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Abstract
In this paper, a class of pessimistic semivectorial bilevel programming problems is
investigated. By using the scalarization method, we transform the pessimistic
semivectorial bilevel programming problem into a scalar objective optimization
problem with inequality constraints. Furthermore, we derive a generalized minimax
optimization problem using the maximization bilevel optimal value function, of
which the sensitivity analysis is constructed via the lower-level value function
approach. Using the generalized differentiation calculus of Mordukhovich, the
first-order necessary optimality conditions are established in the smooth setting. As
an application, we take the optimality conditions of the bilevel programming
problems with multiobjective lower level problem when the lower level
multiobjective optimization problem is linear with respect to the lower-level variables.
MSC: 90C26; 90C30; 90C31; 90C46

Keywords: semivectorial bilevel programming; multiobjective optimization; weakly
efficient solution; bilevel optimal value function; sensitivity analysis; optimality
condition

1 Introduction
Bilevel programming (also called two-level programming) problems provide a framework
to deal with decision processes involving two decision makers with a hierarchical struc-
ture. The leader at the upper level of the hierarchy and the follower at the lower level seek
to optimize their individual objective functions and control their own set of decision vari-
ables. The hierarchical process means that the leader announces his variables first and
then the follower reacts, bearing in mind the selection. The goal of the leader is to op-
timize his own objective function by incorporating, within the optimization scheme, the
reaction of the follower to his course of action. The leader can influence but cannot control
the decisions of the follower. In this paper, we consider a bilevel programming problem
(BP), which is called semivectorial bilevel programming problem by Bonnel and Morgan
[], where the upper level is a scalar optimization problem and the lower level is a vector
optimization problem:

(BP): ‘min
x

’F(x, z) (.)

s.t. G(x)≤ , z ∈ �wef (x), (.)

where x ∈ Rn and z ∈ Rm denote the upper-level and the lower-level decision variables, re-
spectively, G(x) : Rn → Rq denotes the upper-level constraint function and F : Rn × Rm →
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R is the upper-level objective function,�wef (x) is the weakly efficient optimal solutions set
of the multiobjective optimization problem with respect to the upper decision variable x:

Rl
+ –min

z
f (x, z) (.)

s.t. g(x, z) ≤ , (.)

where g : Rn × Rm → Rp is the lower-level constrained function, f : Rn × Rm → Rl is the
lower-level multiobjective function. The term ‘Rl

+ –min’ in (.) is used to symbolize that
vector-values in the lower-level problem are in the sense of weak Pareto minima (see Sec-
tion ) with respect to an order induced by the positive orthant of Rl .
In order to ensure that the results in this paper are correct, we make some hypotheses

throughout the paper as follows.

Hypothesis  The set {x ∈ Rn |G(x)≤ } is nonempty and compact.

Hypothesis  For any x verifying G(x) ≤ , the set {z ∈ Rm | g(x, z) ≤ } is nonempty and
compact.

Generally speaking, the weakly efficient solution set �wef (x) of the lower-level problem
(.) and (.) is not singleton, i.e., the set �wef (x) in (.) has more than one point. In this
case, the notion of an optimal solution of the bilevel programming problem may be am-
biguous. That is why the word ‘min’ is written in quotes in (.). Two ways to deal with this
situation are given by the optimistic formulation and the pessimistic formulation in [].
If the upper-level decision maker (i.e. the leader) supposes that the lower-level decision

maker (i.e. the follower) is willing to support him, that is, the follower will select a solution
z(x) ∈ �wef (x), which is one of the best to the leader, then we get the following optimistic
formulation:

min
x

min
z

F(x, z) s.t. G(x)≤ , z ∈ �wef (x). (.)

For the research papers on the optimistic formulation of the semivectorial bilevel pro-
gramming problem one is referred to [, –]. In [], a penalty method was given to solve
the problem in case of weakly efficient solutions in the lower-level problem (.). Zheng
and Wan [] developed another penalty method consisting of two penalty parameters in
the case where the multiobjective lower-level problem is linear. Ankhili and Mansouri []
developed an exact penalty method for the problem in the case where the upper-level
problem was concave and the lower-level problem was a linear multiobjective optimiza-
tion problem. Eichfelder [] considered the problem in the case where F is also vector-
valued. In the latter paper, the induced set of the investigated problem is shown to be
the set of minima point (with respect to a cone) of another unperturbed multiobjective
optimization problem. Hence, the resulting problem is simply a multiobjective optimiza-
tion problem over an efficient set. Then it is solved by using a scalarization method by
Pascoletti and Serafini combined with an adaptive parameter control method based on
sensitivity for the problem. Recently, Calvete and Galé [] also considered the problem
in the case where the upper-level objective function is quasiconcave and the lower-level
problem is a linear multiobjective optimization problem. The problem was reformulated
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as an optimization problem over a nonconvex region given by a union of faces of the poly-
hedron defined by all constraints. An extreme point method was showed to deal with the
problem. Then, based on the ‘kth’ best method and genetic algorithm, they developed an
exact and a metaheuristic algorithm, respectively. The performance of the above two al-
gorithms were also evaluated. In [], Nie defined the risk optimal decision, conservative
optimal decision and mean optimal decision of the semivectorial bilevel programming
problem.Weightingmethods were employed to analyze the lower-levelmultiobjective op-
timization problem, and some properties about the problemwere obtained. In [], Bonnel
derived necessary optimality conditions for the problem (.) in general Banach spaces,
while considering efficient and weakly efficient solutions for the lower-level multiobjec-
tive optimization the problem (.). In the latter paper, the author inserted the weak or
properly weak solution set-valued mapping of the lower-level problem in the upper-level
objective function to derive a set-valued optimization problem. Using the notion of con-
tingent derivative, necessary optimality conditions, which are abstract in nature, were de-
rived. In [], Dempe et al. considered also the optimistic formulation of the semivectorial
bilevel programming problem. Considering the scalarization approach for the lower-level
multiobjective optimization problem, they transformed the problem into a scalar objec-
tive optimization problemwith inequality constraints bymeans of the optimal value refor-
mulation, completely detailed first-order KKT-type necessary optimality conditions were
derived in the smooth and nonsmooth settings while using the generalized differentiation
calculus of Mordukhovich. It is worth to mention that the method of [] was different
from that of [].
If the upper-level decision maker is a conservative leader, the leader is going to be the

worst and bound the damage resulting from an undesirable selection of the follower. This
leads to the following pessimistic formulation of (.):

min
x

max
z

F(x, z) s.t. G(x) ≤ , z ∈ �wef (x). (.)

To the best of our knowledge, there are very few results for the problem (.) apart from
[, ].
Bonnel and Morgan [] developed optimality conditions for the bilevel optimal con-

trol problem, which is a special case of semivectorial bilevel programming problem. For
two extreme cases, the optimistic case and the pessimistic case, the optimality conditions
were presented, respectively. In [], Nie defined the conservative optimal decision for the
problem (.) (i.e. (.)). Weighting methods were employed to analyze the lower-level
multiobjective optimization problem when the lower-level objective functions were all
continuously differentiable and strictly convex and the lower-level constraints were all
continuously differentiable, then a minimax optimization problem with constraints was
derived. But for the problem (.), no detailed optimality conditions and concrete solving
methods were found in [].
Hence, in this paper, ourmainwork is as follows: Using the scalarizationmethod and the

maximization bilevel optimal value function, the pessimistic problem (.) is transformed
into a generalized minimax optimization problem, i.e. the problem (.). Then, we de-
velop a link between the problems (.) and (.), that is, Proposition ., which shows
that these two problems have the same local or global optimal solutions under some mild
conditions. The results of Proposition . is formally similar to that of Proposition . in
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[], but is different in nature. Based on Proposition ., we transform the problem (.)
into the problem (.) using the bilevel optimal value function formulation. Furthermore,
we develop the necessary optimality conditions (see Theorem .) for the problem (.)
using generalized differentiation calculus of Mordukhovich. By Proposition ., we obtain
the necessary optimality conditions (see Corollary .) for the pessimistic problem (.).
Our results in this paper and the results in [] make up together the first-order neces-
sary optimality conditions for the semivectorial bilevel programming problem. It is very
important for the development of the optimality theory of the semivectorial bilevel pro-
gramming problem in the future.
The rest of the paper is organized as follows. In Section , we present the definitions

of efficient solutions and Pareto minima, and then the relevant notions and properties
from variational analysis will be presented as well. The transformation process of the pes-
simistic semivectorial bilevel programming problem (PSBP) into a single-level generalized
minimax optimization problem with constraints by means of the optimal value function
reformulation is given in Section . In Section , we first present the estimation of the
lower-level negative value function and the sensitivity analysis of the lower-level optimal
solution maps. Based on these, the sensitivity analysis for the maximization bilevel value
function is presented. Finally, the necessary optimality conditions are derived for the prob-
lem (.) while considering the case where all functions involved are strictly differentiable.
The special casewhere the lower-levelmultiobjective optimization problem is linear in the
lower-level variable is studied in Section .

2 Preliminaries
In this section, we mainly recall some basic definitions and results.

2.1 Efficient solution and Pareto minima
Definition . Let C ⊂ Rn be a closed convex cone with nonempty interior, C is said to
be pointed convex cone if C ∩ –C = {}. We denote a partial order by �C in Rn induced
by C.

Definition . Let A ⊆ Rn be nonempty. z∗ ∈ A is said to be Pareto (resp. weak Pareto)
minima of A w.r.t. C if

A⊂ z∗ +
[(
Rn \ (–C))∪ {}] (

resp. A ⊂ z∗ +
(
Rn \ – intC)), (.)

where ‘int’ denotes the topological interior of the set in question.

Considering the multiobjective optimization problem with respect to �C :

C –min f (x) s.t. x ∈ X, (.)

where f represents a vector-valued function and X the nonempty feasible set. For a
nonempty set A⊂ X, the image of A by f is defined by f (A) := {f (x) | x ∈ A}.

Definition . The point x∗ ∈ X is said to be an efficient (resp. weakly efficient) optimal
solution of problem (.) if f (x∗) is a Pareto (resp. weak Pareto) minima of f (X).
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Definition . The point x∗ ∈ X is said to be a local efficient (resp. weakly local efficient)
optimal solution of problem (.) if there exists a neighborhood U of x∗ such that f (x∗) is
a Pareto (resp. weak Pareto) minima of f (X ∩U).

Definition. [, ] A vector-valued function f : Rn → Rm is said to convexwith respect
to a partial �C induced by a pointed, closed, and convex cone C, if we have

f
(
λx + ( – λ)x

)�C λf (x) + ( – λ)f (x), ∀x,x ∈ Rn,∀λ ∈ (, ).

2.2 Tools from variational analysis
Details of the material presented here can be found in [, ].

Definition . Given a point x, lim supx→x �(x) is said to be the Kuratowski-Painlevé
outer/upper limit of a set-valued mapping � : Rn ⇒ Rm at x, if

lim sup
x→x

�(x) =
{
υ ∈ Rm | ∃xk → x,υk → υ with υk ∈ �(xk) as k → ∞}

. (.)

Definition . For an extended real-valued function ψ : Rn → R, ∂̂ψ(x) is said to be the
Fréchet subdifferential of ψ at a point x of its domain, if

∂̂ψ(x) =
{
υ ∈ Rn

∣∣∣ lim inf
x→x

ψ(x) –ψ(x) – 〈υ,x – x〉
‖x – x‖ ≥ 

}
. (.)

Definition . Given a point x, ∂ψ(x) is said to be the basic/Mordukhovich subdifferen-
tial of ψ at x, if

∂ψ(x) = lim sup
x→x

∂̂ψ(x). (.)

If ψ is convex, ∂ψ(x) is reduced to the subdifferential in the sense of convex analysis:

∂ψ(x) =
{
υ ∈ Rn | ψ(x) –ψ(x) ≥ 〈υ,x – x〉,∀x ∈ Rn}. (.)

∂ψ(x) is nonempty and compact when ψ is local Lipschitz continuous, its convex hull is
the Clarke subdifferential ∂ψ(x), i.e.

∂ψ(x) = co ∂ψ(x) (.)

where ‘co’ denotes the convex hull of the set in question. Via this link between the Basic
and Clarke subdifferential, we have the following convex hull property:

co ∂(–ψ)(x) = – co ∂ψ(x), (.)

where ψ is Lipschitz continuous near x.

Definition . ∂xψ(x, y) is said to be the partial basic (resp. Clarke) subdifferential of ψ

with respect to x, if we have

∂xψ(x, y) = ∂ψ(·, y)(x) (
resp. ∂xψ(x, y) = ∂ψ(·, y)(x)). (.)
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The partial basic (resp. Clarke) subdifferential with respect to y can be defined analogously
as follows:

∂yψ(x, y) = ∂ψ(y, ·)(y) (
resp. ∂yψ(x, y) = ∂ψ(y, ·)(y)). (.)

Definition . Given a point x ∈ �,N�(x) is said to be the basic/Mordukhovich normal
cone to a set � ⊂ Rn at x, if

N�(x) = lim sup
x→x (x∈�)

N̂�(x), (.)

where N̂�(x) represents the prenormal/Fréchet normal cone to a set � at x defined by

N̂�(x) =
{
υ ∈ Rn

∣∣∣ lim sup
x→x (x∈�)

〈υ,x – x〉
‖x – x‖ ≤ 

}
. (.)

The set � will be said to be regular at x ∈ � if

N�(x) = N̂�(x).

For the lower semicontinuous function ψ with the epigraph epiψ , we can equivalently
define the basic/Mordukhovich subdifferential (.) using the normal cone (.) by

∂ψ(x) =
{
υ ∈ Rn | (υ, –) ∈Nepiψ

(
x,ψ(x)

)}
. (.)

The singular subdifferential of ψ at x ∈ domψ by

∂∞ψ(x) =
{
υ ∈ Rn | (υ, ) ∈Nepiψ

(
x,ψ(x)

)}
. (.)

If ψ is lower semicontinuous near x, then ∂∞ψ(x) = {} if and only if ψ is locally
Lipschitz continuous near x. Given a set-valued mapping 	 : Rn → Rm with its graph

gph	 :=
{
(x, y) ∈ Rn × Rm | y ∈ 	(x)

}
,

recall the notion of coderivative for 	 at (x, y) ∈ gph	 is defined by

D∗	(x, y)(υ) :=
{
u ∈ Rn | (u, –υ) ∈Ngph	(x, y)

}
for υ ∈ Rm, (.)

via the normal cone (.) to the graph of 	. If 	 is single-valued and locally Lipschitz
continuous near x, its coderivative can be denoted analytically as

D∗	(x)(υ) = ∂〈υ,	〉(x) for υ ∈ Rm,

via the basic subdifferential (.) of the Lagrange scalarization 〈υ,	〉(x) := 〈υ,	(x)〉, where
the component y (= 	(x)) is omitted in the coderivative notation for single-valued map-
pings. This implies that the coderivative can be represented as

D∗	(x)(υ) =
{∇	(x)�υ

}
for υ ∈ Rm,
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where 	 is strictly differentiable at point x, ∇	(x) denotes its Jacobian matrix at x and ‘�’
stands for transposition.

Definition . A set-valued mapping 	 is said to be inner semicompact at xwith 	(x) �=
∅, if for every sequence xk → x with 	(xk) �= ∅, there exists a sequence of yk ∈ 	(xk) which
contains a convergent subsequence as k → ∞.

It follows that inner semicompactness holds whenever 	 is uniformly bounded near x,
i.e., there exist a neighborhood U and a bounded set � ⊂ Rm such that 	(x) ⊂ � for all
x ∈U .

Definition . A set-valued mapping 	 is said to be inner semicontinuous at (x, y) ∈
gph	, if for every sequence xk → x there exists a sequence of yk ∈ 	(xk) that converges to
y as k → ∞.

From Definitions . and ., it is clear that 	 is inner semicontinuous at (x, y), if 	

is inner semicompact at x with 	(x) = {y}. Generally speaking, the inner semicontinuity
which is much stronger than the inner semicompactness, is a necessary condition for the
Lipschitz-like/Aubin property, which means that there exist two neighborhoods U of x
and V of y, and a constant κ >  such that

∀x,u ∈ U and y ∈ 	(u)∩V , d
(
y,	(x)

)≤ κ‖u – x‖, (.)

where dmeans the distance from a point to a set in Rm. When V = Rm in (.), this prop-
erty is reduced to the classical local Lipschitz continuity of 	 near x. A complete charac-
terization of the Lipschitz-like/Aubin property (.), and hence a sufficient condition for
the inner semicontinuity of 	 at (x, y), is given for closed graph mappings by the following
coderivative/Mordukhovich criterion (see [, Theorem .] and [, Theorem .]):

D∗	(x, y)() = {}. (.)

In addition, the infimum of all κ >  for which (.) holds is equal to the coderivative
norm ‖D∗	(x, y)‖ as a positively homogeneous mapping D∗	(x, y). Set x = x in (.), the
resulting weaker property is known as calmness of 	 at (x, y) [], which is used to derive
the sensitivity analysis of the lower-level optimal solution mapping of the problem (.)
in the sequel. For V = Rm, the Lipschitz-like property in (.) corresponds to the upper
Lipschitz property of Robinson [].

3 Optimal value function reformulation for the pessimistic semivectorial
bilevel programming problem

In this section, we shall discuss the reformulation process of the problems (.), (.), and
(.) into a single-level generalized minimax optimization problem with constraints. We
firstly by using scalarization technique transform the problems (.) and (.) into a usual
one-level optimization problem, which consists of solving the following parametric prob-
lem:

min
z

f (x, y, z) =
〈
y, f (x, z)

〉
s.t. g(x, z) ≤ , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/41
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where the parameter y is a nonnegative point of the unit sphere, i.e.,

y ∈ Y =
{
y ∈ Rl | y≥ ,‖y‖ = 

}
. (.)

For a given upper-level variable x, the weakly efficient solution set �wef (x) of the lower-
level problem (.) is not in general a singleton, hence it is difficult to choose the best point
z(x) on the set �wef (x). Furthermore, we consider the set Y (.) as a new constraint set
for the upper-level problem []. For all (x, y) ∈ X × Y (where X := {x ∈ Rn | G(x) ≤ }), we
denote by�(x, y) the solution set of the problem (.).When the weakly efficient solutions
are considered for the lower-level problem (.), the relationship (see e.g. []) relates the
solution set of this problem and that of (.) as follows.

Theorem. Assume that the functions g(x, ·) and f (x, ·) are Rp
+-convex and Rl

+-convex for
all x ∈ X, respectively. Then

�wef (x) =�(x,Y ) :=
⋃{

�(x, y) | y ∈ Y
}
. (.)

Hence, the pessimistic semivectorial bilevel programming problem (.) can be replaced
by the following classical pessimistic bilevel programming problem:{

minxmaxymaxz F(x, z)
s.t. (x, y) ∈ X × Y , z ∈ �(x, y),

(.)

where the set Y (.) on the new parameter of the lower-level problem acts like additional
upper-level constraints. Now, we define the maximization bilevel optimal value function
by

ϕp(x, y) =max
z

{
F(x, z) | z ∈ �(x, y)

}
, (.)

then the problem (.) can be expressed as the following generalized minimax problem
with constraints:

min
x

max
y

{
ϕp(x, y) | y ∈ Y ,x ∈ X

}
. (.)

We can also define the maximization another a bilevel optimal value function by

ϕpp(x) =max
y

{
ϕp(x, y) | y ∈ Y

}
, (.)

then the problem (.) can be further expressed as one-level optimization problem:

min
x

{
ϕpp(x) | x ∈ X

}
. (.)

Remark . The variable y in (.) is regarded as an upper-level decision making vari-
able rather than lower-level decision variable. That is why we use the representation
‘minxmaxymaxz ’ and not use the representation ‘minxmaxy,z ’. The hierarchically decision
making process of the pessimistic bilevel programming problem (.) is as follows: The

http://www.journalofinequalitiesandapplications.com/content/2014/1/41
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leader announces his variables (x, y) first and then the follower, bearing inmind, optimizes
the objective function of himself and reacts the lower-level decision making variable z
which is an optimal solution of the lower-level problem. In essence, we regard y in (.) as a
weight vector to which the leader attaches the follower rather than the follower gives him-
self. For the problem (.), the existence and approximation of solution, the regularization
properties and so on were studied in [, , –]. In [], Loridan and Morgan consid-
ered the pessimistic formulation (i.e., the weak Stackelberg problem). Based on a method
of Molodtsov, they presented an approach to approximate such problem by sequences of
the optimistic formulation (i.e., the strong Stackelberg problem). The results related to the
convergence of marginal functions and approximated solutions were given and the case of
data perturbations was also considered. In [], Aboussoror and Mansouri considered a
class of weak linear bilevel programming with nonunique lower-level solutions, they gave
an existence theoremof solution and a solving algorithm via exact penaltymethod. In [],
Lv et al. developed a penalty function method for the weak price control problem. In [],
Tsoukalas et al. provided an introduction to bilevel programming problems that illustrates
some of the applications and computational challenges, and that outlines how bilevel pro-
gramming problems can be solved. In [], they and Kleniati provided a formal justifica-
tion for the conjectures given in [], the computational complexity of pessimistic bilevel
programming problems were examined, and a solution scheme was developed and ana-
lyzed for the pessimistic programming problems. In [], Malyshev and Strekalovsky con-
sidered the pessimistic formulation of a quadratic-linear bilevel programming problem,
they reduced the problem to a series of bilevel programming problems in its optimistic
formulation and then to nonconvex optimization problems by the KKT-optimality condi-
tion of the lower-level problem. Global and local search algorithms for the latter problems
are developed. In [], Dassanayaka studied the pessimistic formulation of the bilevel pro-
gramming problems in finite dimensional spaces. Using the analysis tools from modern
variational and generalized differentiation developed by Mordukhovich, first-order nec-
essary and sufficient optimality conditions were established. A genetic algorithm for the
weak linear bilevel programming problem was developed by Xiao and Li in []. Very re-
cently, the pessimistic formulation for the bilevel programming problem was considered
by Zemkoho in [] and by Dempe et al. in [] in the case where the functions involved
were nonsmooth and smooth, respectively, the necessary optimality conditions were de-
rived via the bilevel optimal value function reformulation.

Before discussing the link between the problems (.) and (.), we firstly recall that
the notion of optimal solution for the upper-level problem in pessimistic formulation (see
[, Definition .]), namely, a point (x∗, z∗) is said to be a local optimal solution for the
problem (.) if x∗ ∈ X, z∗ ∈ �wef (x∗) with

F
(
x∗, z∗)≥ F

(
x∗, z

)
, ∀z ∈ �wef

(
x∗),

and there exists an open neighborhood Uδ(x∗), with

ϕpp
(
x∗)≤ ϕpp(x), ∀x ∈ X ∩Uδ

(
x∗).

It is called a global pessimistic solution if δ =∞ can be selected.
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Now, we present the theorem of the existence of solution to the problem (.) (see [,
Theorem .]).

Theorem . If the set {(x, y, z) | (x, y) ∈ X × Y , g(x, z) ≤ } is nonempty and compact,
and for each x ∈ X, the Mangasarian-Fromowitz Constraint Qualification (MFCQ) holds.
Suppose that the lower-level solution set mapping �(x, y) is lower semicontinuous at all
points (x, y) ∈ X × Y . Then the problem (.) has an optimal solution.

Proof Due to lower semicontinuity of the lower-level solution set mapping �(x, y), thus,
the optimal value function ϕp(x, y) in (.) is lower semicontinuous. Hence, this optimal
value function ϕp(x, y) attains its minimum on the compact set X × Y provided that this
set is nonempty. �

The link between the problems (.) and (.) will be given in the next result. For this
purpose, note that a set-valued mapping 	 : Ra → Rb is closed-valued at a point (u, v) ∈
Ra × Rb if for any sequence (uk , vk) ∈ gph	 with (uk , vk) → (u, v), one has v ∈ 	(u). 	 is
said to be closed-valued if it is closed-valued at any point of Ra × Rb.

Proposition . Consider the problems (.) and (.)-(.), where the lower-level con-
straint function g(x, ·) is Rp

+-convex and f (x, ·) is Rl
+-convex for all x ∈ X. Assume that � is

lower semicontinuous on X × Y . Then the following assertions hold.
(i) Let (x∗, z∗) be a local (resp. global) optimal solution of the problem (.). Then, for all

y∗ ∈ Y with z∗ ∈ �(x∗, y∗), the point (x∗, y∗, z∗) is a local (resp. global) optimal
solution of the problem (.).

(ii) Let (x∗, y∗, z∗) be a local (resp. global) optimal solution of the problem (.). Assume
the set-valued mapping � is closed-valued. Then (x∗, z∗) is a local (resp. global)
optimal solution of the problem (.).

Proof We provide the proofs of (i) and (ii) in the local cases. The global cases can be ob-
tained analogously.
(i) Let (x∗, z∗) be a local optimal solution of the problem (.). Then{

x∗ = argmin{ϕpp(x) | x ∈ X},
z∗ = argmax{F(x, z) | z ∈ �wef (x)}.

Suppose that there exists y ∈ Y with z∗ ∈ �(x∗, y) such that (x∗, y, z∗) is not a local optimal
solution of the problem (.). Then there exists a sequence (xk , yk , zk) with xk → x∗, yk → y,
zk → z∗ and (xk , yk) ∈ X × Y , zk ∈ �(xk , yk) such that F(xk , zk) is better than F(x∗, z∗). By
the equality (.), we know that [yk ∈ Y , zk ∈ �(xk , yk)] ⇒ zk ∈ �wef (xk), and moreover,
x∗ ∈ X (since X is closed) and [y ∈ Y , z∗ ∈ �(x∗, y)] ⇒ z∗ ∈ �wef (x∗), that is, (xk , yk , zk)
and (x∗, y, z∗) are the feasible solutions to the problem (.). To sum up, we can find a
sequence (xk , zk) → (x∗, z∗) with xk ∈ X, zk ∈ �wef (xk) such that F(xk , zk) is better than
F(x∗, z∗), which contradicts the initial statement that (x∗, z∗) is a local optimal solution of
the problem (.).
(ii) Assume that (x∗, y∗, z∗) is a local optimal solution of the problem (.). Then we have⎧⎪⎨⎪⎩

x∗ = argmin{ϕpp(x) | x ∈ X},
y∗ = argmax{ϕp(x, y) | y ∈ Y },
z∗ = argmax{F(x, z) | z ∈ �(x, y)}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/41
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Since � is lower semicontinuous and closed-valued, for any sequence (xk , yk) with xk →
x∗, yk → y∗ and z∗ ∈ �(x∗, y∗), there exists zk ∈ �(xk , yk) for all k such that zk → z∗. By the
equality (.), we have [y∗ ∈ Y , z∗ ∈ �(x∗, y∗)] ⇒ z∗ ∈ �wef (x∗). Considering that x∗ ∈ X
and X is closed, we have{

x∗ = argmin{ϕpp(x) | x ∈ X},
z∗ = argmax{F(x, z) | z ∈ �wef (x)}.

Therefore (x∗, z∗) is a local optimal solution of the problem (.). This completes the
proof. �

Next, we give the optimal value function reformulation for the pessimistic bilevel pro-
gramming problem (.) as follows:

minϕpp(x) s.t. x ∈ X, (.)⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕpp(x) =maxy{ϕp(x, y) | y ∈ Y },
ϕp(x, y) =maxz{F(x, z) | z ∈ �(x, y)},
�(x, y) = {z ∈ Rm | f (x, y, z) – ϕ(x, y) ≤ , g(x, z) ≤ },
ϕ(x, y) =minz{f (x, y, z) | g(x, z) ≤ }.

Based on this result, we will attempt to derive the necessary optimality conditions of
the pessimistic semivectorial bilevel programming problem (.) via deriving those of the
auxiliary problem (.). Obviously, if we set the minimization optimal value function as

ϕo
p(x, y) =min

z

{
–F(x, z) | z ∈ �(x, y)

}
, (.)

then the maximization optimal value function ϕp(x, y) (.) coincides with the negative of
ϕo
p(x, y), i.e., for all (x, y) ∈ X × Y , we have

ϕp(x, y) = –ϕo
p(x, y). (.)

Analogously, we can set the minimization another optimal value function as

ϕo
pp(x) =min

y

{
–ϕp(x, y) | y ∈ Y

}
, (.)

then, for all x ∈ X, we also have

ϕpp(x) = –ϕo
pp(x). (.)

By (.) and (.), we analyze the maximized bilevel optimal value function ϕp(x, y) and
ϕpp(x) via analyzing the minimization bilevel optimal value functions ϕo

p(x, y) in (.) and
ϕo
pp(x) in (.), respectively. In order to analyze the bilevel value function ϕo

p(x, y) and
ϕo
pp(x), we consider a general ‘abstract’ framework of the marginal function:

μ(x) =min
y

{
ψ(x, y) | y ∈ 	(x)

}
, (.)

where ψ : Rn × Rm → R and 	 : Rn → Rm . Denote the argminimum mapping in (.)
by 	o(x) = argmin{ψ(x, y) | y ∈ 	(x)} = {y ∈ 	(x) | ψ(x, y) ≤ μ(x)}. We summarize in the
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next theorem some known results on general value functions needed in the paper (see [,
Corollary .] and [, Theorem .]).

Theorem . Let the value function μ be given in (.), where the graph of 	 is locally
closed around (x, y) ∈ gph	 and ψ is strictly differentiable at this point. The following
assertions hold:

(i) Let 	o be inner semicompact at x. Then μ is lower semicontinuous at x and the
upper bound for its basic subdifferential is given as follows:

∂μ(x) ⊂
⋃

y∈	o(x)

{∇xψ(x, y) +D∗	(x, y)
(∇yψ(x, y)

)}
.

If in addition 	 is Lipschitz-like around (x, y) for all vectors y ∈ 	o(x), then we also
have the Lipschitz continuity of μ around x.

(ii) Let 	o be inner semicontinuous at (x, y). Then μ is lower semicontinuous at x and
the upper bound for its basic subdifferential is given as follows:

∂μ(x) ⊂ ∇xψ(x, y) +D∗	(x, y)
(∇yψ(x, y)

)
.

If in addition 	 is Lipschitz-like around (x, y), then μ is Lipschitz continuous
around x.

By the equalities (.), (.), and (.), we have

∂ϕp(x, y) = ∂
(
–ϕo

p
)
(x, y)⊂ co ∂

(
–ϕo

p
)
(x, y) = – co ∂ϕo

p(x, y),

∂ϕpp(x) = ∂
(
–ϕo

pp
)
(x)⊂ co ∂

(
–ϕo

pp
)
(x) = – co ∂ϕo

pp(x),

and so

∂ϕp(x, y)⊂ – co ∂ϕo
p(x, y), (.)

∂ϕpp(x)⊂ – co ∂ϕo
pp(x). (.)

By Theorem ., we can estimate the upper bound of the subdifferential of the bilevel
optimal value function ϕp(x, y) (resp. ϕpp(x)) via estimating the subdifferential of ∂ϕo

p(x, y)
(resp. ∂ϕo

pp(x)). In the next section, based on specific structures of the set-valued map-
ping 	, our aim is to give detailed upper bounds for D∗	(x, y) in terms of problem data.
Verifiable rules for	 to be Lipschitz-like will also be provided. Further, we present the sen-
sitivity analysis for the maximization bilevel optimal value function ∂ϕp(x, y) and ∂ϕpp(x).
Based on these results, we develop the necessary optimality conditions for the problems
(.) and (.).

4 Main results
In this section, we study the necessary optimality conditions for the optimal value function
reformulation (.) of the problem (.). Firstly, we recall that the argminimun/solution
map of the lower-level problem (.) as

�(x, y) =
{
z ∈ Rm | f (x, y, z) – ϕ(x, y)≤ , g(x, z) ≤ 

}
, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/41
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with ϕ denoting the optimal value function associated to the lower-level problem (.),
i.e.,

ϕ(x, y) =min
z

{
f (x, y, z) | g(x, z) ≤ 

}
. (.)

Here, we employ the lower-level value function approach [] to sensitivity analysis of
the bilevel value function ϕo

p(x, y) in (.). Hence, we have the lower-level optimal value
function reformulation of ϕo

p(x, y):

ϕo
p(x, y) =min

z

{
–F(x, z) | g(x, z)≤ , f (x, y, z) – ϕ(x, y) ≤ 

}
. (.)

Since the basic subdifferential ∂ϕ does not satisfy the plus symmetry, an appropriate es-
timate of ∂(–ϕ) is needed to proceed with this approach. By the well-known convex hull
property (.), the estimate of ∂(–ϕ) can be done.
In order to study the sensitivity analysis of the negative value function in the lower-level

problem (.), we first recall the lower-level and upper-level regularity conditions [],
which are defined, respectively, as

∑p
i= βi∇zgi(x∗, z∗) = ,

βi ≥ , βigi(x∗, z∗) = , i = , . . . ,p

}
⇒ βi = , i = , . . . ,p, (.)

∑q
j= αj∇Gj(x∗) = ,

αj ≥ , αjGj(x∗) = , j = , . . . ,q

}
⇒ αj = , j = , . . . ,q. (.)

It is clear that these are the dual forms of the MFCQ for the lower-level constraints
gi(x∗, z) ≤ , i = , . . . ,p (for the fixed parameter x = x∗) and the upper-level constraints
Gj(x) ≤ , j = , . . . ,q, respectively. A particularity of the new constraint set Y (.), that
the related Lagrange multipliers can be completely eliminated from the optimality condi-
tions, is given in the next lemma (see [, Lemma .]).

Lemma . The set of vectors (x∗, y∗, z∗) ∈ Rn × Rl × Rm, γ , zs ∈ Rl and μ, r,υs ∈ R with
s = , . . . ,n + l + , satisfies the system{

rf (x∗, z∗) – r
∑n+l+

s= υsf (x∗, zs) – γ +μ · y∗ = ,
γ ≥ , γ �y∗ = , ‖y∗‖ = 

(.)

if and only if the following inequality holds:

r

{[ l∑
k=

yk

(
fk
(
x∗, z∗)–n+l+∑

s=

υsfk
(
x∗, zs

))]
y∗–

[
f
(
x∗, z∗)–n+l+∑

s=

υsf
(
x∗, zs

)]}≤ . (.)

4.1 Sensitivity analysis of the lower-level negative value function
In this subsection, we shall study the sensitivity analysis of the negative value function in
the lower-level problem (.).

Theorem . If f and g are strictly differentiable, and the following assertions hold for the
negation of the value function ϕ in (.).
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(i) If the solution map �(x, y) in (.) is inner semicompact at (x∗, y∗) for all (x∗, y∗, z) ∈
gph� satisfying (.), then ϕ is Lipschitz continuous around (x∗, y∗), and the following in-
clusion holds:

∂(–ϕ)
(
x∗, y∗) ⊂

⎧⎪⎨⎪⎩
⎡⎢⎣–∑n+l+

s= ηs(
∑l

k= y∗
k∇xfk(x∗, zs) +

∑p
i= β

s
i∇xgi(x∗, zs))

–
∑n+l+

s= ηsf (x∗, zs)

⎤⎥⎦ ∣∣∣∣∣
∑l

k= y∗
k∇zfk(x∗, zs) +

∑p
i= β

s
i∇zgi(x∗, zs) = ,

βs
i ≥ ,βs

i gi(x∗, zs) = ,ηs ≥ ,
∑n+l+

s= ηs = ,
zs ∈ �(x∗, y∗),∀s = , . . . ,n + l + ,k = , . . . , l, i = , . . . ,p

⎫⎪⎬⎪⎭ . (.)

(ii) Assume that (x∗, y∗, z∗) ∈ gph� with x∗ ∈ domϕ satisfying (.) and that either � is
inner semicontinuous at this point or f and g are convex. Then ϕ is Lipschitz continuous
around (x∗, y∗), and the following inclusion holds:

∂(–ϕ)
(
x∗, y∗) ⊂

{[
–
∑l

k= y∗
k∇xfk(x∗, z∗) –

∑p
i= βi∇xgi(x∗, z∗)

–f (x∗, z∗)

] ∣∣∣∣
∑l

k= y∗
k∇zfk(x∗, z∗) +

∑p
i= βi∇zgi(x∗, z∗) = ,

βi ≥ ,βigi(x∗, z∗) = ,k = , . . . , l, i = , . . . ,p

}
. (.)

Proof The local Lipschitz continuity of ϕ is justified from [, Theorem .] under the
fulfillment of (.) in both the inner semicontinuity and inner semicompactness cases. If
the functions f and g are convex, then the value function ϕ is also convex, in this case
the Lipschitz continuity follows from [, Theorem ..]. To prove the subdifferential
inclusion of (i), recall that

∂ϕ
(
x∗, y∗) ⊂

⎧⎪⎨⎪⎩
⎡⎢⎣∑l

k= y∗
k∇xfk(x∗, z) +

∑p
i= βi∇xgi(x∗, z)

f (x∗, z)

⎤⎥⎦ ∣∣∣∣∣
∑l

k= y∗
k∇zfk(x∗, z) +

∑p
i= βi∇zgi(x∗, z) = ,

βi ≥ ,βigi(x∗, z) = , z ∈ �(x∗, y∗),
k = , . . . , l, i = , . . . ,p

⎫⎪⎬⎪⎭ (.)

by [, Corollary ] under the assumptions of (i). The claimed estimate of ∂(–ϕ) follows
from this by combining (.) and the classical Carathéodory’s theorem.
When � is inner semicontinuous at (x∗, y∗, z∗), we have by [, Corollary .] that

∂ϕ
(
x∗, y∗) ⊂

{[∑l
k= y∗

k∇xfk(x∗, z∗) +
∑p

i= βi∇xgi(x∗, z∗)
f (x∗, z∗)

] ∣∣∣∣
∑l

k= y∗
k∇zfk(x∗, z∗) +

∑p
i= βi∇zgi(x∗, z∗) = ,

βi ≥ ,βigi(x∗, z∗) = ,k = , . . . , l, i = , . . . ,p

}
. (.)

This implies the subdifferential inclusion of (ii) by (.) and (.). If both f and g are convex,
inclusion (.) holdswithout the inner semicontinuity assumption (see [, Theorem.]
and [, Corollary ]). This completes the proof. �
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Note that in the fully convex (even nonsmooth) case, the assumption (.) in Theo-
rem . can be replaced by a much weaker qualification condition [] requiring that the
set epi f ∗ + cone(

⋃p
i= epi g∗

i ) is closed on Rn × Rm × R, where epi f ∗ denotes the conjugate
function for an extended real-valued function f .

4.2 Sensitivity analysis of the lower-level optimal solution maps
In this subsection, we present an upper estimate for the coderivative of the solution map-
ping � given in (.) and establish its Lipschitz-like property. For this purpose, we first
present the calmness property. By (.), calculating the coderivative of � , we must com-
pute the limiting normal cone to the graph of � :

gph� =
{
(x, y, z) ∈ K | f (x, y, z) – ϕ(x, y)≤ 

}
with K =

{
(x, y, z) | g(x, z) ≤ 

}
(.)

in terms of the initial data. To proceed this way by using the conventional results of the
generalized differential calculus [] requires the fulfillment of the basic qualification con-
dition, which reads in this case

∂(f – g)
(
x∗, y∗, z∗)∩ (–NK

(
x∗, y∗, z∗)) = ∅. (.)

However, it is shown in [, Theorem .] that condition (.) fails in common situa-
tions; in particular, when ϕ is locally Lipschitz around the point in question. The weaker
assumption which helps circumventing this difficulty is given as follows:

�(ν) =
{
(x, y, z) ∈ K | f (x, y, z) – ϕ(x, y) ≤ ν

}
is calm at

(
,x∗, y∗, z∗). (.)

The condition (.) is automatically satisfied if f and g are linear. Furthermore, (.)
holds at (x∗, y∗, z∗) for the locally Lipschitzian function ϕ if we pass to the boundary of the
normal cone in (.), that is, if the following qualification condition holds:

∂(f – g)
(
x∗, y∗, z∗)∩ (–bdNK

(
x∗, y∗, z∗)) = ∅, (.)

with K being semismooth, in particular, convex. The condition (.) seems to be espe-
cially effective for so-called simple convex bilevel programming problems. For the more
details, the readers can be refer to [, ]. It is deserved that for the latter case, the condi-
tion (.) can be further weakened by passing to the boundary of the subdifferential of f
[]. It is also worth mentioning that, except the condition (.), another sufficient con-
dition for the validity of the calmness property (.) is provided by the notion of uniform
weak sharp minima. More details can be found in [, , ].
For estimating the coderivative of � , we present additional qualification condition:

[
(λ,βi) ∈ �z

(
x∗, y∗, z∗, 

)
,x∗∗ ∈ ∂(–ϕ)

(
x∗, y∗)]

⇒ λx∗∗ =

{
–λ

l∑
k=

y∗
k∇xfk

(
x∗, z∗) – p∑

i=

βi∇xgi
(
x∗, z∗)}, (.)
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where �z(x∗, y∗, z∗, z∗∗) is a particular multipliers set, i.e.,

�z
(
x∗, y∗, z∗, z∗∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(λ,βi)

∣∣∣∣∣∣∣
λ ≥ ,βi ≥ ,βigi(x∗, z∗) = ,
z∗∗ + λ

∑l
k= y∗

k∇zfk(x∗, z∗)
+
∑p

i= βi∇zgi(x∗, z∗) = ,
k = , , . . . , l; i = , , . . . ,p

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (.)

By [, Proposition .], if the functions f and g are fully convex and continuously dif-
ferentiable and the lower constraint function g does not contain the upper-level decision
maker variables and the lower-level value function ϕ is finite, the condition (.) is a suffi-
cient condition for (.) holding at point (x∗, y∗, z∗). The following lower-level Lagrange
multipliers set plays an important role in the sequel:

�
(
x∗, y∗, z∗) = {βi

∣∣∣ βi ≥ ,βigi(x∗, z∗) = , i = , , . . . ,p,∑l
k= y∗

k∇zfk(x∗, z∗) +
∑p

i= βi∇zgi(x∗, z∗) = 

}
. (.)

Now, we present the coderivative estimate and Lipschitz-like property of lower-level
solution maps.

Theorem . (i) For all (x∗, y∗, z) ∈ gph� , let the conditions (.) and (.) hold at this
point, and let the solutionmap� (.) be inner semicompact at (x∗, y∗).Then, for all z ∈ Rm,
(.) and the inclusion (.) hold:

D∗�
(
x∗, y∗, z∗)(z)

⊂
⋃

zs∈�(x∗ ,y∗)

⋃
(λ,βi)∈�z(x∗ ,y∗ ,z∗ ,z)

⋃
βs
i ∈�(x∗ ,y∗ ,z∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(
∑l

k= y∗
k∇xfk(x∗, z) –

∑n+l+
s= ηs

× (
∑l

k= y∗
k∇xfk(x∗, zs)

+
∑p

i= β
s
i∇xgi(x∗, zs)))

+
∑p

i= βi∇xgi(x∗, z),
λf (x∗, z) – λ

∑n+l+
s= ηsf (x∗, zs),∑n+l+

s= ηs = ,ηs ≥ ,
s = , . . . ,n + l + 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (.)

with
∑n+l+

s= ηs =  and ηs ≥  for s = , , . . . ,n + l + . If in addition the condition (.)
holds at (x∗, y∗, zs), then � is Lipschitz-like around this point.
(ii) Let the solution map � (.) be inner semicontinuous at (x∗, y∗, z∗) ∈ gph� , and let

the qualification conditions (.) and (.) hold at this point. Then, for all z∗∗ ∈ Rm, we
have

D∗�
(
x∗, y∗, z∗)(z∗∗)

⊂
⋃

(λ,βi)∈�z(x∗ ,y∗ ,z∗ ,z∗∗)

⋃
γi∈�(x∗ ,y∗ ,z∗)

{ p∑
i=

(βi – λγi)∇xgi
(
x∗, z∗)}. (.)

If in addition the condition (.) holds at (x∗, y∗, z∗), then � is Lipschitz-like around this
point.

Proof We first show the proof for (i). It follows from Theorem .(i) that the lower-level
function ϕ is Lipschitz continuous around (x∗, y∗) under assumption condition (.) and
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the inner semicompactness assumptions. If we add the calmness property (.), then we
have

Ngph�

(
x∗, y∗, z∗)

⊂
⋃

zs∈�(x∗ ,y∗)

⋃
λ≥

{
λ
(∇f

(
x∗, y∗, z∗) + ∂(–ϕ)

(
x∗, y∗)× {}) +NK

(
x∗, y∗, z∗)},

by [, Theorem .] taking into account that the constraint f (x, y, z) –ϕ(x, y)≤  is work-
ing at point (x∗, y∗, z∗). By (.), we have

NK
(
x∗, y∗, z∗) = { p∑

i=

βi∇zgi
(
x∗, z∗) ∣∣∣ βi ≥ ,βigi

(
x∗, z∗) = , i = , . . . ,p

}
, (.)

which holds under the validity of the condition (.) at point (x∗, y∗, zt). Combining the
definition of the coderivative (.), we derive the coderivative estimate (.). Further, by
(.) and the coderivative criterion (.) for the Lipschitz-like property, the coderivative
criterion holds provided that

x∗∗ ∈ λ(
∑l

k= y∗
k∇xf (x∗, z∗) + ∂(–ϕ)(x∗, y∗)) +

∑p
i= βi∇xgi(x∗, z∗),

(λ,βi) ∈ �z(x∗, y∗, z∗, )

}

⇒ x∗∗ = . (.)

Let us prove (ii). According to Theorem .(ii), the lower-level function ϕ is Lipschitz
continuous around (x∗, y∗) under the condition (.) and the inner semicontinuous as-
sumptions. If we add the calmness property (.), then we have

Ngph�

(
x∗, y∗, z∗)⊂

⋃
λ≥

{
λ
(∇f

(
x∗, y∗, z∗) + ∂(–ϕ)

(
x∗, y∗)× {}) +NK

(
x∗, y∗, z∗)},

by [, Theorem .] taking into account that the constraint f (x, y, z) – ϕ(x, y) ≤  is ac-
tive at point (x∗, y∗, z∗). By (.), the equality (.) holds. Combining the definition of
the coderivative (.), we derive the coderivative estimate (.). Further, by (.) and
the coderivative criterion (.) for the Lipschitz-like property, the coderivative criterion
holds provided the (.). This completes the proof. �

Noting that if the functions f and g are convex, the inner semicontinuity of � can be
dropped in Theorem .(ii).

4.3 Sensitivity analysis of the maximization bilevel optimal value functions
ϕp(x,y) and ϕpp(x) using the lower-level value function approach

For simplicity, we define the upper-level optimal solution set mapping as follows:

�o(x, y) =
{
z ∈ �(x, y) | –F(x, z) – ϕo

p(x, y) ≤ 
}
. (.)

In the rest of this paper, we always assume that the set �o(x, y) is nonempty. The follow-
ing results illustrate the local sensitivity analysis of the bilevel value function ϕp defined
in (.).
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Theorem . Considering (.) and (.), the following assertions hold:
(i)Assume that�o is inner semicompact at (x∗, y∗), the condition (.) holds at (x∗, y∗, z) ∈

gph� , while the condition (.) holds at (x∗, y∗, z) for all z ∈ �o(x∗, y∗). Then the following
inclusion holds:

∂ϕp
(
x∗, y∗) ⊂

⋃
zt∈�(x∗ ,y∗)

⋃
zs∈�(x∗ ,y∗)

⋃
(λt ,βt

i )∈�z(x∗ ,y∗ ,z∗ ,zt )

⋃
βs
i ∈�(x∗ ,y∗ ,z∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(
x∗∗
t , y∗∗

t
)
∣∣∣∣∣∣∣∣∣∣∣∣

x∗∗
t ∈∑n+l+

t= νt{∇xF(x∗, zt) – λt(
∑l

k= y∗
k∇xfk(x∗, zt)

–
∑n+l+

s= ηs(
∑l

k= y∗
k∇xfk(x∗, zs)

+
∑p

i= β
s
i∇xgi(x∗, zs))) +

∑p
i= β

t
i ∇xgi(x∗, zt)},

y∗∗
t ∈ λt f (x∗, zt) – λt

∑n+l+
s= ηsf (x∗, zs),∑n+l+

t= νt = ,νt ≥ , t = , . . . ,n + l + ,∑n+l+
s= ηs = ,ηs ≥ , s = , . . . ,n + l + 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (.)

If in addition (.) is satisfied at (x∗, y∗, z) for all z ∈ �o(x∗, y∗), then ϕp is Lipschitz con-
tinuous around (x∗, y∗).
(ii) Assume that �o is inner semicontinuous at (x∗, y∗, z∗), the conditions (.) and (.)

hold at this point. Furthermore, assume that the set coNgph� (x∗, y∗, z∗) is closed. Then the
following inclusion holds:

∂ϕp
(
x∗, y∗)

⊂
⋃

(λt ,βt
i )∈�z(x∗ ,y∗ ,z∗ ,z∗∗)

⋃
γ t
i ∈�(x∗ ,y∗ ,z∗)

{
∇xF(x∗, z∗) –

n+l+∑
t=

νt

{ p∑
i=

(
β t
i – λtγ

t
i
)∇xgi(x∗, z∗)

}∣∣∣∣
n+l+∑
t=

νt = ,νt ≥ , t = , . . . ,n + l + 

}
. (.)

If in addition (.) is satisfied at point (x∗, y∗, z∗), then ϕp is Lipschitz continuous around
(x∗, y∗).

Proof We first provide the proof of (i). To justify (i), observe by Theorem .(i) that

∂ϕo
p
(
x∗, y∗)⊂

⋃
zt∈�o(x∗ ,y∗)

{(
∇x(–F(x∗, zt))
∇y(–F(x∗, zt))

)
+D∗�

(
x∗, y∗, zt

)(∇z
(
–F
(
x∗, zt

)))}
,

under the inner semicompactness assumption on �o. Since �o(x, y) ⊂ �(x, y) for all
(x, y) ∈ X × Y , the lower-level optimal solution map � in (.) is also inner semicom-
pact at (x∗, y∗, zt) ∈ gph�o. Hence, by the subdifferential of the lower-level negation value
function –ϕ in Theorem .(i) and the coderivative of � in Theorem .(i), combining
with (.) and Carathéodory’s theorem, we can derive the upper estimate of ϕp(x∗, y∗).
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To prove the local Lipschitz continuity of ϕp(x∗, y∗) in (i) under the condition (.), the
latter condition implies the Lipschitz-like property of � around (x∗, y∗, zt) ∈ gph�o. Thus
the desired result is obtained from Theorem .(i).
For justifying (ii), since the function F is strictly differentiable and �o is inner semicon-

tinuous at (x∗, y∗, z∗), we get from [, Theorem .]

∂ϕo
p
(
x∗, y∗)⊂

{(
∇x(–F(x∗, z∗))
∇y(–F(x∗, z∗))

)
+D∗

�
(
x∗, y∗, z∗)(∇z

(
–F
(
x∗, z∗)))} .

Combining with (.) and Carathéodory’s theorem, we can derive the estimation for the
coderivative D∗

�(x∗, y∗, z∗)(∇z(–F(x∗, z∗))):

D∗
�
(
x∗, y∗, z∗)(∇z

(
–F
(
x∗, z∗)))

⊂
⋃

(λt ,βt
i )∈�z(x∗ ,y∗ ,z∗ ,z∗∗)

⋃
γ t
i ∈�(x∗ ,y∗ ,z∗)

{n+l+∑
t=

νt

{ p∑
i=

(
β t
i – λtγ

t
i
)∇xgi(x∗, z∗)

} ∣∣∣∣
n+l+∑
t=

νt = ,νt ≥ , t = , . . . ,n + l + 

}
.

The latter inclusion implies that Ngph� (x∗, y∗, z∗) = coNgph� (x∗, y∗, z∗) provided the set
coNgph� (x∗, y∗, z∗) is closed. Combining the above two results, by (.) and (.), we can
justify (.). To justify the local Lipschitz continuity of ϕp(x∗, y∗) in (ii) under the condi-
tion (.), the latter condition implies the Lipschitz-like property of � around (x∗, y∗, z∗).
This completes the proof. �

In the following, we shall present a local sensitivity analysis of the maximization bilevel
optimal value function ϕpp(x) in (.). For this goal, we need to estimate ∂ϕo

pp(x). Com-
bining (.) and the conclusion on the sensitivity analysis for the value function of the
nonparametric minimax problem (see [, Lemma .]), we have

∂ϕo
pp(x)⊆ ∂(–ϕp)(x, y) = ∂ϕo

p(x, y).

By (.), we derive that ∂ϕpp(x)⊂ – co ∂ϕo
p(x, y) and ϕpp(x) is Lipschitz continuous around

x∗ under the corresponding conditions of Theorem ..

Remark . Observe that for the subdifferential estimate of ϕp in Theorem .(ii), the
upper bound of the basic subdifferential does not contain the partial derivative of the
lower-level objective function f (x, y, z) with respect to the upper-level variable x. Such
a phenomenon is no longer true if the inner semicontinuity for �o is replaced by the in-
ner semicompactness in Theorem .(i), this phenomenon can also be found in [, ].
We mention that the inner semicompactness of �o in Theorem .(i) can be replaced by
the restrictive uniform boundedness assumption on �o or even on � . Finally, by Theo-
rem .(ii) and Theorem .(ii), we can derive the subdifferential estimate for ϕp, which
is different from (.). In this case, the gradient of the upper-level objective function F is
involved in the convex combinations summation, while that of (.) not be. This will be
shown in the following Theorem .(ii).
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4.4 Necessary optimality conditions using the bilevel optimal value function
formulation

In this subsection, we shall establish the necessary optimality conditions for the optimal
value reformulation (.) of the problem (.) using the above sensitivity analysis results.

Theorem . Let (x∗, y∗) be an upper-level regular local optimal solution to the problem
(.), whereas F and G are strictly differentiable at (x∗, z∗) and x∗, respectively, and let
X × Y be closed. Then the following assertions hold:
(i) Let �o be inner semicompact at (x∗, y∗) while for all z ∈ �(x∗, y∗) and the point (x∗, z)

is lower-level regular, let f and g be strictly differentiable at (x∗, z), z ∈ �(x∗, y∗), and let
the conditions (.) and (.) be satisfied at all point (x∗, y∗, z) with z ∈ �o(x∗, y∗). Then
there exist λt ≥ , α, β t , βs, ηs and zt , zs ∈ �(x∗, y∗) with t, s = , . . . ,n + l +  such that (.)
and the following conditions hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n+l+
t= νt{∇xF(x∗, zt) – λt(

∑l
k= y∗

k∇xfk(x∗, zt)
–
∑n+l+

s= ηs(
∑l

k= y∗
k∇xfk(x∗, zs) +

∑p
i= β

s
i∇xgi(x∗, zs)))

+
∑p

i= β
t
i ∇xgi(x∗, zt)} +∑q

j= αj∇Gj(x∗) = ,
∇zF(x∗, zt) – λt

∑l
k= y∗

k∇zfk(x∗, zt) –
∑p

i= β
t
i ∇zgi(x∗, zt) = ,∑l

k= y∗
k∇zfk(x∗, zs) +

∑p
i= β

s
i∇zgi(x∗, zs) = ,

∀j = , . . . ,q: αj ≥ , αjGj(x∗) = ,
∀t = , . . . ,n + l + ,∀i = , . . . ,p: β t

i ≥ , β t
i gi(x∗, zt) = ,

∀s = , . . . ,n + l + ,∀i = , . . . ,p: βs
i ≥ , βs

i gi(x∗, zs) = ,
∀s = , . . . ,n + l + : ηs ≥ ,

∑n+l+
s= ηs = ,

∀t = , . . . ,n + l + : νt ≥ ,
∑n+l+

t= νt = .

(.)

The relationships (.) and (.) considered together are called the KM-stationarity con-
ditions.
(ii) Let �o be inner semicontinuous at (x∗, y∗, z∗), (x∗, z∗) be lower-level regular, f and g

be strictly differentiable at (x∗, z∗), and let the conditions (.) and (.) be satisfied at
(x∗, y∗, z∗) and the set coNgph� (x∗, y∗, z∗) be closed. Then there exist λt ≥ , α, β t , and γ t

such that the following conditions hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇xF(x∗, z∗) –
∑n+l+

t= νt
∑p

i=(β t
i – λtγ

t
i )∇xgi(x∗, z∗) +

∑q
j= αj∇Gj(x∗) = ,

∇zF(x∗, z∗) –
∑n+l+

t= νt(λt
∑l

k= y∗
k∇zfk(x∗, z∗) +

∑p
i= β

t
i ∇zgi(x∗, z∗)) = ,∑l

k= y∗
k∇zfk(x∗, z∗) +

∑p
i= γi∇zgi(x∗, z∗) = ,

∀j = , . . . ,q: αj ≥ , αjGj(x∗) = ,
∀t = , . . . ,n + l + ,∀i = , . . . ,p: β t

i ≥ , β t
i gi(x∗, z∗) = ,

∀t = , . . . ,n + l + ,∀i = , . . . ,p: γ t
i ≥ , γ t

i gi(x∗, z∗) = ,
∀t = , . . . ,n + l + : νt ≥ ,

∑n+l+
t= νt = .

(.)

The relationships (.) are called the KN-stationarity conditions.

Proof Under the assumptions of (ii), the bilevel value function ϕpp in (.) is Lipschitz
continuous near x∗. Since X is closed, one has from [, Proposition .] that

 ∈ ∂ϕpp
(
x∗) +NX

(
x∗). (.)
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By the inner semicontinuity of �o at (x∗, y∗, z∗) and the upper regularity (.), we have

NX
(
x∗) = { q∑

j=

αj∇Gj
(
x∗) ∣∣∣ αj ≥ ,αjGj

(
x∗) = , j = , . . . ,q

}
. (.)

Combining with Theorem .(ii) and (.), Theorem .(ii) is easily derived. If �o is
inner semicompact around (x∗, y∗), the condition (.) holds at all point (x∗, y∗, z) with
z ∈ �(x∗, y∗), and that (.) and (.) are satisfied at all point (x∗, y∗, z) with z ∈ �o(x∗, y∗).
Thus, by Theorem .(i), we obtain the conclusion (i). This completes the proof. �

Remark . (i) The prefixes ‘KN’ and ‘KM’ in Theorem . reflect the difference between
the KKT-type optimality conditions via the inner semicompactness and inner semicon-
tinuity of the upper-level optimal solution set mapping �o, respectively. For the notions
‘KM-stationary’ and ‘KM-stationarity’, the readers can be referred to []. In (.), the
gradient of F does not involve the convex combinations summation, in this case, analo-
gously to [], we call (.) KKT-type necessary optimality (stationarity) conditions for
the problem (.).
(ii) Under the inner semicontinuity of the lower-level optimal set-valued mapping � ,

the necessary optimality conditions (ii) in Theorem . are in fact those of the problem

{
minxmaxymaxz F(x, z)

s.t. x ∈ X, z ∈ �(x, y).
(.)

Thismeans that the above framework, the constraints described by Y (.) can be dropped
and the condition that set X×Y is closed is reduced to that the set X is closed, the latter is
immediately reached by Hypothesis  in Section , while deriving the necessary optimality
conditions of the problem (.), which is a strange phenomenon just as that said in [].

By Proposition .(i) and Theorem ., the necessary optimality conditions for the pes-
simistic semivectorial bilevel programming problem (.) are derived when the involved
functions are strictly differentiable.

Corollary . Let (x∗, z∗) be a local optimal solution of the problem (.), where F and Gj,
j = , . . . ,q are strictly differentiable at (x∗, z∗) and z∗, respectively. For all x ∈ X, f (x, ·) and
g(x, ·) are Rl

+- and Rp
+-convex, respectively. Let x∗ be upper-level regular. Then the following

assertions hold:
(i) (KM-stationarity conditions) Let �o be inner semicompact at (x∗, y∗) while for all z ∈

�(x∗, y∗) and the point (x∗, z) is lower-level regular. Let f and g be strictly differentiable at
(x∗, z), z ∈ �(x∗, y∗), and let the conditions (.) and (.) be satisfied at all point (x∗, y∗, z)
with z ∈ �o(x∗, y∗) and the set X × Y be closed. Then there exist λt ≥ , α, β t , βs, ηs and
zt , zs ∈ �(x∗, y∗) with t, s = , . . . ,n + l +  such that (.) and (.) hold.
(ii) (KN-stationarity conditions) Let �o be inner semicontinuous at (x∗, y∗, z∗) and the

point (x∗, z∗) be lower-level regular. Let f and g be strictly differentiable at (x∗, z∗), X ×
Y be closed, and let the conditions (.) and (.) be satisfied at (x∗, y∗, z∗) and the set
coNgph� (x∗, y∗, z∗) be closed. Then there exist λt ≥ , α, β t and γ t such that (.) holds.
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5 BP with linear multiobjective optimization lower-level problems
In this section, we consider the following pessimistic semivectorial bilevel programming
problem (PSBP) with a linear multiobjective optimization lower-level problem:

min
x

max
z

F(x, z) s.t. G(x) ≤ , z ∈ �wef (x), (.)

where the functions F and G defined in Section , and �wef (x) is the weak Pareto optimal
solutions set of the following problem with respect to the upper decision variable x:

Rl
+ –min

z
A(x)z + b(x) s.t. C(x)z – d(x) = , z ≥ , (.)

where b : Rn → Rl and d : Rn → Rp are strictly differentiable, A : Rn → Rl×m and C : Rn →
Rp×m are defined by

A(x) =
(
akt(x)

)
≤k≤l,≤t≤m, (.)

C(x) =
(
cit(x)

)
≤i≤p,≤t≤m, (.)

where the real value functions akt ( ≤ k ≤ l,  ≤ t ≤ m) and cit ( ≤ i ≤ p,  ≤ t ≤ m) are
strictly differentiable.
Considering the bilevel optimal value function approach developed in the previous sec-

tion, for deriving the necessary optimality conditions for the problem (.), we firstly recall
the bilevel optimal value function reformulation of the problem (.) according to Sec-
tion ,

minϕpp(x) s.t. x ∈ X, (.)⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕpp(x) =maxy{ϕp(x, y) | y ∈ Y },
ϕp(x, y) =maxz{F(x, z) | z ∈ �(x, y)},
�(x, y) = {z ∈ Rm | f (x, y, z) – ϕ(x, y) ≤ ,C(x)z – d(x) = },
ϕ(x, y) =minz{f (x, y, z) | C(x)z – d(x) = , z ≥ }.

Here X = {x ∈ Rn |G(x)≤ } and Y is given in (.), the function f is defined as

f (x, y, z) =
〈
y,A(x)z

〉
+
〈
y,b(x)

〉
. (.)

The lower-level regularity condition for the problem (.) is given as follows:

∃̃z: C(x∗)̃z = d
(
x∗), z̃ > ,k = , . . . , l and C

(
x∗) has full row rank. (.)

The following result which is a consequence of Theorem . is the necessary optimality
conditions for the problem (.).

Theorem . (The necessary optimality conditions for the problem (.)) Let x∗ be an
upper-level regular local optimal solution to the problem (.), F and G be strictly differ-
entiable at (x∗, z∗) and x∗, respectively. The following assertions hold:
(i) (KM-stationarity conditions) Let �o (where �(x, y) in (.) is replaced by �(x, y) in

(.)) be inner semicompact at (x∗, y∗)while for all z ∈ �(x∗, y∗), (x∗, z) is lower-level regular
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in the sense of (.), f and g be strictly differentiable at (x∗, z), z ∈ �(x∗, y∗), and let the
conditions (.) and (.) be satisfied at all point (x∗, y∗, z) with z ∈ �o(x∗, y∗) and the
set X × Y be closed. Then there exist λr ≥ , α, βr , βs, ηs and zr , zs ∈ �(x∗, y∗) with r, s =
, . . . ,n + l +  such that (.) (with f (x, z) = A(x)z + b(x)) and the following hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n+l+
r= νr{∇xF(x∗, zr) – λr(

∑l
k= y∗

k
∑m

t= ztr∇akt(x∗)
–
∑n+l+

s= ηs(
∑l

k= y∗
k
∑m

t= z∗
ts∇akt(x∗)

+
∑p

i= β
s
i (
∑m

t= zts∇cit(x∗) –∇di(x∗))))
+
∑p

i= β
r
i (
∑m

t= ztr∇cit(x∗) –∇di(x∗))} +∑q
j= αj∇Gj(x∗) = ,

∀r = , . . . ,n + l + : ∇zF(x∗, zr) – λr
∑l

k= y∗
kak(x∗) –

∑p
i= β

r
i ci(x∗) ≤ ,

∀r = , . . . ,n + l + : z�
r [∇zF(x∗, zr) – λr

∑l
k= y∗

kak(x∗)
–
∑p

i= β
r
i ci(x∗) ≤ ] = ,

∀s = , . . . ,n + l + :
∑l

k= y∗
kak(x∗) +

∑p
i= β

s
i ci(x∗) ≤ ,

∀r, s = , . . . ,n + l + : z�
r [
∑l

k= y∗
kak(x∗) +

∑p
i= β

s
i ci(x∗)≤ ] = ,

∀j = , . . . ,q: αj ≥ , αjGj(x∗) = ,
∀s = , . . . ,n + l + : ηs ≥ ,

∑n+l+
s= ηs = ,

∀r = , . . . ,n + l + : νr ≥ ,
∑n+l+

r= νr = .

(.)

(ii) (KN-stationarity conditions) Let �o (where �(x, y) in (.) is replaced by �(x, y) in
(.)) be inner semicontinuous at (x∗, y∗, z∗), (x∗, z∗) be lower-level regular in the sense of
(.), f and g be strictly differentiable at (x∗, z∗) and the set X×Y be closed and let the con-
ditions (.) and (.) be satisfied at (x∗, y∗, z∗) and the set coNgph� (x∗, y∗, z∗) be closed.
Then there exist λr ≥ , α, βr and γ r such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇xF(x∗, z∗) +
∑q

j= αj∇Gj(x∗)
–
∑n+l+

r= νr
∑p

i=(βr
i – λrγ

r
i )(
∑m

t= ztr∇cit(x∗) –∇di(x∗)) = ,
∇zF(x∗, z∗) –

∑n+l+
r= νr(λr

∑l
k= y∗

kak(x∗) +
∑p

i= β
r
i ci(x∗))≤ ,

z∗�[∇zF(x∗, z∗) –
∑n+l+

r= νr(λr
∑l

k= y∗
kak(x∗) +

∑p
i= β

r
i ci(x∗))≤ ] = ,

∀r = , . . . ,n + l + :
∑l

k= y∗
kak(x∗) +

∑p
i= γ

r
i ci(x∗) ≤ ,

∀r = , . . . ,n + l + : z∗�[
∑l

k= y∗
kak(x∗) +

∑p
i= γ

r
i ci(x∗) ≤ ] = ,

∀j = , . . . ,q: αj ≥ , αjGj(x∗) = ,
∀r = , . . . ,n + l + : νr ≥ ,

∑n+l+
r= νr = .

(.)

Proof The proof is similar to that of Theorem . and so is omitted here. �

Remark . (i) If the term b(x) of the lower-level objective function in the problem (.)
is removed, we can obtain the same result for Theorem .(i) and (ii), which is

λr

l∑
k=

y∗
k∇bk

(
x∗) – λr

n+l+∑
s=

ηs

l∑
k=

y∗
k∇bk

(
x∗)

= λr

l∑
k=

y∗
k∇bk

(
x∗) – λr

l∑
k=

y∗
k∇bk

(
x∗) n+l+∑

s=

ηs = ,

note that
∑n+l+

s= ηs = .
(ii) If F and G are linear functions with respect to their variables, then the calmness

condition (.) is automatically satisfied in this case by []. Then we can obtain themore
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concise results, which is the particular case of Corollary .. The interested reader can try
to give detailed results of the optimality conditions for this case.

6 Conclusions
In this paper, we develop the necessary optimality conditions for the pessimistic formula-
tion of semivectorial bilevel optimization problem. Firstly, we transform our problem into
a scalar objective optimization problem with inequality constraints via the scalarization
method for the multiobjective optimization problem. Furthermore, we derive a general-
ized minimax optimization problem by means of the bilevel optimal value function, of
which the sensitivity analysis is constructed via the lower-level value function approach.
Considering the special case where the lower-level multiobjective optimization problem
is linear, we also give it the necessary optimality conditions. In the further work, we intend
to develop the necessary optimality conditions in the nonsmooth setting and develop the
solving algorithms for the pessimistic formulation of semivectorial bilevel optimization
problem, especially the latter, which is challenging. For the problem (.), if the leader is
not certain of that the follower cooperates or dose not cooperate fully with him, it would
be inappropriate for the leader who considers only the optimistic or pessimistic formula-
tion. Hence, when both the leader and the follower are neither fully cooperative nor fully
non-cooperative, it is meaningful to consider a partial cooperationmodel which combines
the optimistic formulation and the pessimistic formulation for the problem (.).
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