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Abstract

In this paper, we prove that the double inequality M,(a, b) < U(a, b) < My(a, b) holds for
alla,b>0witha#bifandonlyif p < 2log2/(2logm —log2) =0.8684- - - and

q > 4/3, where U(a, b) and M,(a, b) are the Yang and rth power means of a and b,

respectively.
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1 Introduction
Let p € Rand a,b > 0 with a # b. Then the pth power mean M, (a, b) of a and b is given by

al + b?

1/p
My(a,b) = < ) (p#0),  Mo(a,b) =~/ ab.

The main properties for the power mean are given in [1]. It is well known that M, (a, b) is
strictly increasing with respect to p € R for fixed a,b > 0 with a # b. Many classical means
are the special cases of the power mean, for example, M_;(a, b) = 2ab/(a + b) = H(a, b) is
the harmonic mean, My(a, b) = v/ab = G(a, b) is the geometric mean, M, (a,b) = (a+b)/2 =
A(a, b) is the arithmetic mean, and M, (a, b) = \/m = Q(a, b) is the quadratic mean.

Let L(a,b) = (b — a)/(logb - loga), P(a,b) = (a — b)/[2 arcsin((a — b)/(a + b))], M(a,b) =
(a—Db)/[2sinh™((a—b)/(a +b))], I(a,b) = (a®/b*)V @D e and T(a, b) = (a - b)/[2 arctan((a —
b)/(a + b))] be the logarithmic, first Seiffert, Neuman-Sandor, identric, and second Seiffert
means of two distinct positive real numbers a and b, respectively. Then it is well known
that the inequalities

H(a,b) < G(a,b) < L(a,b) < P(a,b)
<I(a,b) < Aa,b) < M(a,b) < T(a,b) < Q(a, b)
hold for all ¢, b > 0 with a # b.

Recently, the bounds for certain bivariate means in terms of the power mean have been
the subject of intensive research. Seiffert [2] proved that the inequalities

;Ml(a, b) < P(a,b) < Mi(a,b) < T(a,b) < My(a,b)

hold for all @, b > 0 with a # b.
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Jagers [3] proved that the double inequality
Miyp(a, b) < Pla, b) < My3(a, b)

holds for all @, b > 0 with a # b.
In [4, 5], Hasto established that

2V2
P(“: b) >Mlog2/10gﬂ(“;b)’ P(LZ, b) > TMZ/S(ﬂr b)

for all a,b > 0 with a # b.
Witkowski [6] proved that the double inequality

@Mz(a,b) < T(a,b) < éMl(a, b)
T T

holds for all @, b > 0 with a # b.
In [7], Costin and Toader presented the result that

MIogZ/(logrr—logZ)(ﬂ, b) < T(a,b) < Ms3(a, b)

forall a,b > 0 with a # b.
Chu and Long [8] proved that the double inequality

My(a,b) < M(a, b) < My(a, b)

holds for all @,b > 0 with a # b if and only if p < log2/log[21log(1 + v/2)] = 1.224 - - - and
q>4/3.

The following sharp bounds for the logarithmic and identric means in terms of the
power means can be found in the literature [9-16]:

My(a, b) < L(a, b) < My3(a, b), Moyy3(a, b) < 1(a, b) < Mioga(a, b),
Mo(a,b) < LV*(a, b)IY*(a, b) < Myj(a, b),

L(a,b) +I(a,b
Miog2/a+10g2) (@, b) < % < Mip(a,b)

for all a,b > 0 with a # b.
Recently, Yang [17] introduced the Yang mean U(a, b) of two distinct positive real num-
bers a and b as follows:

a-b

a-b ’
ﬁ arctan o

U(a,b) =

and he proved that the inequalities

G(a,b)T(a,b) P(a,b)Q(a, b)

P(ﬂ,b)<u(ﬂ,b)<T(ﬂ,b), W<U(ﬂ,b)<w,
1/2 1/3
Q1/2(a, b)[w] < L[(&Z, b) < QZ/B(ﬂ, b)[W] ,
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Gl(a,b) + Q(a, b)

2 <G(a, b) + Q(a, b)>”2
2

1 2
112
3 5 + 3 Q'“(a, b)}

<U(a,b) < [

hold for all ¢, b > 0 with a # b.

In [18], Yang et al. presented several sharp bounds for the Yang mean U(a, b) in terms
of the geometric mean G(a, b) and quadratic mean Q(a, b).

The main purpose of this article is to find the greatest value p and the least value g such
that the double inequality

My(a,b) < U(a,b) < My(a, b)
holds for all @, b > 0 with a # b.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-

tion.

Lemma 2.1 Let f;:(0,1) x R — R be defined by

Q-2+ 1-x
filx,p) = Ja )1+ ) — /2 arctan ﬁ (2.1)
Then

(1) filx, p) is strictly decreasing with respect to x on (0,1) if and only if p > 4/3;
(2) filx,p) is strictly increasing with respect to x on (0,1) if and only if p < 1/2.

Proof 1t follows from (2.1) that

Ofiep)  (1-xr
ax  2(1+x2)%(x + &?)2

f2(x,p), (2.2)
where

flp) =P (-1 +x-5x" = 3x%) + 27 (3 + 5w — &% +4°) — (2p - 1)

+4x — 4x> + (2p — Dat. (2.3)

(1) If fi(x, p) is strictly decreasing with respect to x on (0,1), then (2.2) leads to the con-
clusion that f;(x, p) < 0 for all x € (0,1). In particular, from (2.3) we have

lim Ltap) —24(p - %) <0. (2.4)

x—1- 1—x

Therefore, p > 4/3 follows from (2.4).
If p > 4/3, then it follows from (2.3) that

fp(xp)
p

[#(x* = &% + 5% + 3) + "7 (3x> + 5% —x + 1) ] logx
-2(1-2%)<0 (2.5)

forallx € (0,1).
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Equation (2.3) and inequality (2.5) lead to the conclusion that

x—l/?)

Llup) <f (x, %) = _T(l —x2/3)3

X (3x8/3 +5x7% + 942 +124° + 6% + 12 + 9523 + 5413 + 3) <0 (2.6)

for all x € (0,1).

Therefore, fi(x, p) is strictly decreasing with respect to x on (0, 1) follows from (2.2) and
(2.6).

(2) If fi(x, p) is strictly increasing with respect to x on (0,1), then (2.2) leads to the con-
clusion that f,(x, p) > 0 for all x € (0,1). In particular, we have f,(0*,p) > 0 and we assert
that p < 1/2. Indeed, from (2.3) we clearly see that f,(0*,p) = —oco for p > 1, £,(0%,1) = -2,
£2(0%,0) =4, f,(0%,p) =oco for p< 0,and (0%, p)=1-2pforO<p<1.

If p < 1/2, then inequality (2.5) holds again. It follows from (2.3) and (2.5) that

1
frlx,p) = f (x, 5) =222 (1 - ) (x® + 2477 + 4 + 24" +1) > 0 (2.7)

for all x € (0,1).
Therefore, fi(x, p) is strictly increasing with respect to x on (0,1) follows from (2.2) and
(2.7). O

Lemma 2.2 Let fi:(0,1) x R — R be defined by (2.1). Then
(1) filx,p) >0 forall x € (0,1) if and only if p > 4/3;
(2) Ailx,p) <0 forallxe(0,1) ifand only if p <1/2.

Proof (1) If fi(x, p) > O for all x € (0,1), then from (2.1) and the L'Hopital rules we have

. filkp) 1
1 = —(3p-4)>0
Jm T 12(19 ) >

and p > 4/3.

If p > 4/3, then (2.1) and Lemma 2.1(1) lead to the conclusion that fi(x,p) > fi(1,p) = 0
for all x € (0,1).

(2) If filx,p) < O for all x € (0,1), then f1(0%, p) < 0. We claim that p < 1/2. Indeed, it
follows from (2.1) that £1(0*,p) = +oo if p > 1/2.

If p <1/2, then (2.1) and Lemma 2.1(2) lead to the conclusion that fi(x,p) < fi(1,p) = 0
forall x € (0,1). a

Lemma 2.3 Let f3:(0,1) x R — R be defined by

fal,p) = a7 4 427 _5x3 % 394 1 34 5x —x% + 43

—2p-Dx7P +4x"P — 43P + (2p - DL, (2.8)

Then 3*f3(x, p)/0x* < 0 for all x € (0,1) if p € (1,4/3).
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Proof 1t follows (2.8) that

xp”‘% = 5" (a3x® + apx® + arx + ag) + bax* + b3x® + bix + by, (2.9)
where
a3 = -32p -1)(2p-2)2p -3)2p - 4) <0, (2.10)
as = -10p(2p - 1)(2p - 2)(2p - 3) > 0, (2.11)
a =2p2p -1)(2p +1)(2p -2) > 0, (2.12)
ao = -2p(2p —1)(2p + 1)(2p +2) < 0, (2.13)
by=Q2p-1)p-1)p-2)p-3)p-4) <0, (2.14)
by = —4p(p-1)(p-2)(p - 3) <0, (2.15)
bi=4p(p-1)(p+1)(p+2)>0, (2.16)
bo=-p2p-1)(p+1)(p+2)(p+3)<O0. (2.17)

From (2.11)-(2.13) and (2.16) together with (2.17) we get

AsX® + a1x + dg < dg + ay + ag = —4p(2p — 1)(101}92 -2lp + 17) <0, (2.18)

bix+bg<bi+bg=-p(p+2)(p+1)(2p° +p+1) <0 (2.19)

for all x € (0,1).
Therefore, Lemma 2.3 follows easily from (2.9), (2.10), (2.14), (2.15), (2.18), and (2.19).
d

Lemma 2.4 Let f3:(0,1) x R — R be defined by (2.8). Then d2f3(x, p)/3x* < 0 for all x €
(0,1) if p € (1/2,4/3).

Proof 1t follows from (2.8) that

a2 % =643 + (2p—1)(p - 3)(p — 4)x* — 247*2
-32p-3)2p-4)x*P —52p-2)(2p - 3)x>7
+(2p=1)2p - 2a* " ~2p(2p ~ '
—4(p-2)(p-3)%° +4p(p-x—p2p-1)(p +1), (2.20)
PR aa(2op)(2-r) <o o
Vhxp) = 88p® —300p? + 380p — 144. (2.22)
9x3  la=1

We divide the proof into two cases.
Case 1. p € (1/2,1]. Then from

@r-Dp-3)(p-4)>0, -32p-3)2p-4)<0, -52p-2)2p-3)=<0,
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(2p-1)(2p-2) <0, -2p(2p-1) <0, -4(p-2)(p-3) <0,
4pp-1)<0,  -p2p-1p+1)<0,

O<ax*<al®<x*P <x®<al?<x®P <x?

<x¥P <x<x'P <1
and (2.20) we clearly see that

3*f3(x, p)
+2 ’
x? o <

[6+2p-Dp-3)p-4)]x*?+[-2-32p-3)2p-4)
-52p-2)2p-3)+(2p-1)(2p-2)-2p(2p-1)
-4(p-2)(p-3) +4pp-1)

-p@2p-1)(p +1)]x**

=-8(3p-4)2p-3)x*7 <0

forallx € (0,1).
Case 2. p € (1,4/3]. Then (2.22) leads to

887

=88 1) 53’ 1)+24>0
= p- (p )+§(p—+ > 0.

9°f3(x, p) 53
44

8x3 xX=

(2.23)

It follows from Lemma 2.3 and (2.23) that 82f; (x, p)/dx? is strictly increasing with respect

to x on (0,1).

Therefore, 3%f3(x, p)/dx* < 0 for all x € (0, 1) follows from (2.21) and the monotonicity of

the 32f;(x, p)/0x? with respect to x on the interval (0,1).

O

Lemma2.5 Letfi:(0,1) x R — R be defined by (2.1). Then there exists A € (0,1) such that
filx, p) is strictly decreasing with respect to x on the interval (0, )] and strictly increasing

with respect to x on the interval [\, 1) if p € (1/2,4/3).

Proof Let fo(x,p) and f3(x, p) be defined by (2.3) and (2.8), respectively. Then from (2.8)

we clearly see that

f1p) =0,  f3(0%,p) =-o0,

3fs(x, p)
0x

afs(x,
=8(3p-4)<0, lim /5.p) = +00
x=1 x—0% 0x

(2.24)

(2.25)

It follows from Lemma 2.4 and (2.25) that there exists Ao € (0,1) such that f3(x,p) is
strictly increasing with respect to x on (0, A¢] and strictly decreasing with respect to x on
[X0,1). This in conjunction with (2.24) leads to the conclusion that there exists A € (0,1)

such that f3(x, p) < 0 for x € (0, 1) and f3(x,p) > 0 for x € (1,1).
Note that

folx,p) = X f3(x, p).

(2.26)

Therefore, Lemma 2.5 follows from (2.2) and (2.26) together with the piecewise positive

and negative of f3(x, p) on (0,1).

O
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Lemma 2.6 Letf:(0,1) x R — R be defined by

Uu,x) 1-x 1 1+«
(x,p) =10 =lo ——1lo, 0), (2.27)
fep £ M,(1,x) & V2 arctan i/;%c p D) w7
. ua,x) 1-x 1
(x,0) = lim lo =lo — —logx. (2.28)
I p—0 g My(1, %) g /2 arctan \l/;zﬁx 2 %

Then the following statements are true:
(1) f(x, p) is strictly increasing with respect to x on (0,1) if and only if p > 4/3;
(2) f(x,p) is strictly decreasing with respect to x on (0,1) if and only if p <1/2;
(3) If1/2 < p < 4/3, then there exists i € (0,1) such that f (x,p) is strictly increasing with
respect to x on (0, u] and strictly decreasing with respect to x on [u,1).

Proof 1t follows from (2.27) and (2.28) that

I (x,p) 1+ar1

dx  /2(1—x)(1 +?) arctan %

filx,p), (2.29)

where fi(x, p) is defined by (2.1).
Therefore, parts (1) and (2) follow from Lemma 2.2 and (2.29).
Next, we prove part (3). If 1/2 < p < 4/3, then (2.1) leads to

A(0%p) =+00,  fillp)=0. (2.30)

From Lemma 2.5 and (2.30) we clearly see that there exists u € (0,1) such that f(x,p) > 0
for x € (0, u) and fi(x, p) < 0 for x € (u,1).

Therefore, part (3) follows from (2.29) and the fact that fi(x,p) > 0 for x € (0, «) and
filx,p) <0 for x € (u,1). O

3 Main results
Theorem 3.1 The double inequality

My(a,b) < U(a,b) < My(a, b)

holds for all a,b > 0 with a # b if and only if p < po = 2log2/(2logm —log2) = 0.8684 - - -
and q > 4/3.

Proof Since both the Yang mean U(a, b) and the rth power mean M, (a, b) are symmetric
and homogeneous of degree 1, without loss of generality, we assume thata=1and b=x €

(0,1).
We first prove that the inequality U(1,x) < M,(1,x) holds for all x € (0,1) if and only if
q>4/3.
If g = 4/3, then from (2.27) and Lemma 2.6(1) we get
lo UL f 4 fl1 4 0 (3.1)
——=flx =< =)= .
& Mas(1,) 3 3

forallx € (0,1).
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Therefore, U(1,x) < My(1,x) for all x € (0,1) and g > 4/3 follows from (3.1) and the
monotonicity of the function g — M,(1,x).
IfU(1,%) < My(1,%), then (2.27) and (2.28) lead to f (x, ) < 0 for all x € (0,1). In particular,

we have

lim M—l<é—q)<0

1 (1-x)2 8\3 -
and g > 4/3.
Next, we prove that the inequality U/(1,x) > M,(1,x) holds for all x € (0,1) if and only if
p = po-

If U(1,%) > M,(1,x) holds for all x € (0,1), then (2.27) leads to f(x, p) > 0 for all x € (0, 1).
In particular, we have

1

f(0%.p) = (1—9 + %) log2 —logm > 0. (3.2)

We claim that p < py. Indeed, p < p, follows from (3.2) if p > 0, and p < py is obvious if
p<0.
If p = po, then (2.27) leads to

£(0%,po) =f(1,po) = 0. (3.3)
It follows from (2.27) and (3.3) together with Lemma 2.6(3) that

u@,x) _

log ———
& My (L)

S po) >0 (3.4)

for all x € (0,1).
Therefore, U(1,%) > M,(1,x) forallx € (0,1) and p < p, follows from (3.4) and the mono-
tonicity of the function p — M, (1,x). O

Theorem 3.2 Let a,b > 0 with a # b. Then the double inequality

25/4 25/2
7M4/3(61, b) < U(a,b) < 7M1/2(ﬂ, b)

holds with the best possible constants 2°'*/7 and 2° /7.

Proof 1t follows from Lemma 2.6(1) and (2) together with (2.27) that

Ulx) 1 L) 2P
Ogm—f(x,i) <f<0 ,5)—10g7 (35)
and
UlLx) [ 4 A
og Mim(l,x) _f(x, §> >f(0 s §> =log — (3.6)

forallx € (0,1).
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Therefore, 2°/% /7w Ma3(1,%) < U(L, %) < 252/ M1 5(1, %) for all x € (0,1) follows from (3.5)
and (3.6), and the optimality of the parameters 2>/ and 2°/?/7 follows from the mono-
tonicity of the functions f(x,1/2) and f(x,4/3). O

Remark 3.1 For all a1, a,, b1, by > 0 with a;/b; < ay/by < 1. Then from Lemma 2.6(1) and
(2) together with (2.27) we clearly see that the Ky Fan type inequalities

My(az, by) y U(az, by) . M(az, by)
Mp(a, b))  Ula, b))  Mylay, b)

hold if and only if p > 4/3 and g < 1/2.

Let p € Rand Ly(a, b) = (@”*' + b"*)/(a” + b”) be the pth Lehmer mean of two positive
real numbers and a and b. Then the function fi (x, p) defined by (2.1) can be rewritten as

(3.7)

fl(x,p) = (1 _ x) |:A(1’x)Lp—1(1, x) 1 :I

GLOQRLx) U«
From Lemma 2.2 and (3.7) we get Remark 3.2.

Remark 3.2 The double inequality

G@hQ@h) . GahQab)
A@b)L @b~ A b)L, () b)

holds for all a,b > 0 with a # b if and only if p > 4/3 and g < 1/2.
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