
Li and Li Journal of Inequalities and Applications 2014, 2014:409
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

RESEARCH Open Access

Integrated production and distribution
scheduling problems related with fixed
delivery departure dates and number of late
orders
Shanlin Li* and Maoqin Li

*Correspondence:
lishanlin56@hotmail.com
Department of Mathematics,
Taizhou University, Taizhou,
Zhejiang 317000, P.R. China

Abstract
We consider an integrated production and distribution scheduling problem faced by
a typical make-to-order manufacturer which relies on a third-party logistics provider
for finished product delivery to customers. In the beginning of a planning horizon,
the manufacturer has received a set of orders to be processed on a single production
line. Completed orders are delivered to customers by a finite number of vehicles (e.g.
trucks, air freight containers on specific air flights) provided by the 3PL company
which follows a fixed daily or weekly shipping schedule such that the vehicles have
fixed departure dates which are not part of the decisions. The problem is to find a
feasible schedule that minimizes one of the following objective functions: (1) the
number of late orders, (2) the number of vehicles used subject to the condition that
the number of late orders is minimum. We show that both problems are solvable in
polynomial time.

Keywords: integrated production and distribution; 3PL; fixed departure dates; due
dates; number of late orders

1 Introduction
Fierce competition in today’s global market and heightened expectations of customers
have forced companies to invest aggressively to reduce inventory levels across the supply
chain on one hand and be more responsive to customers on the other. To reduce inven-
tory, an increasing number of companies now adopt make-to-order (a.k.a. assemble-to-
order, build-to-order) business models in which products are custom-made and delivered
to customers within a very short lead time directly from the factory. Consequently, there
is little or no finished product inventory in the supply chain such that production and out-
bound distribution are very intimately linked and must be scheduled jointly to achieve a
desired on-time delivery performance at minimum total cost. To improve delivery time-
liness without having to invest in logistics assets, a majority of the companies worldwide
rely on third-party logistics (PL) providers for their daily distribution and other logis-
tics needs (Langley et al. []). PL providers often follow a fixed daily or weekly schedule
for serving their customers. For example, many package delivery service providers such
as UPS and FedEx have daily fixed package pickup times; and most PL rail, ocean, and

©2014 Li and Li; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/409
mailto:lishanlin56@hotmail.com
http://creativecommons.org/licenses/by/2.0

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

air freight service providers have a fixed weekly schedule for a specific origin-destination
pair.
In this paper, we study integrated production and outbound distribution scheduling de-

cisions commonly faced by many manufacturers that operate in a make-to-order mode
and rely on a PL provider for finished product delivery to customers where the PL
provider follows a fixed delivery schedule. Examples of such manufacturers include most
high-end custom-made consumer electronics product manufacturers based in Asia that
rely on air flights (which have fixed departure times) to deliver finished products to the
US and European markets. The production and distribution scheduling problem faced by
such a manufacturer can be described as follows. At the beginning of a planning horizon,
the manufacturer has received a set J = {J, J, . . . , Jn} of n independent orders from its cus-
tomers to be processed on a single assembly line. Order Ji has a processing time pi and a
desired due date di which is negotiated and agreed on by the manufacturer and the cus-
tomer who placed the order. Finished orders are delivered by vehicles which have fixed
departure times. In the planning horizon, there are z possible vehicle departure time in-
stantsT,T, . . . ,Tz , whereby at timeTj, ≤ j ≤ z, there are vj vehicles available for delivery.
In the air flight case, each vehicle represents an air freight container. Based on a contrac-
tual agreement between themanufacturer and the PL provider, themanufacturer can use
a certain number (e.g. vj) of containers available on a given flight with departure time Tj.
Usually the PL provider charges the manufacturer a fixed transportation cost for each
air freight container used. Thus, the total transportation cost is represented by the total
number of vehicles (i.e. total number of containers) used. Each order is packaged into a
standard-size pallet for delivery convenience regardless of the order size. Each vehicle can
deliver at most C orders (e.g. in the air flight case, each container can hold up to C pallets).
The vj vehicles can only deliver orders that are completed by time Tj. A feasible schedule
is one in which each order has completed processing and delivered by one of the available
vehicles. Without loss of generality, we may assume that Tz ≥ ∑n

i= pi, otherwise, there is
at least one order that cannot be delivered and hence there is no feasible schedule.
In a given feasible schedule, if order Ji is delivered at time Tj and Tj > di, we define Ui to

be ; if order Ji is delivered at time Tj and Tj ≤ di, we define Ui to be . We say in a given
feasible schedule an order Ji is early if Ui =  and late if Ui = . The minimum number
of late orders

∑n
i=Ui measures the delivery timeliness relative to the customers’ desired

due dates and is one of the most commonly used measurements in practice. The prob-
lem is to find a feasible schedule that minimizes one of the following objective functions:
()

∑n
i=Ui, () the number of vehicles used subject to the condition that

∑n
i=Ui is mini-

mum. We show that all two problems are solvable in polynomial time.
The remainder of this paper is organized as follows. We give a brief literature review in

the rest of this section. In Section , we give a simple algorithm to check the feasibility of
a given instance of the problem. In Sections  and , we give polynomial-time algorithms
to solve problems () and (), respectively. We conclude the paper in Section .

1.1 Related literature
Research on integrated production and outbound distribution scheduling problems is rel-
atively recent, but it has attracted a rapidly growing interest in the last several years []. In
most of the problems considered in the literature, vehicle departure times are not fixed and
need to be determined along with other decisions. Only a handful of problems considered

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 3 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

in the literature involve fixed vehicle departure times. Such problems can be classified into
two types based on vehicle availability. One type assumes that there are infinite number
of vehicles available at each departure time, whereas the other type assumes that there
are a limited number of vehicles available at each departure time. Stecke and Zhao [],
Melo and Wolsey [] and Zhong et al. [] all consider similar problems with an infinite
number of vehicles where each order has a deadline which has to be satisfied and the ob-
jective is to minimize the total transportation cost. Their problems differ slightly in the
structure of the transportation cost. Since the focus of this paper is on problems with a
finite number of vehicles, we do not review these papers in detail.
Li et al. [–] and Zandieh and Molla-Alizadeh-Zavardehi [] study several similar

problemswith a finite number of vehicles at each departure timewhich are allmotivated by
applications involving synchronizing assembly operations of consumer electronics prod-
ucts such as PCs and air transportation schedules. Orders may have different sizes and the
capacity of a vehicle is measured by the total size (weight or volume) of orders that it can
carry. There is an earliness or tardiness penalty if an order is delivered earlier or later than
the due date. The objective is to minimize the total transportation cost and total weighted
earliness and tardiness penalty. Li et al. [] consider the case where all the orders are pro-
cessed on a number of parallel production lines, whereas the other papers consider the
case with a single production line. The problems are strongly NP-hard as they contain the
strongly NP-hard classical single-machine total weighted tardiness scheduling problem
(Lenstra et al. []) as a special case when the delivery part is not considered. These papers
propose various heuristics for solving their problems. Wang et al. [] study a problem
with a finite number of vehicles which involves coordinating mail processing and distri-
bution schedules at amail processing and distribution center. The objective is tominimize
the total unused vehicle capacity. The authors show that this problem is strongly NP-hard
and propose dispatching rules and heuristics.
Fu et al. [] consider a problem where there is a limit on the total delivery capacity at

each departure time. Each order has a delivery departure deadline, a production window,
a size and a profit. The problem is to select a subset of orders to accept so as to maximize
the total profit of the accepted orders under the constraint that each accepted order is pro-
cessed within its production window, the delivery of this order is departed by its delivery
departure deadline, and the total size of the orders delivered at each departure time does
not exceed the available vehicle capacity limit. The problem is strongly NP-hard as it con-
tains the bin packing problem as its special case when only the delivery part is considered.
The authors propose a polynomial-time approximation scheme for the problem.
Leung and Chen [] discuss an integrated production and distribution scheduling prob-

lem. In the beginning of a planning horizon, the manufacturer has received a set of orders
to be processed on a single production line. Completed orders are delivered to customers
by a finite number of vehicles provided by the PL company which follows a fixed daily or
weekly shipping schedule such that the vehicles have fixed departure dates. The problem is
to find a feasible schedule that minimizes one of the following objective functions: () the
maximum lateness of orders, () the number of vehicles used subject to the condition that
the maximum lateness is minimum, () the weighted sum of the maximum lateness and
the number of vehicles used. They show that all three problems are solvable in polynomial
time.

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 4 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Finally we note that a remotely related class of problems - production scheduling prob-
lems that involve fixed delivery departure dates but do not involve delivery vehicles - have
been extensively studied in the literature (e.g. Hall et al. []). These problems only con-
sider production scheduling decisions without explicitly involving delivery vehicles. They
do not consider any vehicle related objective function, and they can be viewed as special
cases of our problems with an infinitely many delivery vehicles available at each departure
time so that vehicle availability and vehicle capacity are never a constraint.

2 Feasibility
Given an instance of the problem, we first need to determine whether there is any feasi-
ble schedule. The following, Algorithm VA, comes from Leung and Chen [] and is now
stated. The idea is to schedule the orders in Smallest-Processing-Time first (SPT) order.
Let S be a SPT schedule. Let S(Ti,Tj) denote the set of orders completed in the interval
(Ti,Tj] in S. Let Tz+ be any integer greater than Tz . We then assign the orders to the ve-
hicles by the following algorithm.

Algorithm VA
Input:An SPT schedule S. For each departure time Tj, for  ≤ j ≤ z, there are vj vehicles

available for delivery at Tj.
Output: ‘Yes’ if it is possible to deliver all the orders in the schedule S; ‘No’ otherwise.
Method:
. S(Tz,Tz+) := ∅; T := .
. For j =  to z do

(a) Assign the orders in S(Tj–,Tj) to one of the vj vehicles available at time Tj.
After an order is assigned to a vehicle, it is removed from S(Tj–,Tj).

(b) If all of the vj vehicles are full and there is still at least one unassigned order in
S(Tj–,Tj), then put all the unassigned orders into S(Tj,Tj+).

. If S(Tz,Tz+) = ∅ then return ‘Yes’, else return ‘No’.

If the algorithm returns ‘Yes’, then there is a feasible schedule; otherwise, there is no
feasible schedule.
Let (S,S) be a SPT schedule of the instance of the problem. Clearly, there is no feasible

schedule for the instance of the problem if |S| = ∑z
j=k vjC and

∑
Ji∈S pi > Tk–, where

 ≤ k ≤ z. In the remainder of this paper, we will assume that there is a feasible schedule
for the given instance.

3 Number of late orders
In this section we give a polynomial-time algorithm to solve the number of late orders
problem. Similar to the idea in Leung and Chen [], we first classify the set of orders based
on certain criteria, and then do iteration for the types to obtain an optimal schedule. For
each ≤ i≤ n, we compute the maximal departure time d̄i =max{Tm|Tm ≤ di, ≤m ≤ z}
such that order Ji must be a late order if it is delivered after time d̄i. For each  ≤ j ≤ z,
we classify the set of orders based on d̄i : N,j = {Ji|d̄i = Tj,  ≤ i ≤ n}. Clearly, in a given
schedule an order Ji ∈ N,j is early if and only if it is completed and delivered by time Tj.
The following algorithm decides whether there is a feasible schedule that minimizes the
number of late orders. To break ties when sequencing the orders in increasing order of

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

their processing times, we employ the last-in first rule, i.e., we arrange order Jj before
order Ji if Jj is merged into a set of orders S and pj = pi, where Ji ∈ S.

Algorithm NF
Input: A set of n orders J, . . . , Jn.
Output: A feasible schedule that minimizes the number of late orders.
Method:
. For each ≤ i≤ n, let d̄i =max{Tm|Tm ≤ di, ≤m ≤ z}.
. For each ≤ j ≤ z, let N,j = {Ji|d̄i = Tj, ≤ i≤ n}.
. P =

∑n
i= pi; P′ := P; t := . T := . N, := ∅.

. For j = z down to  do
(a) Let Rt,j be all the orders in Nt,j, arranged in non-decreasing order of their

processing times.
(b) If vjC < |Rt,j|, then update Nt,j– :=Nt,j– ∪ Ft,j and Rt,j := Rt,j\Ft,j, where Ft,j are

the first |Rt,j| – vjC orders from Rt,j.
(c) p :=

∑
Ji∈Rt,j pi.

(d) Schedule the orders in Rt,j from time P′ – p to P′. These orders will be delivered
by the vehicles available at time Tj.

(e) P′ := P′ – p.
(f) If P′ > Tj–, find Jlt ∈ Nt,jl such that  ≤ jl ≤ j –  and plt =max{pi|Ji ∈ ⋃j–

i=Nt,i}.
Update Nt, :=Nt,, Nt, :=Nt,, . . . , Nt,jl– :=Nt,jl–, Nt,jl :=Nt,jl\{Jlt },
Nt,jl+ :=Nt,jl+, . . . , Nt,j– :=Nt,j–, Nt,j := Rt,j, . . . , Nt,z– := Rt,z–, Nt,z := Rt,z ∪ {Jlt }
and t := t + , return to .

. Stop. The schedule (Rt,, . . . ,Rt,z) is an optimal feasible schedule, where the orders in
Rt,j will be delivered by the vehicles available at time Tj and t denotes the number of
late orders in the optimal feasible schedule.

AlgorithmNF consists of t+ iterations. t in AlgorithmNF decides not only the number
of iterations but also the number of late orders. The iteration starts from t := . The t+th
iteration checks whether there is a feasible schedule such that it contains t late orders
exactly. If not, select an order as a late order, update t := t +  and other data, proceed to
the next iteration. For ease of presentation, we list detailed output data generated by the
t +  iterations as follows:

(R,j , . . . ,R,z), Jl ; . . . ; (Rt–,jt– , . . . ,Rt–,z), Jlt– ; (Rt,, . . . ,Rt,z), ()

where for k = , , . . . , t – ,  ≤ jk ≤ z, P –
∑

Ji∈
⋃z

j=jk
Rk,j pi > Tjk–, Jlk ∈ J\⋃z

j=jk Rk,j, and
plk =max{pi|Ji ∈ J\⋃z

j=jk Rk,j}.
The following lemma describes some properties of the data obtained by Algorithm NF.

Lemma  Let data in () be obtained by Algorithm NF. All of the following hold.
(i) j ≥ j ≥ · · · ≥ jt = .
(ii) pl ≥ pl ≥ · · · ≥ plt– .
(iii) For each  ≤ k ≤ t –  and k +  ≤ i ≤ t, Jlk ∈ ⋃z

j=jk Ri,j and is a late order if the
orders in Ri,j are delivered at time Tj.

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 6 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Proof Let (R,j , . . . ,R,z), Jl be the output data obtained by the first iteration of Algo-
rithm NF. Then we have P –

∑
Ji∈

⋃z
j=m R,j pi ≤ Tm–, |R,m| ≤ vmC form = z, z – , . . . , j + 

and P –
∑

Ji∈
⋃z

j=j
R,j pi > Tj–, |R,j | ≤ vjC. When running the second iteration on the

data (N,,N,, . . . ,N,z), R,z = R,z ∪{Jl} if |R,z| < vzC and R,z = R,z ∪{Jl}\{Jl} otherwise,
where pl =min{pi|Ji ∈ R,z ∪ {Jl}}. In either case,

∑
Ji∈R,z pi ≥

∑
Ji∈R,z pi. This implies that

P –
∑

Ji∈R,z pi ≤ P –
∑

Ji∈R,z pi ≤ Tz–. Further, we have form = z – , . . . , j,

z⋃

j=m

R,j =
z⋃

j=m

R,j ∪ {Jl} if
z∑

j=m

|R,j| <
z∑

j=m

vjC, ()

z⋃

j=m

R,j =
z⋃

j=m

R,j ∪ {Jl}\{Jl} if
z∑

j=m

|R,j| =
z∑

j=m

vjC, ()

where pl = min{pi|Ji ∈ ⋃z
j=m R,j ∪ {Jl}}. This implies that for m = z – , . . . , j + , P –

∑
Ji∈

⋃z
j=m R,j pi ≤ P –

∑
Ji∈

⋃z
j=m R,j pi ≤ Tm–. Thus, j ≥ j holds. The proof of the following

inequalities in (i) are similar to that of the first inequality. We conclude that (i) holds.
By AlgorithmNF, we have Jl ∈ J\⋃z

j=j R,j and Jl ∈ J\⋃z
j=j R,j, where pl =max{pi|Ji ∈

J\⋃z
j=j R,j} and pl = max{pi|Ji ∈ J\⋃z

j=j R,j}. Due to (i), j ≥ j. It follows from the ar-
gument of (i) that

⋃z
j=j R,j =

⋃z
j=j R,j ∪ {Jl} if

∑z
j=j |R,j| < ∑z

j=j vjC. In the case, since
J\⋃z

j=j R,j ⊇ J\⋃z
j=j R,j, we have pl ≥ pl .

⋃z
j=j R,j =

⋃z
j=j R,j∪{Jl}\{Jl} if

∑z
j=j |R,j| =∑z

j=j vjC, where pl = min{pi|Ji ∈ ⋃z
j=j R,j ∪ {Jl}}. In the case, since J\⋃z

j=j R,j ⊇ {Jl} ∪
J\⋃z

j=j R,j, along with pl ≤ pl , we have pl ≥ pl . Thus, the first inequality pl ≥ pl in (ii)
holds. The proofs of the following inequalities in (ii) are similar to that of the first inequal-
ity. We conclude that (ii) holds.
For any k ∈ {, , . . . , t – }, Suppose Jlk ∈N,k . Clearly, Jlk is a late order if it is delivered

at time Tj, where k < j ≤ z. To show (iii), there are two cases to consider: (a) k < jk and (b)
k ≥ jk .
(a) k < jk . Assume that Jlk ∈ ⋃z

j=jk Rk+,j does not hold.Due to the argument of (i), we have
∑z

j=jk |Rk,j| =∑z
j=jk vjC,

⋃z
j=jk Rk+,j =

⋃z
j=jk Rk,j, and plk =min{pi|Ji ∈ ⋃z

j=jk Rk,j ∪ {Jlk }}. This,
along with plk = max{pi|Ji ∈ J\⋃z

j=jk Rk,j}, implies that for any Ji ∈ J\⋃z
j=jk Rk,j and Ji ∈

⋃z
j=jk Rk,j, pi ≤ pi . This, along with

∑z
j=jk |Rk,j| = ∑z

j=jk vjC and P –
∑

Ji∈
⋃z

j=jk
Rk,j pi > Tjk–,

implies that there is no feasible schedule for the instance of the problem, which contra-
dicts the assumption that there is a feasible schedule for the given instance. Thus, we have
Jlk ∈ ⋃z

j=jk Rk+,j and is a late order if the orders in Rk+,j are delivered at timeTj. Further, due
to the argument of (i), we have

⋃z
j=jk Rk+,j =

⋃z
j=jk Rk+,j ∪ {Jlk+} if

∑z
j=jk |Rk+,j| < ∑z

j=jk vjC,⋃z
j=jk Rk+,j =

⋃z
j=jk Rk+,j ∪ {Jlk+}\{Jl} if

∑z
j=jk |Rk+,j| = ∑z

j=jk vjC, where pl = min{pi|Ji ∈
⋃z

j=jk Rk+,j ∪ {Jlk+}}. This, along with plk ≥ plk+ and Jlk is merged into
⋃z

j=jk Rk+,j before
Jlk+ merged, implies that Jlk ∈ ⋃z

j=jk Rk+,j and is a late order if the orders in Rk+,j are de-
livered at time Tj. Similarly, we can show Jlk ∈ ⋃z

j=jk Ri,j and it is a late order if the orders
in Ri,j are delivered at time Tj for i = k + , . . . , t.
(b) k ≥ jk . Note the fact that order Jlk is pushed by the iterations from N,k into

J\⋃z
j=jk Rk,j. By Step (a) and Step (b), we have |Rk,j| = vjC for j = jk , . . . ,k and plk =

min{pi|Ji ∈ ⋃k
j=jk Rk,j}. This implies Jlk ∈ ⋃z

j=k+ Rk+,j (⊆ ⋃z
j=jk Rk+,j). Otherwise, due to

the argument of (i), we have
∑z

j=k+ |Rk,j| = ∑z
j=k+ vjC,

⋃z
j=k+ Rk+,j =

⋃z
j=k+ Rk,j, and

plk =min{pi|Ji ∈ ⋃z
j=k+ Rk,j ∪ {Jlk }}, and then we have

∑z
j=jk |Rk,j| =∑z

j=jk vjC,
⋃z

j=jk Rk+,j =⋃z
j=jk Rk,j, and plk = min{pi|Ji ∈ ⋃z

j=jk Rk,j ∪ {Jlk }}. Similar to the argument of case (a), we

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 7 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

can derive a contradiction. Similarly, we can show Jlk ∈ ⋃z
j=jk Ri,j and it is a late order if the

orders in Ri,j are delivered at time Tj for i = k + , . . . , t. This ends the proof for (iii). �

Theorem  AlgorithmNF correctly finds a feasible schedule that minimizes the number of
late orders in O(zn logn) time.

Proof Wefirst prove that
⋃z

j=jk Rk,j has not only exactly k late orders but also themaximum
total processing time among all schedules for k = , , . . . , t–. By the definition ofN,z and
Step (a) and Step (b) of Algorithm NF, we see that R,z is a set of early orders delivered
at time Tz with the maximum total processing time among all schedules. Similarly, we see
that

⋃z
j=m R,j is a set of early orders with the maximum total processing time among all

schedules form = z – , . . . , j, where the orders in R,j are delivered at time Tj.
By () and (), we have

⋃z
j=j R,j =

⋃z
j=j R,j ∪ {Jl} if

∑z
j=j |R,j| < ∑z

j=j vjC,
⋃z

j=j R,j =⋃z
j=j R,j ∪{Jl}\{Jl} if

∑z
j=j |R,j| =∑z

j=j vjC where pl =min{pi|Ji ∈ ⋃z
j=j R,j ∪{Jl}}. This,

alongwith (iii) in Lemma , pl =max{pi|Ji ∈ J\⋃z
j=j R,j}, and⋃z

j=j R,j being a set of early
orders with themaximum total processing time among all schedules, implies that

⋃z
j=j R,j

does not only have exactly a late order but also themaximum total processing time among
all schedules. Further, by Step (a) and Step (b) of Algorithm NF, we see that

⋃z
j=m R,j

does not only exactly have a late order but also themaximum total processing time among
all schedules form = j – , . . . , j. Similarly, we can show the result for k = , . . . , t – .
We below prove that (Rt,, . . . ,Rt,z) is a feasible schedule minimizing the number of

late orders. By Algorithm NF, the feasibility is obvious. For any feasible schedule S =
(R, . . . ,Rz), where the orders in Rj are delivered at time Tj for j = , . . . , z, we see that⋃z

j=j Rj contains at least a late order. Otherwise, by
∑

Ji∈
⋃z

j=j
Rj pi ≤ ∑

Ji∈
⋃z

j=j
R,j pi, we

see that
∑

Ji∈S\
⋃z

j=j
Rj pi ≥ P –

∑
Ji∈

⋃z
j=j

R,j pi > Tj–. This contradicts the feasibility of S.
Given that

⋃z
j=j Rj contains at least a late order,

⋃z
j=j Rj contains at least two late or-

ders. Otherwise,
⋃z

j=j Rj contains a late order. By
∑

Ji∈
⋃z

j=j
Rj pi ≤

∑
Ji∈

⋃z
j=j

R,j pi, we have∑
Ji∈S\

⋃z
j=j

Rj pi ≥ P –
∑

Ji∈
⋃z

j=j
R,j pi > Tj–. This contradicts the feasibility of S. Similarly,

we can show that
⋃z

j=jk Rj contains k +  late orders at least for k = , . . . , t – . Thus,
(Rt,, . . . ,Rt,z) is a feasible schedule minimizing the number of late orders.
We now show that the algorithm can be implemented to run in O(zn logn) time. The

algorithm consists of n +  iterations at most since there are n late orders at most. Step 
of the algorithm takes O(n log z) time. Step  takes O(n logn) time since we can sort the
jobs in ascending order of d̄i and then divide the jobs into various N,j. Step  takes O(n)
time. Step  is iterated z times. Within each iteration, the most time-consuming step is
Step (a), sorting the orders in ascending order of their processing times, which takes
O(n logn) time. Hence Step  takesO(zn logn) time. Thus, the overall running time of the
algorithm is O(zn logn) time. �

4 Minimum number of vehicles used
In this section we show that the problem of minimizing the number of vehicles used sub-
ject to the constraint that the number of late orders is minimum can be solved in poly-
nomial time. We assume that we have found the minimum number of late orders using
the algorithm given in the previous section. The sets (Rt,, . . . ,Rt,z) were obtained by Al-
gorithm NF, where t is the minimum number of late orders. By the fact that if |Rt,j| < vjC,
then each order in

⋃j–
i= Rt,i is an early order and will be a late order if we push the order to

be delivered by vehicles at Tj. Thus, either there is no feasible schedule or the number of

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 8 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

late orders must will be increased if we push some order in Rt,i to be delivered by vehicles
at Ti+, . . . ,Tz . By the optimality of t, we see that the number of late orders must will not
be decreased if we push some order in Rt,i to be delivered by vehicles at T, . . . ,Ti–. The
following algorithm finds a solution with a minimum number of vehicles used under the
constraint that the number of late orders is minimum by pushing some orders to an earlier
departure time for delivery.

AlgorithmMV
Input: z sets of orders Rt,, . . . ,Rt,z given byAlgorithmNF, where t is theminimumnum-

ber of late orders.
Output:A vehicle assignment: V, . . . ,Vz , where the orders in Vj will be delivered by the

vehicles available at time Tj, so that the number of vehicles used is minimum.
Method:
. T := . v := .
. For j = z down to  do

(a) Let V ′
j be all the orders in Rt,j, arranged in non-decreasing order of their

processing times, and |V ′
j | = kC + r, where k and r are nonnegative integers, and

 ≤ r < C, and F is the set of the first r orders from V ′
j .

(b) If
∑

Ji∈
⋃j–

m= Rt,m∪F pi > Tj–, then update A := ∅ and Vj := V ′
j , and the orders in Vj

will be delivered by the vehicles at time Tj and proceed to the next j.
(c) Let A′ are the first kC + r orders from V ′

j , where k is the maximal nonnegative
integer such that

∑
Ji∈∪j–

m=Rt,m∪A′ pi ≤ Tj–.
(d) If
|Rt,j– ∪A′|/C� ≤ vj–C, then update A := A′, Rt,j– := Rt,j– ∪A and

Vj := V ′
j \A and the orders in Vj will be delivered by the vehicles available at time

Tj and proceed to the next j.
(e) Call Subalgorithm CA to computer A, then update Rt,j– := Rt,j– ∪A and

Vj := V ′
j \A, and the orders in Vj will be delivered by the vehicles at time Tj and

proceed to the next j.

The algorithm schedules the order delivery backwards, starting fromTz and going down
to T. Now, suppose we are considering the orders in Rt,j,  ≤ j ≤ z. Step (a) sorts these
orders in Rt,j in ascending order of their processing times, and assigns these sorted orders
to the set V ′

j , and expresses the number of orders in V ′
j as kC + r and assigns the first r

orders from V ′
j to the set F . As we will see later, some orders from a later departure time,

e.g., some orders from Rt,h for some h > j, may be pushed to an earlier departure time for
delivery and join the set Rt,j. Therefore, there could be more orders in Rt,j than are in the
initially defined set Rt,j. We will try to use the minimum number of vehicles to deliver all
or part of the orders in V ′

j . Step (b) checks whether it is possible to push the orders in F
to be delivered by vehicles at Tj–, . . . ,T. If it is not possible, Step (b) stops the algorithm
and outputs A = ∅ and Vj = V ′

j . Otherwise, Step (c) computes the set of orders A′ which
made
|V ′

j |/C�–
|A′|/C� theminimal number possibly of vehicles used atTj. Step (d) and
(e) exactly decide the set of orders A which made
|V ′

j |/C�–
|A|/C� minimal number of
vehicles used at Tj.

Subalgorithm CA
. A′ := the first kC + r orders from V ′

j , arranged in non-decreasing order of their
processing times.

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 9 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

. Sort the orders in Rt,j– ∪A′ in ascending order of their processing times.
. If |Rt,j– ∪A′| ≤ vj–C, then stop and output A = A′.
. For h =  to j – , let R′

t,h := Rt,h.
. B := the first |Rt,j– ∪A′| – vj–C orders from Rt,j– ∪A′.
. For h = j –  down to  do

(a) Sort the orders in R′
t,h ∪ B in ascending order of their processing times.

(b) If
∑

Ji∈
⋃h

m= R
′
t,m∪B pi > Th,

(b) if |A′| < C, stop and output A = ∅;
(b) update A′ := the first |A′| –C orders from A′ and return .

(c) If |R′
t,h ∪ B| ≤ vhC, then stop and output A = A′.

(d) If h = , stop and output A = ∅ if |A′| < C and update A′ := the first |A′| –C
orders from A′ and return  else.

(e) Update B := the first |R′
t,h ∪ B| – vhC orders from R′

t,h ∪ B and proceed to the
next h.

Subalgorithm CA operates as follows. The algorithm consists of k +  main iterations
for the first kC + r orders, the first (k – )C + r orders, . . . , the first r orders from V ′

j , re-
spectively, and exactly decides the set of ordersAwhichmade
|V ′

j |/C�–
|A|/C�minimal
number of vehicles used at Tj. In Step , it sorts the orders in the initial A′ in ascending
order of their processing times. Now, suppose we are considering the sth main iteration,
where  ≤ s ≤ k + . In Step , it sorts the orders in Rt,j– ∪A′ in ascending order of their
processing times. If |Rt,j– ∪ A′| ≤ vj–C, all orders in A′ can be delivered by vehicles at
Tj–. Step  stops the algorithm and outputs A = A′. Otherwise, Step  assigns the orders
in Rt,h to a temporary set R′

t,h for each h from  to j – . This is necessary since Subalgo-
rithm CA operates on R′

t,h without changing the content of Rt,h. Step  assigns the first
|Rt,j– ∪ A′| – vj–C orders from Rt,j– ∪ A′ to a set B. Step  consists of j –  secondary
iterations, starting from j –  and going down to . Step  checks whether it is possible to
push the orders in A′ to be delivered by vehicles at Tj–, . . . ,T. Suppose we are consider-
ing the hth secondary iteration for the sth main iteration. In Step (a), it sorts these orders
in R′

t,h ∪ B in ascending order of their processing times. There are two cases to consider.
In case ,

∑
Ji∈

⋃h
m= R

′
t,m∪B pi > Th. It is impossible to deliver all orders in A′ by the vehi-

cles at T, . . . ,Th. If |A′| < C, Step (b) stops the algorithm and outputs A = ∅. Otherwise,
Step (b) assigns the first |A′|–C orders from A′ to A′ and proceed to the next main iter-
ation. In case ,

∑
Ji∈

⋃h
m= R

′
t,m∪B pi ≤ Th. If |R′

t,h ∪B| ≤ vhC, all orders in A′ can be delivered
by vehicles at Tj–, . . . ,T. Step (c) stops the algorithm and outputs A = A′. Otherwise,
when we reach h = , it is impossible to deliver all orders in A′ by the vehicles at T, . . . ,Th.
Step (d) stops the algorithm and outputs A = ∅ if |A′| < C, and assigns the first |A′| – C
orders from A′ to A′ else, and proceed to the next main iteration. Step (e) assigns the first
|R′

t,h ∪ B| – vhC orders from R′
t,h ∪ B to B and proceed to the next secondary iteration.

Theorem AlgorithmMVfinds an optimal solutionwith theminimumnumber of vehicles
used under the constraint that the number of late orders is minimum in O(zn logn) time.

Proof We first point out that the solution by Algorithm MV does not change the opti-
mality of the number of late orders, since the solution is found by pushing some orders in
Rt,, . . . ,Rt,z to an earlier departure time for delivery.

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 10 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Let Vz and A be the output data obtained by the first iteration of AlgorithmMV, where
Vz = V ′

z\A and A is the set of the first |A| orders from V ′
z (the orders of V ′

z = Rt,z have
been arranged in non-decreasing order of their processing times). Step (b) corresponds
to the case where

∑
Ji∈

⋃z–
m= Rt,m∪F pi > Tz–, where F the set of the first |F| orders from

V ′
z and  < |F| < C. In the case, it is impossible to deliver all orders in F by the vehi-

cles at T, . . . ,Tz–. This, along with F consists of the first |F| orders from V ′
z , means that

the number of vehicles used at Tz cannot decrease by one. Thus,
|V ′
z|/C� is the mini-

mal number of vehicles used at Tz . However, we cannot push part of orders in F to be
delivered by vehicles at Tz–, . . . ,T, since if we do that, it not only does not decrease
the number of vehicles used at Tz , but it also increases the amount of orders delivered
by vehicles at Tz–, . . . ,T. In the case, the data Vz = V ′

z and A = ∅ are optimal. Under
the case of

∑
Ji∈

⋃z–
m= Rt,m∪F pi ≤ Tz–, Step (c) computes the set of orders A′ which made

|V ′
z|/C� –
|A′|/C� the minimal number of vehicles possibly used at Tz , where A′ are the

first kC + r orders from V ′
z . This is because k is the maximal nonnegative integer such

that
∑

Ji∈
⋃z–

m= Rt,m∪A′ pi ≤ Tz– and A′ consists of some small orders in V ′
z . Step (d) cor-

responds to the case where
|Rt,z– ∪ A′|/C� ≤ vz–C. This means that we can push all of
orders in A′ to be delivered by vehicles at Tz–. Thus, in the case, the output data A = A′

and Vz = V ′
z\Amake
|Vz|/C� the minimal number of vehicles used at Tz . Under the case

of
|Rt,z– ∪ A′|/C� > vz–C, Step (e) calls Subalgorithm CA to decide a set of orders A
such that
|Vz|/C� is the minimal number of vehicles used at Tz, where Vz = V ′

z\A. We
show below that Subalgorithm CA can really do that.
Subalgorithm CA consists of k +  main iterations for the first kC + r orders, the first

(k – )C + r orders, . . . , the first r orders from V ′
z , respectively. We now run the first main

iteration for the first kC+ r ordersA′ fromV ′
z . Due to the corresponding case by Step (e),

we have A′ �= ∅ and |Rt,z– ∪A′| > vz–C. We need to proceed through Step . Step  assigns
the orders in Rt,h to a temporary set R′

t,h for each h from  to j – . This is necessary since
Subalgorithm CA operates on R′

t,h without changing the content of Rt,h. Step  assigns the
first |Rt,z– ∪ A′| – vz–C orders from Rt,z– ∪ A′ to a set B. If we want to push the orders
in A′ to be delivered by vehicles at Tz–, . . . ,T, all orders of B are the minimal increment
undertaken by vehicles at Tz–, . . . ,T to deliver. Now we proceed through Step .
Step  consists of z –  secondary iterations. We now run the first secondary itera-

tion. If
∑

Ji∈
⋃z–

m= R
′
t,m∪B pi > Tz–, it is impossible to deliver all orders in B by the vehicles

at T, . . . ,Tz–. This means that the number of vehicles used at Tz should to be at least

|V ′

z|/C� –
|A′|/C� + . Step (b) corresponds to the case where |A′| < C and outputs
A = ∅. This, along with A′ �= ∅ and Vz = V ′

z , implies that
|Vz|/C� is the minimal number
of vehicles used at Tz . Step (b) corresponds to the case where |A′| ≥ C and starts the
secondmain iteration for the first (k –)C+r ordersA′ fromV ′

z to checkwhether it is pos-
sible to push the orders in A′ to be delivered by vehicles at Tz–, . . . ,T. On the other hand,∑

Ji∈
⋃z–

m= R
′
t,m∪B pi ≤ Tz–. Step (c) corresponds to the case where |R′

t,z– ∪B| ≤ vz–C. This
means thatwe can push all of orders inA′ to be delivered by vehicles atTz– andTz–. Thus,
the output data A = A′ by Step (c) and Vz = V ′

z\Amake
|Vz|/C� the minimal number of
vehicles used at Tz . Otherwise, Step (e) start the second secondary iteration to check
whether it is possible to push the orders in a set of the first |R′

t,z– ∪B|– vz–C orders from
R′
t,z– ∪ B to be delivered by vehicles at Tz–, . . . ,T. Similarly, we can show the result for

the following secondary iterations. If needmay be, we proceed through the last secondary
iteration. Suppose that B is a set of orders output by the last time secondary iteration. In

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 11 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

the case of
∑

Ji∈R′
t,∪B pi > T, Step (b) outputs A = ∅ if |A′| < C and Step (b) starts

the second main iteration for the first (k – )C + r orders A′ from V ′
z else. In the case of∑

Ji∈R′
t,∪B pi ≤ T, Step (c) outputs data A = A′ if |R′

t, ∪ B| ≤ vC. Otherwise, Step (d)
outputsA = ∅ if |A′| < C and starts the secondmain iteration for the first (k–)C+r orders
A′ fromV ′

z else, since it is impossible to deliver all orders in the set of the first |R′
t,∪B|–vC

orders from R′
t, ∪B by the vehicles at T = . Similarly, we can show the result for the fol-

lowing main iterations in Subalgorithm CA, which can really decide a set orders A such
that
|Vz|/C� is the minimal number of vehicles used at Tz , where Vz = V ′

z\A. For the fol-
lowing iterations in AlgorithmMV, we can show the result. At last, the algorithmmust be
able to find an optimal solution with the minimum number of vehicles used.
Wenow look at the time complexity ofAlgorithmMV. In the algorithm, Step  takes con-

stant time. Step  is iterated z times. Inside the iteration loop, the most time-consuming
steps are (a) and (e). Step (a) calls for sorting the jobs which takes O(n logn) time.
Step (e) calls SubalgorithmCAwhich takesO(zn logn) time. Thus, the overall time com-
plexity of AlgorithmMV is O(zn logn). �

5 Conclusion
In this paper, we have given polynomial-time algorithms for minimizing: () the number
of late orders, () the number of vehicles used subject to the condition that the number
of late orders is minimum. An interesting open question is whether the problem related
with release dates is NP-hard or not.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Acknowledgements
This work was supported in part by the Zhejiang Natural Science Foundation of China grant Y6110054. The authors wish
to thank Weiya Zhong and Zhi-Long Chen for their technical advice, and C Cascante for his editorial work.

Received: 23 May 2014 Accepted: 16 September 2014 Published: 16 Oct 2014

References
1. Chen, Z-L: Integrated production and outbound distribution scheduling: review and extensions. Oper. Res. 58,

130-148 (2010)
2. Fu, B, Hou, Y, Zhao, H: Coordinated scheduling of production and delivery with production window and delivery

capacity constraints. Theor. Comput. Sci. 422, 39-51 (2012)
3. Hall, NG, Lesaoana, M, Potts, CN: Scheduling with fixed delivery dates. Oper. Res. 49, 134-144 (2001)
4. Lenstra, JK, Rinnooy Kan, AHG, Brucker, P: Complexity of machine scheduling problems. Ann. Discrete Math. 1,

343-362 (1977)
5. Langley, CJ, van Dort, E, Sykes, SR: 2005 Third-Party Logistics: Results and Findings of the 10th Annual Study (2006)
6. Leung, JY-T, Chen, Z-L: Integrated production and distribution with fixed delivery departure dates. Oper. Res. Lett. 41,

290-293 (2013)
7. Li, KP, Ganesan, VK, Sivakumar, AI: Synchronized scheduling of assembly and multi-destination air-transportation in a

consumer electronics supply chain. Int. J. Prod. Res. 43, 2671-2685 (2005)
8. Li, KP, Ganesan, VK, Sivakumar, AI: Scheduling of single stage assembly with air transportation in a consumer

electronic supply chain. Comput. Ind. Eng. 51, 264-278 (2006)
9. Li, KP, Sivakumar, AI, Ganesan, VK: Complexities and algorithms for synchronized scheduling of parallel machine

assembly and air transportation in consumer electronic supply chain. Eur. J. Oper. Res. 187, 442-455 (2008)
10. Melo, RA, Wolsey, LA: Optimizing production and transportation in a commit-to-delivery business mode. Eur. J. Oper.

Res. 203, 614-618 (2010)
11. Stecke, KE, Zhao, X: Production and transportation integration for a make-to-order manufacturing company with a

commit-to-delivery business mode. Manuf. Serv. Oper. Manag. 9, 206-224 (2007)
12. Wang, Q, Batta, R, Szczerba, RJ: Sequencing the processing of incoming mail to match an outbound truck delivery

schedule. Comput. Oper. Res. 32, 1777-1791 (2005)
13. Zandieh, M, Molla-Alizadeh-Zavardehi, S: Synchronizing production and air transportation scheduling using

mathematical programming models. J. Comput. Appl. Math. 230, 546-558 (2009)
14. Zhong, W, Chen, Z-L, Chen, M: Integrated production and distribution scheduling with committed delivery dates.

Oper. Res. Lett. 38, 133-138 (2010)

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

Li and Li Journal of Inequalities and Applications 2014, 2014:409 Page 12 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/409

10.1186/1029-242X-2014-409
Cite this article as: Li and Li: Integrated production and distribution scheduling problems related with fixed delivery
departure dates and number of late orders. Journal of Inequalities and Applications 2014, 2014:409

http://www.journalofinequalitiesandapplications.com/content/2014/1/409

	Integrated production and distribution scheduling problems related with ﬁxed delivery departure dates and number of late orders
	Abstract
	Keywords

	Introduction
	Related literature

	Feasibility
	Number of late orders
	Minimum number of vehicles used
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

