note that

Yn =P =0y Sxy — OptFp + ([ = Oyt F)vy — (I = 0,0 F)p
=0u(y Sx, — MFP) + (1 =0,y —P) + 9,,[(1 - uF)v, - - MF)P]
= 9n(7/5xn + (I - /*LF)f/n —P) + (1 - en)(f/n —P)

Hence we have

Yn— 17;1 = Qn()’an + (1_ /LF)i}n - ipn)
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Utilizing Lemma 2.9(b), from (3.14) we have

lyn - pI?
= [64(¥ S + (I = wE)Vy - p) + (1= 6,) 3 - P)|*
= 0]y Sxtn + (L = LE) - p||* + (L= 6,117 — pII?

= 01— 0,) |y Sy + (I = F)io = |

- 2 - 0, -
= O0u|ySxn + U = uE)ou —p|” + A= 07, - pII* - 7 “lyn = Vull®
n
1-6 -
0, z ”yn - Vn||2

= Gn”ysxn + (I_MF)ljn —P”2 + ”]7;1 —P||2 -

2 I_Qn
On

< 0]y S + (I = uEYo = p||* + (v = pll + v llpl) 9 = ¥l

= v =PI + 2@, lIpll (201 = pll + Aullpll) + 64| v S + (I = wE)7, - p||°

1- 8}1 ~
oy =7 I1%. (3.16)

Furthermore, utilizing Lemmas 2.1 and 2.7 we obtain from (3.4), (3.15), and (3.16)

1 — P11
= | By Vatu = ButsEp + (I = ButtF) Wi — (I = BuitE)Wop |
< (1B Vatu = BuitEp |l + | = Bunt FYWoi3w — (I = Buit F)Wop )
< (Bully Vatw — uEpll + (1= By0)17 — p11)°

<5t Vi, — wFp|* + (1 - ¥a —plI?
_ﬁn_[”y %n — wEp|l” + (1= B, 7)1y, — Pl

1 3
=B [Ily Van — v VpII* +2(y Vi — uFp, ¥ Vi — kEp) | + A = Bu)lI3n - pII°

Y22 ) 2
< ,BMT l%n = plI” + ﬂn;llpr —ukplllly Vx, — ukpl|
2
+ (1= BaT)(Ilyn — pll + A llpll)
y2? 2 2
= ﬂnT”xn -pll”+ ﬂn;lly‘/p - ukpllly Vx, — uEpl|

+ (L= Bu0)[llyn = PI* + 2aallpll (21150 = Pl + Aetalpll) ]
272

y4l 2
=< ﬁnT”xn -pl* + ﬁn;IIVVP—MFPIIIIVVxn - uhpl|

+(1 —ﬂnf)[llvn = pIP? + 2 llpl 211V - pll + Aealipll)

1-6, B

+ 6,y Sx + (I = uF)v, - p|” - =y =

+ e l|pll (215 = pll +)‘an”l9||):|' (3.17)
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On the other hand, observe that

| A% = p||* = | T = 1) AF s = T = riudi)p |
< [ = rindi) AK = (U = rinAi)p |
< [ A8y = p* + rinrin - 2000 | Ax AK e, — Agp|)?

< 116 =PI + Pron(rin — 2000 || Ax AK e, — Arp|)? (3.18)
and
| Akt = p||* = risisn I = A B ALt = T (I = 2iBo)P |
n N n Min

< ||t = 2iuB) AT wy — (I = 2 Bo)p |

< | AT = + AinCi — 200) | Bi ATy~ Bip|*

< Nty = pI® + hihin — 200 || BAZ 1t — Bip |

i 2
< 1% = pI* + Xin(hi — 20)) | Bi AL i — Bip | (3.19)
Combining (3.17)-(3.19), we get
%61 — P12
y2? 5 2
= Bu—llxu =pII* + Bu—lly Vo - uEplllly Vi, — pefp|
+(1 —ﬂnr)[nvn —pI* + e lpll (21vs - pll + 2t lIpll)
- 2 1-6 -
+ 0, ¥ Sxn + I = uF)v - p||” - 7 1y = Pall?
+ 2 l|pll (21y — Pl + Aannpn)}
y2? ) 2
= Bu—lxu = pI” + Bu—lly Vo - uplllly Vity - ukp|
i 2
+(1- ﬂnr)[HA,,un —p|” + 2 llpll(21vs = pll + Aetullpll)
- 2 1-6 -
+ 0, ||y Sxn + I = uF)v, —p||” - 7 1y = Pall?
+ Aetullpll (21 - pll + mnnpn)}
y2? ) 2
= Bu—lxu = pI” + Bu—lly Vo - uplllly Visy - ukp|
2 i-1 2
+ (1 - 131'17:)|:||un —P” + )"i,n()"i,n - 2771)||BLAn Uy _sz”
~ 2 1 - 9;1 ~ 2
+ 2t ||pll (20 = Pl + Aalipll) + 6, ]| ¥ Sxn + I = wF)o - p||” - o 1 =l

+ 2Pl (2190 = pll + Aot IIPII)}
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272
y°l 2
< ,BnT”xn -pl* + 5n;||)’VP—MFP||||VVxn - ukpll

+(1- ﬁnf)[ll A — || + Ao — 200) | BiAT 1, - Bip ||

1-6 -
0, < lyn — Vn”2

+ 20, Ipll 211V, = pll + At lpll) + 6, ||y Sz + (I = ), — p|* -

+ 2aullpll (215, — pIl + Kanllpll)}

ala ) 2
< ,BMT”xn -pl”+ ﬂn;HVVP—MFPHHVVxn - ukpll

_ 2
+(1- ﬁnr)[nxn — I + i (rin — 200) | Ac AN, — Agp |

+ hinChin — 200 || BiAT 14, — Bip || + Aaullpll (21vis - pll + A llpll)

1-6,
On

+ 0,y S5, + (I = uE), - p||* - 1y = Pl

+ 2Pl (219 = pll + Aot IIPII)}

IA

y2? 9 2
(1 - ﬁn(f - T)) %, — pII” + ﬂn;IIVVP — ukplllly Vx, — nEpll

+ (1= But) |:rk,n(rk,n = 2p4) ”AkAl;,_lxn —AkP”Z

1-6, o
Gn ”yn_Vn”i|

+ ipOui — 205)| BiA 1 — Bip| -

+6, ||y Sx, + (I = uF)v, - p|*

+ 2Pl (21va = pll + eallpll) + 2Pl (219 = Pl + Aetallpll)

2
< llxn = pl* + Pn—lly Vo = ubplilly Vieu - pbp|

+(1-Bu7) [rk,n(rk,n — 2| Ax AK Y, - Arp)?

j 1- 9,, ~
+ )"i,n()‘-i,n - 2771‘)HBI‘A:1MM —BiP“2 - 0 ”yn - Vn||2:|
+6, Hny,, +( — uF)v, —p”2
+ A |lp) (211ve = Pl + A lipll) + Aol (21170 — 2l + MlnHPH), (3.20)
which hence implies that
(1= But) I:Vk,n(zﬂk — 1) || Ax Ay —AkaZ
j 1- 9}1 ~
+ Ain(2m — )»i,n)HBiAL_lun - Bipnz + lyn — Vn||2]

2
< 1% = pII* = I = pII* + Bu— lly Vi = nhplllly Van — pp|

+ 6,y Sxy + (L= uF)v, — p|* + Aaullpll (21, — pll + Aevallp])
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+ 2Pl (209 — Pl + Aelipll)
2
< Ntn = 2 ll (160 = pIl + 121 = pII) + Bu—lly Vo = uEplly Vi, - upl
~ 2
+ 0|y Sty + (I = uE)0, = p||” + Aetullpll (201v = pIl + Al

+ 2 [Pl (2llyn =PIl + e lpll)-

Since o, — 0, B, > 0, 0, = 0, |41 — x|l = 0, and {x,}, {y.}, {vs}, {V} are bounded se-
quences, it follows from A € (0, %), {Xin} Clai, b;] € (0,2n;), and {rg,,} C lex. fi] C (0,20k)
that

lim = |y, ~ 70 =0 and

sy (3.21)
lim [AxAX %, — Agp| = lim |B; A% w, - Bip| =0,

n—00 n—00

forall k € {1,2,...,M}and i€ {1,2,...,N}. It is clear that

n—00 0, n—oo ] — Qn 6,

n— ~n . 1 1- en ~
fim 1=Vl ) < s — vn||> —0. (3.22)
By Proposition 2.4(ii) and Lemma 2.9(a) we have

| %~ ol

e _ 2
= | T = rinAi) A 60 = T2 = riudip |

0

=< <(1 - rk,nAk)Aﬁilxn -(- rk,nAk)p; Aﬁxn _p>

1
= (10 = rend A3 2, = (= rendidp|)” + [ A = p |

— [ = repAR) A, = (I = riAR)p - (A% - p) )

< S (185 % —p|" + [ Al —p | = | A% 20 = A, = ria(Ardl w0 = Aup) ),

N =

which implies that

| A%x, -’
< [ Ak s = p|* = | A5 %0 — Afx = rin (A A 50 - Awp) |
= [ A% Y p|* = | A5 %0 = A ]|* = Ak 0 — Awp |
+ 27 (AR, — Ak, Ak AN %, — Arp)
< a5 o= pl” - | A% - Ak
+ 20| A7 0 = A | | Ay~ Aup |
< 2 = plI? = | A e, — Ak, |

+ 21y || A’;_lxn - Aﬁxn || “AkAﬁ"lxn - Akp”. (3.23)
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By Lemma 2.9(a) and Lemma 2.11, we obtain

| Aun = p|*
= |Ririn T = XinB) ALy thn = Ty, (0 — )»i,nBi)PHZ

< (U = 2iuB) ATy — (I = 2iuBi)p, Al — p)
1 . ,
= S ([0 = 2B AT w, — (1 - rinBp | + | Al - p|?

- H - )Li,nBi)Aiqilun ~ (= AinBi)p - (quun _p) ”2)

1 . ) ) , .

=5 (47w, —p|* + | Al = |~ | At~ Al = i (Bi AT s~ Bip) |
1 . . , .

= 5 (lun =pII* + [ AL, ~p|* = | Ay — Aty — i (B A 1~ Bip) )
1 X . i i

<5 (I —pI? + || Ay = p||* = | AT sy = Aty = i (B AT i — Bip) ),

which implies

| ALun - p|
<N =l = | Ay — Aty — 2 (BiA 1, - Bip) |
= 120 =PI = | ALy = Aty ||* = 22, BiAS - Bip||?

+ 20 ALty — Ay, Bi AL uy — Bip)

<o =PI = | Aty = ALty |* 4 2000 | At = Aty ||| BiAT w — Bip. (3.24)

So, combining (3.17) and (3.24) we conclude that

(196241 —P||2
y212 ) 2
< ,BnT”xn -pll” + ﬂn;”)’VP—MFPHHVVxn - wpll

+(1 —,an)[llvn = pIPP + 2 llpl (211 = pll + Aealipll)

~ 2 1_9}1 ~
+0n”ysxn+(]_l'LF)Vn_p” "o ”yn_Vn”Z
+ 2t |pIl (2119 — pIl + )»Oln||l9||):|
yiE2 2
< ,BnT %, — plI* + ﬂn;”)’VP — ukpllly Va, — nipl|

+ (1= B, 0)[ | ALt — p||* + Aenllpll (211v, — pll + Ayl
40,y Sx + (I = uE)o, = p|* + 2eaulpll (2190 — Il + 2aullpl) ]
272

yel 2
=< ,BnT”xn -pl*+ ﬂn;”)’VP—MFPHHVVxn — ukpl||

+ (L= Bt)[ %0 = pI? = | A = Al

Page 29 of 47


http://www.journalofinequalitiesandapplications.com/content/2014/1/414

Ceng et al. Journal of Inequalities and Applications 2014, 2014:414 Page 30 of 47
http://www.journalofinequalitiesandapplications.com/content/2014/1/414

+ 2 | Aty = ALt | BiA s = Bip | + 2etullpll 211V = Il + Aetapll)

+ 6,y Sxy + (L= uF)v — p|* + 2ullpll (21150 — 21l + Aevllpl)]

IA

Y2 ) 2
1-8,(7- - I, — plI~ + ﬁn;llpr— whplllly Vx, — whpl|
- (1 - ﬂnt) ||Ail_lun - Alnun “2
+ 200 || AT — ALy ||| BiAL i — Bip | + e llpll(211vs = pl + At llpll)

40,y S + (I = wE)D, - p||* + At Pl (2119 - pll + APl

IA

e, = pII + ﬂn%npr — WEp||lly Vi - uEp|
~ (=B A} = A
+ 2k A 1ty = A || BiAL = Bip | + e llpll (20vi - pll + 2etulpl)
0,y S + (U= wF) — p||” + Aeallpll 211y — 21l + Acalpl)
which yields
A= oo | Ay~ A
<l = pI* = 1 = pII* + ﬁn§||y\/p—qun||Wxn — uFp||
+ 20| Aty = At || B Ay = Bip || + 2 llpll (211v — pll + A llpll)
40,y S + (U= wFYou — p|* + Acullpll (2llyn - pll + 2tulp])
< 1ot = Xt | (196 = Il + (1201 = pI) + m%npr — uEpl|lly Vau - nEpl|
+ 2 | ALy = AL | BiA s = Bip | + 2atullpll (211v = Il + Aetalpll)
6|y + (U= wF) — p||* + Acallpll 211y — 21l + Acalp)-

Since o, > 0, B, = 0, 6, = 0, ||xy41 — %]l = 0, and {x,}, {y,}, {vu}, {V} are bounded
sequences, it follows from (3.21), A € (0, %), and {A;,} C [a;,b;] C (0,2n;) that

lim | AL ', — Alu,| =0, Vie{l,2,...,N} (3.25)

n—00
In the meantime, combining (3.17) and (3.23) we conclude that
||xn+1 —P||2
22 2
4 2
< ﬂnT %, = pllI” + ﬁn; ly Vo — ukplllly Vx, — wpll
+(1- ﬂnf)[llvn = pI* + e lpll (21va — pll + 2t llpll)

1-6, I
9;1 ||yn - Vn”

+ 6,y S6n + (L= ), - p|” -

+ 2Pl (2190 = pll + Aot IIPII)}
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272
y°l 2
< ,BnT”xn -pl* + 5n;||)’VP—MFP||||VVxn - ukpll

+ (1= Bu?)[ Nt — pI* + APl (211V2 = Pl + Aetalipl)
+ 0,y Sxy + (L= uE)v, = p|* + 2aullpll (20150 — Pl + Aevllpl) ]
272

yl 2
< ,BnT”xn -pl*+ ﬂn;IIVVp—MFPIIIIVVxn - ukp||

+ (1= B[] Ak, = p| + Aallpll (21v, - pll + Aaullp]l)

+ 0, ||y Sxn + (L= uF)v = p|* + 2aullpll (21150 — 21l + Aevllpl) ]

272
el 2
< ,BnT”xn -pl*+ ﬂn;IIVVp—MFPIIIIVVxn - ukp||

+ (1= Bu0)[In = pII? = | A%, — Ak, ||
+ 2710 | AR, — AR || A A %, — Arp | + e lipll(211vs = pIl + APl

+ 6,y Sxy + (L= uF)v — | + Aaullpll (21150 — pIl + Aevllpl) ]

IA

y2? ) 2
(1 —BulT- — I, — plI~ + ﬁn;IIpr— wEp|lly Vx, — nEpl|
-1 -Bu7) || Aﬁ’lx,, - Aﬁxn ”2
+ 27k | AN — AR ||| Ak AN %, — Arp | + e llpll(211vs = pIl + Al

+ 6, ||y Sz + (L= uE)v, — p|* + A, llpll (29 — pIl + Aevullpl)

IA

2
% — plI* + Bu—lly Vo = uEpllly Vien - upl
—(1-By7) || Aﬁ’lx,, - Aﬁxn H2
+ 27k | AN — AR ||| Ak A %, — Arp | + e llpll(211vs = Pl + Al

40,y Sxu + (I = uE)v, = p|* + 2etulpll (20190 — pll + Aatallpl),
which leads to

(1= Buo)| A%, - A, |
<l = pI* = 1 — pII* + ﬁn§||y\/p—qu||||nyn — uFp||
+ 27k | AN 20 — A | || Ak AN %0 = Arp | + Aeullpll (211ve - pll + Aeallpl])
40|y Sty + (L= Yo = p||* + Actullpll (219 = 21l + 2talpl)
< 1ot = Xt | (196 = Il + (1201 = pI) + ﬂénpr — uEpl|lly Vau - nEpl|
+ 271 | AN 20 — A | Ak AN 20 = Arp | + Aeullpll (211ve - pll + Aeallpl])

+ 6, ||y Sz + (L= uE)v, — p||* + 2aullpll (2015 — pll + Acullpl).
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Since o, - 0, B, > 0, 6, — 0, ||x1 — x4l — 0, and {x,,}, {y.}, {v.}, {¥} are bounded
sequences, it follows from (3.21), A € (0, %), and {rx,} C [ex,fx] C (0,2uy) that

lim | A% %, - Afx,| =0, Vke{L,2,...,M}. (3.26)

n—00

Hence from (3.25) and (3.26) we get

%0 = sl = || A — AN, |
< | A%, — Al | + | ALy — A2, + -+ | ANk, — AV |

—0 asn— o0 (3.27)
and

”un - Vn” = ||A2u,, - A;\[un ||
< || Adun = A | + | Abstn = At | + -+ + | AN s — AN 1|

— 0 asn— oo, (3.28)
respectively. Thus, from (3.27) and (3.28) we obtain

1% = Vil < N0 — |l + ety = Vil

— 0 asun— oo. (3.29)

Step 4. We prove that lim,,_, o ||V, = V4| = 0, limy, o0 |1 = Y|l = 0, limy,— 6 |0 — Yl = O,
and limy,— oo [lyn = Wyl = 0.

Indeed, utilizing Lemma 2.1 and Proposition 2.4, for p € £2 we have from (3.4), (3.16),
and (3.17) forp € 2

”xn+1 —P||2
1
< ﬁn;[llnyn —y Vol +2(y Vp — uFp, y Vi — uEp) |

+ (1 - ,Bn":)”j/n —P||2

yi2 2
< Bt = pII* + B~y Vo — uEpllly Vi — nEpl
+ (1= Bu1)|| Pl = 2V fo)yn — Pl = 2V f)p

yiE2 ) 2
< ,BMT”xn -pl+ ﬂn;HVVP—MFPHHVVxn — ukpl||

+ (1= B,0) | (I = AV )y = (I = AV )p = Ay,

y2? ) 2
< ﬁnT lx, —plI” + ﬂn; ly Vo — nEplllly Vx, — wkpll
+ (L= B[ | = AVf )y — (T - Wf)p”2 = 200tu(y, (I = AV )yu — (I = AVf)p)]
272

y°l 2
< ,BnT”xn -pl* + ﬂn;”)’VP—MFPHHVVxn - ukpl|
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2

+(1 —ﬁnr)[nyn -pl*+ A(A - %) [Vf ) - V)|

+ 220t |yl | (T = AV )y — (T - Wf)pﬂ]

yzlz

2
= B ll%n -plP+ Bu lly Vo = nkplllly Van — p|

~ 2 ~ 1_6;1 ~
+1 —ﬂnr)[en S+ A= wEYou = p " + 1 = pI* = == llyw = ¥ull®

+ X(A - %) IVf ) = VE@)| + 2xaullyall | (= 2V f )y, — (T - Wf)p||}

)’212

2
= Bu—— Il = pII* + B =lly Vo - wEpllly Va, — nEp

T

+(1- ,3,,r)|:9,, ”ny,, + (I - uF)v, —p”2 + v, —pl?
+ A(x - %) [Vf @) = VI @ + 2hanllval [ 25w = (1 =29 )p|

+ x(x - %) [9f ) = V@) + 23eullyall [ (1 = AV )y — (U - Wf)pﬂ

)/212

2
= B ll%n =l + Bu=lly Vo - wEplllly View — wEp|

IA

IA

T

+(1 —ﬁnr)[en | S+ I = uE)o, - p||* + 1% - pII?

+ A (x - %) IVf ) = V@) + 22 lvall | T = 2V f)v, = (L = 2V1)p |

+ A(A - %) [¥70m) = Vf @ + 250nlyall |7 = 29f )0 = (1 - Wf)p||}
y2? ) 2

(1 - ﬂn(f - T)) lx, —pII” + ﬁn;IIpr— wEplllly Vx, — ukp||

1= o (3= 3 )90 - S5+ 197000 - 950

+ 220, (|1vall || = AV vy = L= AV )| + lyull [ = AV )yu — U =2V )p])

+ 0, ||nyn + (I = wF)v, —p“2
2
In =PI + B lly Vi = Eplly Va, — eFpl
+ (1= B0 (x - %)[H Vi) = V@) + [V 0) - VS @) ]

+ 200 (V| | (T = AV = T = 2VF)p]| + Nyull | = AV )y — L = 2Vf)p|)

+06, Hny,, + (I - uF)v, —p”z,
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which immediately implies that

(a- ﬁnf))\<% - A) [Ivren) =@ + 910 - V/@)]]

< 1% = pI* = %01 — pII” + ﬁn§||VVp—qun||VVxn — uFp||
+ 200 (IVall [ (1 = 2V = (L= ANV | + lyull| (T = AV )y — L = 2Vf)p])
40,y Su + (I~ uF)on - p||*

< Mot = Xt | (1960 = Il + (1201 = pI) + m%npr — uEp||ly Vi - nEp|
+ 200, (1vall [ (L = 2V = A= 2V )p | + lyull | (L = 2V1 )y = (L= 2V1)p|)
+6, ||y Sx, + (I = uF)v, —p|*.

Since o, - 0, B, = 0, 0, — 0, [|xps1 — x4 — 0, and {x,,}, {y.}, {v.}, {¥} are bounded
sequences, it follows from X € (0, %) that

Tim [Vf(v) = Vf(p)| =0 and  lim [ Vf () - Vf(p)| =0. (3.30)
Furthermore, from the firm nonexpansiveness of Pc we obtain

17, = pI> = | PcU = ANy, )vn — Pell = 2V f)p|

< (I = AVfy,)vu — (I = AVf)p, U — p)
= %{ | =25, vu = (L =2V + 117 - pII?

— [ = AV oV = U = 2¥f)p = (3 - )|}

< %{nvn = pI* + 21| Ve, 0a) = VIO | = AV o, v — (I = AV )p||
+ [V —P||2 — v = 1~/rz||2 + 2)L<Vn = V> Vo, (Vi) = Vf(l’))

— R Vo, ) = VF D)),

and so

19— pII”
< V=2l = [V = Pl
+ 24| Vo, V) = VIO | T = 2V for, v — (I = 2V 1 )p |
+ 20V = Ty Ve (V) = V() = 22| Voo, ) = V@)
<NV =pI* = Vi = Pl
+ 20| Vo, ) = VE@) || = AV [, v — I = 2V f)p |

+ 201V =Vl | Vo (V) = V() - (3.31)
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Similarly, we get

nll - pll?
<y = I = 1yn = 3ull® + 24| Voo, 0) = Vf @) | | (I = AV e, )y — T = AV )p||
+ 209 = 31 Vs 0) = VF (0)) = 32| Vo, () = VI (0)]*
< lyu = 2I* = yn = 3ull® + 24| Voo, 0) = VF@) | | = AV e, )y = (T = 2V )p ||
+ 20190 = Il | Voo ) = VA ) - (3.32)

Thus, we have from (3.4), (3.16), (3.17), (3.31), and (3.32)

2
||xn+l —P”

1 N
=B [Ily Van — v VII* + 2(y Vi = uFp, y Vi — kEp) ] + A = Bu0)lI3n - pII°

- VZ[Z ) 2 )
< ﬁnT”xn -pl*+ ﬂn;llyVP—MFpllllnyn - uBpll + (1= Bu0)[llyn - Pl

~Nyn = Il + 24| Vfer, ) = V@) | | (T = AV oo, )n = T = AVf)p||
+ 2M1Yn = Yull | Voo ) = V(D) ]

yzlz ) 2 - 2
SﬁnT”xn_P” +ﬂn;IIVVp—MFpIIIIVVxn—MFPII+(1—ﬁnr) V. —pll
~ 2 1_0;1 ~
+ 0,y S + (I = uE)o, - p|” 0 llyn =Vl
n

— Ny = Full® + 24| Voo, ) = VI | = AV S )y — U = 2V )p |
25 =Tl | Vo ) = VS ) u]

14 2 2 2
< ﬁnT”xn -pl°+ ﬂn;IIVVP—MFPIIIIVVxn - ukp|l +(1 —ﬂnf)[llvn 4l

11V = Pull® + 24| Ve, i) = V)| || = AV o, )V — = AV ])p |

+ 2A |V, = Vil ||Vfan (va) - Vf(p) ”
1-6,
Oy

= Nyn = Il + 24| Voo, ) = VF@) | | (T = AV o0, )9n = U = AV ] )p||

+6, ||y Sx, + (I = uE)v, —p|* - [

2 = 3l [ o ) = VS ) u]

- )/2[2 ) 2 )
_,BMT”xn 4l +l3n;||)’VP—MFP||||VVxn—MFPH+(1—,3nf) %, = pll

i =l + 22| Vo, (V) = V@) | | = AV o, Ve = T = AV )p ||
+ 201 = Dl [ Vo ) = VE@) | + 60|y S + (I = wE)7, = p|?
= Nyn = Il + 2| Voo, ) = V@) || | = AV o, )ym = T = AV )p||

+ 20 = 3l | Ve, )~ VS @)
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212
< (1 - ﬁn(r - %)) I — pII>

By Vo~ iEplly Vi — ol ~ (0 B,2) (1% = 3l + I~ )
+ 24| Vo, ) = VE@)|| (| T = AV, v = T = AV + 1vi = V)

+ 24| Vo, 0n) = VIO (| T = AV fa )y = T = AV )| + 1y = Full)
+6, ||y Sx, + (I = uE)v, - p|*

<%, - plI*

+ﬁn§npr—qu||||nyn — wEpll = @ = Bu) (Vi = Vl® + 190 = 7all?)
+ 24| Vo, ) = VIO (| T = AV, v = T = AV )| + Vi = V)

+ 20|V o, ) = VEO (| = AV )yn = (= AV )p|| + 1y = Full)

+9nHVan + (I_MF)an —-p 2

’

which hence leads to

(1- ,an)(”"n - 1771”2 + [lyn _5/;1”2)
2
<% = pII* = %pe1 =PI + ﬁn; ly Vo — ubplllly Vx, — ukpl|
+ 20| Voo, ) = VE@ [ (| = 2V oo i = U = 2VL)p|| + [V = Pll)
+ 20| Vfa, 0) = VIO | (| (I = AV o )y = U= AN )p | + 1170 = Tull)
40,y Sx + (U = uF)v, - p|
2
< 1% = Zner | (160 = Il + %001 = pII) + Bu—lly Vo = nEplllly Van — uEp|

+ 20| Voo V) = VE@) | (| = AV v = U = AV )| + v = Pull)
+ 20| Ve, ) = VIO | (| = AVfe)yn = T = AV )| + 110 = Full)

+0, Hny,, +( — uF)v, —p”z.

Since o, — 0, B, = 0,6, = 0, ||x,41 — x4 || = 0, and {x,}, {yu}, {¥n}, {vn}, {V} are bounded

sequences, it follows from (3.30) that
lim [|[v, —V,[|=0 and lim [y, —y.| =0.
n—00 n—00
Note that
I = yull < N6 = Vil + lVi = Vall + 1V = yull-
Hence from (3.22), (3.29), and (3.33) it follows that
lim ”xn _yn” =0.
n—0Q
Furthermore, it is easy to see from (3.1) that

Xp+l — an/n = ﬂn(V Vxn - //LFWVJIH)'

(3.33)

(3.34)
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Hence we get

[l — WVJ’VI” < n =X ll + 1 — an’n”

=< ”xn _xVH-l” + ﬁn”yvxn - I’LFWVIJ]}’I”’
So, it follows from ||x,, — x,.,1]| — 0 and 8,, — O that
lim ||x, — W, 3, = 0. (3.35)
n— 00
Also, note that

Wayn = Yull < IWnyn = Wadinll + | Wadn = %ull + %0 = ¥l

< yn = Iull + IWoIn = xnll + 120 = yall-
Thus, combining (3.33)-(3.35), we find that
lim || Wy = yull = 0.
n—0oQ

Taking into account that ||y, — Wy, || < 1y — Wuynll + | Wiy — Wy, ||, from Remark 2.2 and
the boundedness of {y,} we immediately get

Tim ||y, — Wy, | = . (3.36)

Step 5. We prove that w,,(x,) C £2.

Indeed, we first prove that w,(x,) C £2. In fact, since H is reflexive and {x,} is bounded,
there exists at least a weak convergence subsequence of {x,}. Hence, as is well known,
wy(x,) # 9. Now, take an arbitrary w € w,/(x,). Then there exists a subsequence {x,,} of
{#,} such that x,, — w. From (3.27), (3.29), and (3.34)-(3.26) we have u,, — w, v,, = w,
Vg = W, Ajiu,, — wand Aﬁixm — w, where m € {1,2,...,N} and k € {1,2,...,M}. Utiliz-
ing Lemma 2.3, we deduce from y,, = w and (3.36) that w € Fix(W) = (2, Fix(T,,) (due
to Lemma 2.5). Next, we prove that w € ﬂﬁi:l I(B,:, R,,). As a matter of fact, since B, is
nm-inverse strongly monotone, B, is a monotone and Lipschitz continuous mapping. It
follows from Lemma 2.14 that R, + B,, is maximal monotone. Let (v,g) € G(R,, + By,,), i.e.,
g — B,v € R,,v. Again, since Au, = Ji,, I - )Lm,,,Bm)A;”’lun, n>1mel{l,2,...,N},

JAmn

we have
ATy = DB ATy € (I ApyuRo) Ay,

that is,

(A7 — ALty = AonuBin A 1) € Ry Al 1ty
m,n

In terms of the monotonicity of R,,, we get

1
<v— AUy, g — By — ;

m,n

(A7 — Ay — xm,anA;”-lun)> >0
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and hence

(v—ATu,,g)

> <v — AV Uy, Byv + (Af’lu,, - AVu, - Am,,,BmAn”’lu,,)>

m,n

= <V — Ay, Byyv — By Ay, + By, Ay, —BW,AZI_IM,, + (A;”_luy, - A;"u,,)>

m,n

1
> (V - A%y, By Ay, —BmAZ”"lun) + <v - ATu,, .

mn

(A7 u, — AZ’un)>.
In particular,

(v—Aru,,g)

1
m m m-1 m m-1 m
> <V = Ay nyy B Ay by, — By Ay u,,[,) + <v — Ay Un;, o (Anl, Up; — Ani”n;) .
m,n;

Since || A”u, — A" u,|| — 0 (due to (3.25)) and ||B,, A”u, — B, A7 u, || — 0 (due to the
Lipschitz continuity of B,,), we conclude from A}u,, — w and {%;,} C [a;,b:] C (0,2n;)
that

hm(V A" u,,l,g> (v—w,g) > 0.

1— 00

It follows from the maximal monotonicity of B,, + R,, that 0 € (R,, + B,,)w, i.e, w €
1(B,;, R,,). Therefore w ﬂN I(B,y, R,,;). Next we prove that w € ﬂﬁl GMEP(Oy, ¢x, Ak).
Since A’;x,, = ,kok oK) I —rg Ak)Ak I, n>1,ke{l,2,...,M}, we have

Ok(&h03) + ) = 0 Ak) + (A 2y - Al

1
+ —(y - A’;xn, A’;xn - Aﬁ_lxn> >0.
Tk,n

By (A2), we have
1
ok () — i (ARx,) + <AkA];_1xn,y— Aﬁxn> + ;(y— ARy, AR, — A’;_lxn> > Ok(y, Akx,).
Letz, =ty + (1 —t)wforall £ € (0,1] and y € C. This implies that z; € C. Then we have

(2t — Apxn, Arze) > Qi (Afxn) — @rc(z2)
+(ze — ARy, Arze) — (2 — Ak, Ak AN )

Akx, — ARy
ky An¥n = Ap Xn k
<Z¢ pE + Ok (20, An)
Tkn

A ) oi(z)
+(Zt Ak W Arze — A A xn) ( f_A];;xmAkA]:,xn—AkA’;_lxn>

< _ Ak Ak, — Ak lx,
n»

Tk

l>

= @k

> + Ok(z, Axy). (3.37)
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By (3.26), we have IIAkA’;x,, —Ag A’;‘lxn | = 0 as n — oo. Furthermore, by the monotonic-
ity of Ay, we obtain (z; — A’,‘lx,,,Akzt - AkA’,‘,xn) > 0. Then by (A4) we obtain

(ze = w, Arze) = ok(W) — @r(2e) + Oz, w). (3.38)
Utilizing (A1), (A4), and (3.38), we obtain

0 = O(zs, z¢) + o (ze) — r(z:)
< tOr(z,y) + (1 - 1)Oxlze, w) + tor(y) + (1 — Her(w) — or(2)
<t[Ok(zy) + ) — i) | + A = 1) (2 — w, Axzy)

= t[Ok(z0,y) + 0k () — pic(z) | + (L - ey — w, Aezy),
and hence
0 < Owl(z,9) + o (¥) — @rlze) + (1= )y — w, Az).
Letting £ — 0, we have, for each y € C,
0 < Ok(w,y) + o) — (W) + (y — w, Aw).
This implies that w € GMEP(6y, ¢k, Ax) and hence w € ﬂﬁl GMEP(Oy, ¢k, Ax). Thus, w €
2 = N2, Fix(T,,) N 2L, GMEP(Or, g1, A) N (Vg 1By Ri).

Further, let us show that w € I'. As a matter of fact, from ||x,, —y,|| — 0 and ||y, —¥,|| = O
we know that y,, — w and y,, — w. Define

~ Vf(v) + Ncv, ifveC,
Tv
78 ifveC,

where Nev={u € H: (v-p,u) >0,Y¥p € C}. Then T is maximal monotone and 0 € Tv if

and only if v € VI(C, Vf); see [28] for more details. Let (v, u) € G(T). Then we have
ueTv= Vf(v) + Ncv

and hence
u—Vf(v) € Nev.

So, we have
(v—p,u - Vf(v)) >0, VpeC.

On the other hand, from

In =Pc(yn — AV, (yn)) and veC,
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we have

(= AVfary ) = 3o —v) = 0,

and hence

(1522 50, 00) 2 0
Therefore, from

u—-Vf(v)eNcv and jy, €C,
we have

(V=T 8) = (v = Y, VI(V))

z(V-ym,vf<v>>—<v—&n,-,y”' o O, >

Vi = Vn;

:(v—jz,,l.,Vf(v))—<v—51,,,., + V() > &, (V= Ty Yy
(V Vi V(W) = Vf ;) + > (V = Vni» Vf On;) = Vf(yn,'))
_<V_5’n, Sz Ay"’> U (V= Vs Vi)

Vn; = In;
A

= (V _j}nl-’ Vf(j}n,) - Vf@n,)) - <V _j}nir > - O(ni (V _yniryn,->-

Hence, we obtain
(v—-w,u) >0, asi— oo.

Since 7 is maximal monotone, we have w € 710, and hence, w € VI(C, Vf), which leads to
w € I'. Consequently, w € (2, Fix(T,,) N ﬂkle GMEP(Oy, ¢, Ax) N ﬂly\nlzl 1B, Ry) N T =:
£2. This shows that w,,(x,) C 2.

Step 6. We prove that w,(x,,) C Z provided ||x, — y,|| = 0(6,) additionally.

Indeed, let w € w,,(x,) be the same as mentioned in Step 5. Then we get x,,, — w. Utiliz-
ing Lemma 2.7, from (3.1) and (3.4) we obtain, for p € £2,

1y - pII?
= 6y (S~ Sp) + U = Bt )P = A5 fo,, W — (I~ 0uptF)PI ~ AN Sy, )p
+ (I = 6, F)Pc(I = N[, )p = (I = 04 )P = ANf)p + 0,y S — uF)p|’
< |0uy (Sx = Sp) + U = st FYPC = A5 fo, W~ (= 0uptF)PI ~ AN Sy, )p
+ (I = 0,uF)Pc — ANy, )p — (I = 4t F)Pc(I = AV f)p |

+ 29n<(VS - /’LF)pan _p>
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< [0u1S%, = Spll + | (I = 0upuF)Pc = ANfy, )i — (I = 0yt F)Pc = AV S, )P ||
+ | = 0.uF)Pcl = 39, )p = (I = 0, F)P - AV f)p ]
+20,((yS - LE)p, 3 —p)
< [Bay s = Il + (L= 6,0 | Pell = 2Vfe, v = Pell = Ve )|
+ (1= 6,7)|Pcl = AVfi, )p — Pcll = 1¥f)p|| ]
+20,((yS - LE)p, 3 —p)
< [Bav I~ pll + (L=, ) v = pll + (1= 6,0) |1 = AVfo, )p — U~ 29 1)p|
+20,((yS - LE)p, 3~ p)
= [6a7 Il =PIl + (L= 6,01V = pll + A = DA IpI|]” + 26((¥'S — F)p, 3 )
< [0uy 16w = pll + (1= 6,7) | = pll + AetallpIl]” +264{(v S = nE)p, 3 )
= [(1= 0ax = 1)) 150 — pll + Actullpl] +26,((v'S = 1£F)p, v - p)

< (I = pll + 2t llpl)* +26,{(y'S = wF)p,yu — p), (3.39)

which immediately implies that

1
2(yS ~uP)p.p =34} < 5 (s ~pll + o)’ = lyn - plI?)

< %0 = yull + et Il
= o)

(Il = Il + lyn = 2l + At lpll).
This, together with ||x,, — y,|| = 0(6,) and &, = 0(0,,), leads to

limsup((y S — uF)p,p — yu) < 0.

n—0o0

Observe that

lim sup((yS - uF)p,p- x,,)

n—00

=lim sup(((yS — WE)p, yn —xn) + ((VS —- uF)p,p —yn>)

n—00

= limsup((y S — uF)p,p — yu) < 0.

n—>00
So, it follows from x,,, — w that

(yS-uF)p,p-w)<0, Vpeg.
Also, note that 0 < ¥ < t and

un>=t & pn>1-/1-pn(2n - pk?)

& Jl-p(2n-pue?)=1-puny
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& 1-2un+p’k*=1-2un+pu’n’

It is clear that

((WF = yS)x = (WF = yS)y,x = y) = (un - y)llx—yl*>, Vx,y € H.

Hence, it follows from 0 < y <t < un that uF — yS is monotone. Since w € w,,(x,) C £2,
by Minty’s lemma [41] we have

((;/S— wF)w,p — w) <0, Vpe;
that is, w € &. Therefore w,,(x,) C Z. This completes the proof. O

Theorem 3.2 Assume that all the conditions in Theorem 3.1 hold. Then we have:
(i) {x4} converges strongly to a point x* € §2, which is a unique solution of the VIP:
((yV — uF)x*,p —x*) <0, Vp € §2; equivalently,

Po(I—(WF =y V))x* = x5

(il) {x,} converges strongly to a unique solution of THVI (1.9) provided ||x, — y,| = 0(0,,)
additionally.

Proof Observe that

(WE =y V)x = (WF =y V)y,x—y) = (un - yDlx-yl* Vx,y€H.

Hence we know that uF — y V is (un — y)-strongly monotone with constant (un —y /) > 0.
In the meantime, it is easy to see that uF — y V is (uk + yl)-Lipschitzian with constant
wuk +yl>0. Thus, there exists a unique solution x* € 2 of the VIP

((y V — uF)x*,p —x*) <0, Vpegf. (3.40)
Equivalently, x* = Po (I — (uF — y V))x*. Now, let us show that

lim sup((yV — uF)x*, %, — x*) <0.

n—0oQ

Since {x,} is bounded, we may assume, without loss of generality, that there exists a sub-
sequence {x,,} of {x,} such that x,, — w and

lim sup((y V — uF)x*, %, — x*) = lim ((y V — uF)x*, %, — x*) = ((y V — uF)x*,w— x*)
11— 00

n—0o0

In terms of Theorem 3.1(ii), we know that w € w,,(x,,) C £2. So, from (3.39) it follows that

lim sup((yV — uF)x*, %, — x*) = <(yV — uF)x*,w —x*) <0. (3.41)

n—0oQ0
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Next, let us show that lim,,_, «, ||, —x*|| = 0. In fact, from (3.1) and (3.39) with p = x* we
get

(—

= | Buy (Vi - V&)
+ (= Bun FYW,Pc(I = AV fo,)yn = (I = But F) Wy Pc(I = AV fo,, )x*
+ (I = BurEYW,Pc(I = AV fo, )x* — (I = By F) W, Pc(I — AVf)x*
+ Buly V - uF)x*|*

= [Buy [ Vin - va"|
+ | = Bu YW, Pl = AN, )y = (I = Byt F)W,,Pc(l = AV fo, )"
+ | (I = Bupt FY WPl = 2N o, )" — (I = Bupt F)WriPe(I = 2V f)x* | ]°
+2Bu((y V = WE)X*, %41 — %)

< [Buy 1w = a*|| + (= BuT)| Pl = AV )y = Pl = Vo, )|
+ (L= Bu0) | Pell = AVfo, )3~ Pcll - 29|
+2Bu((y V = uF)x*, %001 — ¥)

< [Buv ] =27 + A= BuD) 3 = 27| + (1= BuD) [ (1 = 2Vfo, )" — (U = 290" ]
+2Bu((y V = WE)X*, %41 — %)

= (B lln =] + @ = Bue) (3 =2 + heva | "))

+2Bu((y V = WE)X*, 01 — x*)
Vl * * * 2
(= P L PPt o)
+2Bu((y V = WE)X*, X1 — x°)
v LlI2 . w2
B N LR A PO )
+ 2,3n<()/V - /’LF)x*xerl - x*)
v L2 A2 . ) )
= Bo =" |7+ A= Bue) 3 = &7 |+ D[ (2 =7 + 2 27])
+2Bu((y V = WE)x*, %01 — 57
SR
+ (L= But)[([|n = &* || + Aot 2" H)2 +20,((y S = uF)x*, yu — x*)]
+ Aoy, ||x* || (2||yn —x* || + Aoy, ||x* ||) + 2/3,,(()/\/— WE)x*, %41 —x*)
)’212 9 3
B N MUY O O 11 N O )
+2(1- ,B,,r)@n((yS — uF)x*, y, —x*) + Aoy, ||x* || (2||y,, —x* || + Aoy, ||x* ||)

+2Bu((y V = WE)x*, X1 — x°)
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2_,2p2
s

2 2P

T

+ B

On
. 12_;)/212 [2(1 - ﬂ,,r)ﬁ—((yS — uE)x*, y, —x*) + 2<(yV — WE)X*, %01 —x*>i|

22, | (=] + Iy =]+ 20 |7, 642)

Since Y o2 aty < 00, Y o1 By = 00, limy, oo Z—Z =0, and limsup,_, . ((y V — uF)x*, %41 —
x*) < 0 (due to (3.41)), we deduce that Y2 2he, (|16, — x* || + 1y — 2* || + Aot ||lx* ) < o0.
ZZ":I ﬂnﬂ = 00, and

T

lims ‘ |:2(1 BuT)
imsup ———— —Bn
n—>ocp 72— (Vl)z

On

5 ((yS—,uF)x*,y,,—x*)+2<(yV—uF)x*,xn+1—x*>i| <0.

Therefore, applying Lemma 2.8 to (3.42), we infer that lim,,_, o ||x, — x*|| = 0.

On the other hand, let us suppose that ||x, — ¥, = 0(6,). Then by Theorem 3.1(iii) we
know that w,(x,) C &. Since uF —yV : H — H is (uk + yl)-Lipschitzian and (un — y1)-
strongly monotone, there exists a unique solution x* € = of the VIP

(y Vx* — uFx*, x —x*) <0, VxekZ. (3.43)
Since the sequence {x,} is bounded, there exists a subsequence {x,,} of {x,} such that

lim sup((y V — uF)x*, %, — x*) = lim ((y V — uF)x*, %, — x*) (3.44)
11— 00

n— 00

Also, since H is reflexive and {x,} is bounded, and without loss of generality we may as-
sume that x,, = ¥ € & (due to Theorem 3.1(iii)). Taking into account that x* is the unique
solution of the VIP (3.43), we deduce from (3.44) that

limsup((y V — uF)x*, 6541 —x*) < ((y V = uF)x*, 2 - x*) < 0. (3.45)

n—00

Repeating the same argument as in (3.42) we immediately conclude that

w1 —°°

2_,2p2
< (18" -1

2 2P

T

+ Bn
T Gn * % * *

. 12_—)/212 [2(1 - ﬂnr)E«yS— WE)x™, y, — x )+ 2(()/\/— WE)x*, %01 —x )i|

+ 2000ty || (o0 = | + [y =27 + R 7)) (3.46)

Repeating the same arguments as above, we can readily see that lim,_,  ||x, — x*|| = 0.

This completes the proof. d
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Remark 3.1 It is obvious that our iterative algorithm (3.1) is very different from Ceng and
Al-Homidan’s iterative one in [23, Theorem 21] and Yao et al.’s iterative one (1.8). Here, the
two-step iterative scheme in [35, Theorem 3.2] and the three-step iterative scheme in [23,
Theorem 21] are combined to develop our four-step iterative scheme (3.1) for the THVI
(1.9). It is worth pointing out that under the lack of the assumptions similar to those in
[35, Theorem 3.2], e.g., {x,} is bounded, Fix(T) Nint C # @ and ||x — Tx|| > k Dist(x, Fix(T)),
Vx € C for some k > 0, the sequence {x,} generated by (3.1) converges strongly to a point
x* € N2, Fix(T,,) N (Ml GMEP(Oy, ¢x, Ax) N (N, 1B, R;) N I =: £2, which is a unique
solution of the VIP: (y Va* — uFx*,x —x*) <0, Vx € §2; equivalently, Po (I - (WF -y V))x* =
x* (see Theorem 3.2(i)).

Remark 3.2 Theorems 3.1 and 3.2 improve, extend, supplement, and develop work by
Yao et al. [35, Theorems 3.1 and 3.2] and Ceng and Al-Homidan [23, Theorem 21] in the
following aspects:

(a) Our THVI (1.9) with the unique solution x* € & satisfying

&t = Pm;zl Fix(T)NML, GMEP(O,01, 40N, I(B,v,R,v)ﬁF(I = (uF - VS))’C*

is more general than the problem of finding a point X € C satisfying ¥ = Prix(1)S¥ in [35]
and than the problem of finding a point x* € ﬂﬁl GMEP(Ox, ¢r, Bx) N ﬂf\il VI(C,A)N T
in [23, Theorem 21].

(b) Our four-step iterative scheme (3.1) for THVI (1.9) is more flexible, more advan-
tageous and more subtle than Ceng and Al-Homidan’s three-step iterative one in [23,
Theorem 21] and than Yao et al.’s two-step iterative one (1.8) because it can be used to
solve several kinds of problems, e.g., the THVI, the HFPP, and the problem of finding a
common point of four sets: ()2, Fix(T}), ﬂkle GMEP(Oy, ¢k, Ak), ﬂﬁl I(B;,R;), and I". In
addition, it also drops the crucial requirements that Fix(T) NintC # @ and |x — Tx| >
k Dist(x, Fix(T)), Vx € C for some k > 0 in [35, Theorem 3.2 (v)].

(c) The argument techniques in our Theorems 3.1 and 3.2 are very different from the
argument ones in [35, Theorems 3.1 and 3.2] and from the argument ones in [23, The-
orem 21], because we use the W-mapping approach to fixed points of infinitely many
nonexpansive mappings {T,}°; (see Lemmas 2.4 and 2.5), the properties of resolvent op-
erators and maximal monotone mappings (see Proposition 2.4, Remark 2.3 and Lemmas
2.10-2.14), the fixed point equation x* = Pc(I — AVf)x* equivalent to the CMP (1.4) and
the contractive coefficient estimates for the contractions associated with nonexpansive
mappings (see Lemma 2.7).

(d) Compared with the proofin [23, Theorem 21], our proof (see the arguments in The-
orem 3.1) makes use of Minty’s lemma [41] to derive w,(x,) C & because our Theorem 3.1
involves the quite complex problem, i.e., the THVI (1.9). The THVI (1.9) involves the HFPP
for the nonexpansive mapping S and infinitely many nonexpansive mappings {T,};°; but
the problem in [23, Theorem 21] involves no HFPP for nonexpansive mappings.
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