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1 Introduction

It is well known that integral inequalities play a dominant role in the study of quantitative
properties of solutions of differential and integral equations [1-5]. Fractional inequalities
are important in studying the existence, uniqueness, and other properties of fractional dif-
ferential equations. Recently many authors have studied integral inequalities on fractional
calculus using Riemann-Liouville and Caputo derivatives; see [6—9] and the references
therein. In [10, 11], the authors established some weakly singular integral inequalities of
Gronwall-Bellman type and also applied them in the qualitative analysis of solutions to
certain fractional differential equations of the Caputo type.

Another kind of fractional derivative that appears in the literature is the fractional
derivative due to Hadamard, introduced in 1892 [12], which differs from the Riemann-
Liouville and Caputo derivatives in the sense that the kernel of the integral contains a log-
arithmic function of an arbitrary exponent. Details and properties of Hadamard fractional
derivative and integral can be found in [13-18]. Recently in the literature there appeared
some results on fractional integral inequalities using the Hadamard fractional integral; see
[19-22].

Let us recall here the definitions of Hadamard’s fractional integral and derivative [23].

Definition 1.1 The Hadamard fractional integral of order &« € R* of a function f(¢), for all
t >0, is defined as

N

" 1 ¢ A ds
IO s /0 + <1og ;) 6%, (L)

where I is the standard gamma function defined by I'(«) = fooo e~*s*"1 ds, provided the
integral exists, where log(-) = log,(-).
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Definition 1.2 The Hadamard fractional derivative of order « € [n — 1,n), n € Z*, of a
function f(¢) is given by

. 1 a\" (t(. e\  ds
HDf(t)=m<f%> /(ﬁ(l‘)g;) f(s)?. (1.2)

Differential equations with ‘maxima’ are a special type of differential equations that con-
tain the maximum of the unknown function over a previous interval. Several integral in-
equalities have been established in the case when the maxima of the unknown scalar func-
tion are involved in the integral; see [24, 25] and references cited therein.

Recently in [26] some new types of integral inequalities on time scales with ‘maxima’
have been established, which can be used as a handy tool in the investigation of making
estimates for bounds of solutions of dynamic equations on time scales with ‘maxima’ In
this paper we establish some new integral inequalities with ‘maxima’ involving Hadamard’s
integral. The significance of our work lies in the fact that ‘maxima’ are taken on intervals
[Bt, ¢] which have non-constant lengths, where 0 < B < 1. Most papers take the ‘maxima’
on [t — h,t], where & > 0 is a given constant.

The paper is organized as follows: in Section 2 we recall some results from [26] in the
special case T = R, used to prove our main results, which are presented in Section 3. In
Section 4 we give applications of our results for a Hadamard fractional differential equa-

tion with ‘maxima’

2 Preliminaries

For convenience we let £y, > 0 throughout. The following results in Lemmas 2.1 and 2.2
are obtained by reducing the time scale T = R, f(£) = g(¢) = 1, and a(t) = b(¢) = 0 for all
t € (to, T) in Theorems 3.3 and 3.2 ([26], p.8 and p.6), respectively.

Lemma 2.1 ([26]) Let the following conditions be satisfied:

(Hi1) The functions p and q € C((to, T),R,).
(Ha) The function ¢ € C([Bto, T),R.) with maxse(gs ] ¢(s) > 0, where 0 < B < 1.
(Hs) The function u € C([Bty, T),R,) and satisfies the inequalities

u(t) < ¢(t) + /t Ot {p(S)u(S) +4(s) gg},?f,s] u(é )] ds, tel(t,T),
M(t) =< ¢(t)7 te [,Bt(), t()]'

Then

u(t) < ¢(t) + h(z) exp(/ {p(s) + q(s)} ds), te(t,T),

0

holds, where

W = max 96)+ [ {p9606) +a) max 6©)}ds, 1€ (1)

s€[Btosto] 0

By splitting the initial function ¢ into two functions, we deduce the following corollary.
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Corollary 2.1 Let the following conditions be satisfied:

(Ha) The functions p, q, and v € C((ty, T),R,).

(Hs) The function w € C([Bto, to],R}) with maXee(py, o) W(S) > 0 and w(ty) = v(ty), where
0<B<1

(He) The function u € C([Bty, T),R,) and satisfies the inequalities

u(t) <v(t) + f [p(S)u(S) +4(s) gg%,?fs] u(E)]ds, te(to, T),

Lo

u(t) <w(t), telBto,tol.

Then

u(t) < v(t) + h(t) exp</t{p(s) +4(s)} ds), te(t,T),

to

holds, where

t
h(t) = Ser[ggﬁo]W(S) + /t i {P(S)V(S) +4(s) Jnax M(é)}ds, t € (to, T),

with

v(t), telty,T),

w(t), te[Bto,tol.

m(t) =

Lemma 2.2 ([26]) Let the condition (H;) of Lemma 2.1 is satisfied. In addition, assume
that:

(H7) The function k € C((¢y, T), (0, 00)) is nondecreasing.
(Hs) The function ¢ € C([Bto,t0),R,), where 0 < 8 < 1.
(Ho) The function u € C([Bty, T),R,) and satisfies the inequalities

u(t) < k(t) + /t : {p(S)u(S) +4(s) Erer%?;;] u(é )} ds, te(t,T),
M(t) < ¢(t)’ te [IBtO’ t0]~

Then

u(t) < Nk(t) exp(/t{p(s) + q(s)} ds>, te(t, T),

to
holds, where

N:max{l, w}

k(to)

The following lemma is a consequence of Jensen’s inequality, which can be found in [27].
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Lemma 2.3 ([27]) Let n € N, and let x;,...,x, be non-negative real numbers. Then for

o>1,

() -

3 Main results

n
n°t E Xy
i=1

Theorem 3.1 Suppose that the following conditions are satisfied:

(A1) The functions p and r € C((to, T),R,).

(Ag) The function ¢ € C([Bto, tol, R.) with maxee(gy, i) (s) > 0, where 0 < g < 1.

(A3) The function u € C([Bty, T), R, ) with

u(t) <r(t) + /t

a-1
t
(log —) o
to N

Ll(t) = ¢(t)» te [,BtO’tO];

where a > 0.

Then the following assertions hold:

(i) Suppose a >

u(t) < t|:c1r2(t) + hy(¢) exp<w /tpz(s) ds):| 7, te(ty, T),

where

¢1 = max {2y

and

m(t)=ca max ¢*(s)

se[p

t
X 2(s) max m?(€)ds,
/top telBss) 1)

with

1
3 then

2, (Bto)?}

t0,t0]

2

rt), te(ty,T),
(), telBtotol

my(t) =

t

ds
S) max M(g)—, te (tO; T)’
§€(Bsis] S

20T (2a - 1)
+ e —

te (tO, T)y

In addition, if r € C((ty, T), (0,00)) is a nondecreasing function, then

u(t) < /eNytr(t) exp(@ /tpz(s) ds), te(t,T),

where

Nj = max{l,

MmaXse(Bto,to] ¢2 (S)

r2(to)

|

(3.1)

(3.2)

(3.3)

(3.4)

(3.6)

(3.8)

Page 4 of 15
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(ii) Suppose 0 < @ < 5, then

— 2)
INY +
u(t)gt[czrb(mhz(t)exp(M / pb(s)ds>:|b, te(t, T), (3.9)
to
whereb:1+§,
Cy = maX{Zétab, (,Bto)_b} (3.10)
and
2))a
() = ¢y max gb(s) s 2ELEDE
s€[Bto.to] t
t
X / pb(s)én%sx]mlf(é)ds, te(ty, T). (3.11)
tO € S,S

Moreover, if r € C((ty, T), (0,00)) is a nondecreasing function, then

2373 ot
u(t) < (czNz)%tr(t) exp((zr(% / PPGs) ds>, te(t,T), (3.12)
where
b
N, = max{l, m—aXSGL‘;‘(Ot’;O)] Ll } (313)

Proof (i) o > % For ¢t € (ty, T), by using the Cauchy-Schwarz inequality in (3.1), we get

t 20-2 %
() < () + { / (log§> ds}
x {[ 2(s )( max u(g)) g}z (3.14)

0

It is easy to observe that

t ¢ 202 log %
/ <log —) ds = tf 1227 dr < T2 — 1)t. (3.15)
to N 0

Substituting (3.15) in (3.14), we obtain

{/;ﬁ(@(ég& u(é))zg}%~

Applying Lemma 2.3 with n = 2, 0 = 2, we get the estimate

D=

u(t) <r(t) + (F(2a - 1)t)

W2(6) < 272(8) + 2T (2 — 1)t / t (s)( max u(g)) fs, t € (t, T).

to

Page 5 of 15
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Setting v(t) = £ 2u>(t), we have, for ¢t € (to, T),

(e —1) [* 24
v(t) < 267%%(t) + # ft 0 p*(s) (Eg[lgg;] u(§ )) S—ZS

t
< 2t5%r%(t) + w[ p*(s) max (&‘2142(5)) ds
t f £€(Bsis)
t
<ar’(t)+ Qe -1) / P2(s) max v(€)ds, (3.16)
t t £€(Bsis]

and for ¢ € [Bty, Lo,
v(t) <t72¢%(t) < (Bto) 2> (t) < c1gp*(0). (3.17)

A suitable application of Corollary 2.1 for (3.16) and (3.17) leads to

u(t) < ar(®) + (o) exp(w

/tPZ(S) dS), te (tO) T)r

where ¢; and /1 are defined by (3.4) and (3.5), respectively. Therefore, we obtain the desired
bound in (3.3).

Now, if r € C((¢, T), (0, 00)) is a nondecreasing function, then, by Lemma 2.2 with (3.16)
and (3.17), it follows that

w(t) < i N P2 (8) exp(% /tpz(s) ds), te(ty, T),

where N is defined by (3.8). Thus, we get the inequality in (3.7). This completes the proof
of the first part.
(ii)0<a < % Leta=1+oandb=1+ é It is obvious that % + % = 1. Using the Holder

inequality in (3.1), for € (ty, T), we obtain

. aa) L e b}
u(t) < r(t) + { /t <log 2) ds} { fto pb(s)(ggf?fsl u(g)) s_:}b (3.18)

0

For the first integral in (3.18), repeating the process to get (3.15), we have

t ¢ a(a-1)
/ <log ;> ds<T'(1-a(l-a))t. (3.19)

0

Obviously, 1-a(1-«) = @? >0 and I'(1 - a(1 - «)) € R. Substituting (3.19) in (3.18), we get

{/ttpb(S)Qg}gg's]u(é))bg}é'

0
Applying Lemma 2.3 with n = 2, 0 = b, we get the following estimate:

Q=

u(t) <r(t) + (F (az)t)

E

Wb(t) < 2071 (0) + 25T (02) 1) ¢ / ) (max u(e)

1 1 t bd,
=25 2(8) + (2T (e2)8) / pb(s)(gmafslu(g)) S—; t € (t, T).

to e[p

Page 6 of 15
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By taking v(t) = t ?u®(t), we have
21" 2 é t
v(t) < cor®(8) + @ren= / pP(s) max v(&)ds, te(to,T) (3.20)
t 0 £€lpss]

and
v(t) < 0290”(t), teBtotol. (3.21)

An application of Corollary 2.1 to (3.20) and (3.21) yields

or 2 é t
W(t) < cor’(t) + ha(2) exp(i( ((Z ) / p’s) ds>, te(t,T),
to
where ¢y and /i, are defined by (3.10) and (3.11), respectively. Thus, we get the required
inequality in (3.9).
Furthermore, if r € C((¢o, T), (0, 00)) is a nondecreasing function, then, by applying Lem-
ma 2.2 to (3.21) and (3.22), we get

w(t) < caNor?(2) exp(m / t PPGs) ds), te(ty, T),

where N, is defined by (3.13). Therefore, the desired inequality (3.12) is proved. This com-
pletes the proof. d

Theorem 3.2 Suppose that the conditions (A1) and (Ay) of Theorem 3.1 are satisfied. In
addition we assume that:

(A4) The function q € C((to, T),R,).
(As) The function u € C([Bto, T),R,) with

t a-1 d
u(t) <r(t) + /to (log 2) {p(s)u(s) +4(s) srel[lgsx,s] u(é)} ?S, te(ty, T), (3.22)
u(t) = ¢(t)r le [ﬂtOr tO]r (323)
where a > 0.

Then the following assertions hold:
(a) Suppose o > %, then

u(t) < t{csrz(t)+hs(t)exp<w /t{pz(s) +q2(s)}ds)}z’

te (to, T), (3.24)
where

c3 = max{3t62, (,Bto)’z} (3.25)
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and

ma(©) = e max g5+ 222D

s€[Bto.to] t
t
X / {pz(s)rz(s) +q2(s) max mf(é)} ds, tel(ty,T), (3.26)
to &€(Bss]

with m, is defined by (3.6).
Furthermore, if r € C((to, T), (0,00)) is a nondecreasing function, then

u(t) </ c3Nqtr(t) exp(% /t{pz(s) + qz(s)} ds), te(t,T), (3.27)

where N; is defined by (3.8).

(b) Suppose 0 < < %, then
1
b

23\% ot
u() < t{cub(t) + B0 exp(@ / (16 + 26} ds)} ,

]

ce o) (3.28)
whereb =1+ é,
C4 = max{g%tab’ (Bto) ™) 529)
and
=g o0 O
x /t : {p” )’ (s) + 4°(s) max my (& )} ds, te(to,T). (3.30)
In addition, if r € C((to, T), (0,00)) is a nondecreasing function, then
u(t) < (caNa)br(t) eXP(% /t{pb(S) +4"(s)} ds), te(to, ), (3.31)
to

where Nj is defined by (3.13).
Proof (a) a > % By using the Cauchy-Schwarz inequality in (3.22), for ¢ € (¢, T), we have

¢ 20-2 ) ‘ 1
o[ () o] { ]

0

AL (o) ] [ )|

0 0

<r(t)+ (M- l)t)% { (ftpz(s)uz(s)zizs> ’

0

+ ( f tqz<s>(§g§§]u(5))2§)%}.
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By applying Lemma 2.3 with n = 3, 0 = 2, we get

u(t) < 372(t) + 3T Qu — l)t{/tpz(s)uz(s)d—zs
p s

0

+/;tq2(s)< max u(E))zg}, te(to, T).

0 &€(Bs,s]

Setting v(t) = £ 2u?(¢t), we obtain

w(t) < csr’(t) + w {/tpz(s)v(s) ds

0

+ftq2(S) max V(é)ds}, t € (to, T) (3.32)
to £€[Bsis]
and

v(t) < cs¢?(t), t€[Btotol. (3.33)

Using Corollary 2.1 for (3.32) and (3.33), it follows that

v(t)scy%thh(t)exp(% f t{pz(s)+q2(s)}ds), t € (to, T),

where c3 and /13 are defined by (3.25) and (3.26), respectively. Therefore, we get the desired
inequality in (3.24).

As a special case, if r € C((fy, T), (0,00)) is a nondecreasing function, then by applying
Lemma 2.2 with (3.32) and (3.33), we have

v(t) < csNiP(8) exp<w / t{pz(s) +4°(s)) ds), te (to, T),

to

where N is defined by (3.8). Thus, we get the required inequality in (3.27). This completes
the proof of the first part.

b)0<a =< % Leta=1+aand b=1+ é Using the Holder inequality in (3.22), for
t € (tg, T), we obtain

t a(a-1) 1 t 3
u(t) <r(t) + {/ <log E) ds} {(/ pb(s)ub(s)g) ’
t d 1
+ (f qh(S)(grer}g}S]u(é)fs—;)b}

0

<r(t)+ (F(az)t)% { (/tpb(s)ub(s)g) ’

0

+ ( f tqb<s>(§g;§3§] u(é))bé) : }

Page 9 of 15
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By applying Lemma 2.3 with n = 3, 0 = b, we get

¢ d.
/ P

to

Wb(t) < 35 77(0) + (3T (?)1) {

g bds
+ /[‘0 qb(s)<smasxys] u(&)) @ }, te(ty,T).

€l

Taking v(t) = tub(¢), it follows that

2)y2 t
WO < cart() + CLEDE { / Ps)vs)ds
t t
! b
+ /to q (s)ég%gsﬁ]v(é)ds}, te(to, T) (3.34)
and
v(t) < cad®(t), t € [Bto, tol. (3.35)

Applying Corollary 2.1 for (3.34) and (3.35), we have the following estimate:

213\3  pt
v(t)scu"(t)+h4(t)exp(w f {Pb(s)d+q"(s)}ds>, te (t,T),

to
where ¢4 and /4 are defined by (3.29) and (3.30), respectively. Hence, the result (3.28) is
proved.

As a special case, if r € C((ty, T),(0,00)) is a nondecreasing function, then by using
Lemma 2.2 with (3.34) and (3.35), we get

(3T ()«

v(t) < caNo 2 () exp( ;

[ P66} ds>, te (to,T),

0

where N, is defined by (3.13). Thus, the required inequality in (3.31) is proved. This com-
pletes the proof. O

4 Applications to Hadamard fractional differential equations with ‘maxima’
In this section, the dependence of solutions on the orders with initial conditions and the
bound of solutions for the Hadamard fractional differential equations, are investigated.

We consider the following fractional differential equation with ‘maxima’:

uD%y(¢) =f<t,y(t), max y(s)), tel=(t,T), (4.1)
se[Bt.t]
HDu_ky(t)|t=t6 = 77k» k:1,2,...,l’l,l’l: _[_a]y (4.2)

and the initial function

y(&) =¢@), telBtotol, (4.3)
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where D represents the Hadamard fractional derivative of order o (« > 0), f € C(I x
R x R,R), ¢ is a given continuous function on [Bty, %], 0 < B8 <1 and n; are constants.

The problem (4.1)-(4.3) describes a model of a fractional problem in real world phenom-
ena in which often some parameters are involved. The values of these parameters can be
measured only up to certain degree of accuracy. Hence, the orders of fractional differential
equation « in (4.1) and the initial conditions & — k in (4.2) may be subject to some errors
either by necessity or for convenience. Thus, it is important to know how the solution of
(4.1)-(4.3) changes when the values of @ and « — k are slightly altered.

Theorem 4.1 Let o« >0 and § >0 suchthat0 <n-l<a-8§<a<n.Alsoletf:I xR x
R — R be a continuous function satisfying the assumption:

(Ag) There exist constants L1, Ly > 0 such that |f(t, uy, uz) —f(t,v1,v2)| < Li|lug —vi|+ Lo |ug —
va|, foreach t € I and uy, uz,v1,v2 € R.

Ify and z are the solutions of the initial value problems (4.1)-(4.3) and
uD*2(t) = f(t, 2(£), max z(s)), tel, (4.4)
se[Btt]
WD KOy =T k=12 mn=~[~(@-9)], 5
with initial function
2(t) = (1), t € [Bto,to), (4.6)
respectively, where 7, are constants and ¢ is a given continuous function on [Bty, ty] such

that ¢(t) # $(t) for all t € [Bto, to), then the following estimates hold for ty <t <h < T:
(I) Suppose -8 > % Then fort el

l2(t) - y(®)| < t{c5A2(t) + hs(2)

32 — 28 - 1)(L2 + LAt t)\ | 2
X exp( 2 (0) )} . (4.7)
(II) Suppose 0 <o -6 < % Then fort el
|2(8) - y(8)| < t{c6Ab(t) + hg(t)
(BT (@ - 8)2) @5 (LL + LL)(t o)\ |
X exp< Fb(ot)tl 2 0 >} , (4.8)
where
B n ﬁ] i a—8—j n TI/ i a—j
A0 T e (lOg to> L TG (l"g to>

+

t a3 1 1
(log 5) <F(a —5+1) (a— 3)F(a)> ’ Vi
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1 lon a=s 1
+(a—a)r(a>(°g%) Tl +1>( )

IIfll = sup (t y(£), max y(s))

to<t<h se[Bt.t]

1
a-38

C5 = max{3t52, (ﬂto)’z},

b=1+

Co = max{Bﬁtab, (Bto)™},

3¢sIN(2a — 28 — 1)

10 =cs gy, 190 =00+ =y

to

and

hs(t) = ¢ _max !¢(S) ¢(s)|”

[Bto.to]

c6BT (@ = 8)%) &5
l"b(o()t to

with a continuous function my(t) is defined by

A(t), tel,
() —p(8)], € [Btotol.

my(t) =

Proof The solutions y and z of the initial value problems (4.1)-(4.3) and (4.4)-(4.6) satisfy

the following equations:

N t ds
02 2 (s ) v ), (e ) YOLK. Lk

and

o n ﬁj | t a—8—j
Z”‘Zr(a—S—jn)("gE)

J=1

1L\ ds
NCED) fto (10g;> f(s,Z(S),Erg[lgé]Z(E))?,

respectively. So using the assumption (Ag), it follows that

|2(t) - ()| <

j=1

a-58-1 d
‘F( —8)/ < ) S (2660 max =(6))

t t a—-6-1
r( ;| (1 g—) £(s2(9), max. z(&)) :

ria ] (o22) " o9, s )

/ (LbAh(s)+Lb max mz(s)) ds,

n ﬁ t o—6—j n )
]
T (10e N
ZF(a—(S—j+1)<0gt0> /Z:;r(a—jn)

t
(LfA2(s) s

(log

t )‘”"

max m%(& )
E€[Bs,s

(4.9)

)ds
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t a-5-1
(log ) (s, max e) S

oa—5— 1
‘ (10g5) £ (56 max 5(6))
S £€(Bs,s) S

) fls,9(s), max y(&)) ‘

¢ a—5-1
<A(t)+ @) /Lo (logs)

d
x (L1|Z(S) -y(s)| +L2Lrer%§;<,s]Z(E)—grEr[1§X y(%‘)D Ss
1 t a—8-1
<A(t) + @ <log E)

ds
x (L1|2(s) = y(s)| + Ly Sg}gz}lz@) —y(&)l) ~ tel
where A(¢) is defined by (4.9), and

|2() — y(8)| =

t € [Bto, Lol

Applying Theorem 3.2 yields the desired inequalities (4.7) and (4.8). This completes the
proof. g

In the following theorem, we give the upper bounds of solution of the Hadamard frac-
tional differential equation with ‘maxima’ and initial conditions (4.1)-(4.3).

Theorem 4.2 Assume that:

(A7) There exist functions 1, v € C(I,R,) such that for t € I, uj,uy € R,
If (& w1, 12) | < (O uaa | + v (2) sz . (4.10)

If y is solution of the initial value problem (4.1)-(4.3) such that ¢(t) £ 0 for all t € [Bto, to],
then the following estimates hold:
(II) Suppose o > % Then fort el

"yl £\7\"
]
ol = e S () )

+Io0) exp(w t [12(s) +v%(s)) ds) } B (4.11)

1"2 (a)t to

(IV) Suppose 0 <a < % Then fort el

calml® (, £\
)<t log —
o] < | Ty (o)

233 e 5
+h8(t)exp<%/ {,uz(s)+v2(s)}ds)} , (4.12)
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where b, c3, cs are defined as in Theorem 3.2,

3¢sT(2a — 1)
hy(t) = ¢ max ¢*(s) + —— "
7(t) 63S€[ﬂt0§0]¢> (s) T2(a)t

n

s Wi s\ ’ 2 2
x/to = (s) ZmOog%) +v (s)grer%gs);]mg(é) ds

j=1
and

hs(t) = ¢ max |¢(s)|”

s€(Bro,to]

- b b bla-1)
) c,(3T(a?)) / {|m| ©(s) <log s) +v2(s) max mg(g)}ds,

b (a)t b (a) to gelpss)

with a continuous function ms(t) defined by

n njl ( ¢ \o—j
-1 = Uo _) » te 1,
I’Vl3(t) — Z]—l IM(a—j+1) g to

|¢(t)|) te [IBtO:tO]-

Proof The solution y of the initial value problem (4.1)-(4.3) satisfies the following equa-

tions:

(t) = LB "
Y ‘Zr(a—m)("g%)

! t(l t)a_lf( (s €)%, el
+ — og — S, Y\S), max -, N
F(Ol) £ g S Y Ee[ﬂs,s]y S

0

y(t) = p(t), te[Bto tol.
For o > 0, by using the assumption (A7), it follows that

ol =" s (o i)”
YOI L Ta-j+ )\ %%

Jj=1

1 t t a-1 ds
+ @ /to (log ;) (M(S)|y(s)| +0(s) EE}ESX’S]MS)D?’ tel,
@) =@, ¢t e Bto,to]-

Hence Theorem 3.2 yields the estimate of the inequalities (4.11) and (4.12). This completes
the proof. d
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